
Journal of Algebra 538 (2019) 127–139

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Abstract homomorphisms from locally compact 

groups to discrete groups ✩

Linus Kramer, Olga Varghese ∗

Department of Mathematics, Münster University, Einsteinstraße 62, 48149 
Münster, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 May 2019
Available online 5 August 2019
Communicated by Dan Segal

Keywords:
Graph products
Automatic continuity
Artin groups
Coxeter groups

We show that every abstract homomorphism ϕ from a locally 
compact group L to a graph product GΓ, endowed with the 
discrete topology, is either continuous or ϕ(L) lies in a ‘small’ 
parabolic subgroup. In particular, every locally compact group 
topology on a graph product whose graph is not ‘small’ is 
discrete. This extends earlier work by Morris-Nickolas.
We also show the following. If L is a locally compact group and 
if G is a discrete group which contains no infinite torsion group 
and no infinitely generated abelian group, then every abstract 
homomorphism ϕ : L → G is either continuous, or ϕ(L) is 
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Let L be a locally compact group and let G be a discrete group. Under what condi-

tions on the group G is an abstract (i.e. not necessarily continuous) homomorphism 

ϕ : L → G automatically continuous?

There are many results in this direction in the literature, see [11], [17], [21], [32] or [35]. In 

particular, Dudley [21] proved that every abstract homomorphism from a locally compact 

group to a free group is automatically continuous. This was generalized by Morris and 

Nickolas [32]. They proved that every abstract homomorphism from a locally compact 

group to a free product of groups is either continuous, or the image of the homomorphism 

is conjugate to a subgroup of one of the factors of the free product.

Our first aim is to prove similar results for the case where the codomain G of an 

abstract homomorphism L → G is a graph product of arbitrary groups. Given a simplicial 

graph Γ = (V, E) and a collection of groups G = {Gu | u ∈ V }, the graph product GΓ is 

defined as the quotient

GΓ =

(

∗
u∈V

Gu

)

/

〈〈[Gv, Gw] for {v, w} ∈ E〉〉.

We call GΓ finite dimensional if there exists a uniform bound on the sizes of cliques in Γ.

Throughout, L denotes a Hausdorff locally compact group with identity compo-

nent L◦, and G denotes a discrete group. We call L almost connected if the totally 

disconnected group L/L◦ is compact. By an abstract homomorphism we mean a group 

homomorphism between topological groups which is not assumed to be continuous. We 

remark that every abstract homomorphism whose codomain is discrete is open.

Proposition A. Let ϕ : L → GΓ be an abstract homomorphism from an almost connected 

locally compact group L to a finite dimensional graph product GΓ. Then ϕ(L) lies in a 

complete parabolic subgroup of GΓ.

Using Proposition A, we show the following more general result.

Theorem B. Let ϕ be an abstract homomorphism from a locally compact group L to a 

finite dimensional graph product GΓ. Then either ϕ is continuous, or ϕ(L) lies in a 

conjugate of a parabolic subgroup GS∪lk(S), where S �= ∅ is a clique. If every composite 

L 
ϕ

−→ GΓ
rv−−→ Gv is continuous, then ϕ is continuous.

In particular, every locally compact group topology on a finite dimensional graph 

product GΓ is discrete, unless Γ is contained in the link of a clique. In the latter case, 

GΓ is a direct product of vertex groups and a smaller graph product, and then a locally 

compact topology on GΓ may indeed be nondiscrete.

Our remaining results deal with a certain class G of discrete groups. Let G denote the 

class of all groups G with the following two properties:
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(i) Every torsion subgroup T ⊆ G is finite, and

(ii) Every abelian subgroup A ⊆ G is a (possibly infinite) direct sum of cyclic groups.

The abelian subgroups A in such a group G are thus of the form A = F × Z
(J), where F

is a finite abelian group and Z(J) is free abelian of (possibly infinite) rank card(J). We 

remark that subgroups of free abelian groups are again free abelian [25, A1.9].

We study abstract homomorphisms from locally compact groups to groups in this 

class. We show in Section 7 that the class G is huge. It is closed under finite products, un-

der coproducts, and under passage to subgroups, see Proposition 7.1. For example, every 

finitely generated hyperbolic group, every right-angled Artin group, every Artin group 

of finite type and every Coxeter group is in this class, see Propositions 7.2, 7.3 and 7.4. 

Furthermore, the groups GLn(Z), Out(Fn) and the mapping class groups Mod(Sg) of 

compact orientable surfaces of genus g are in this class, see Proposition 7.5. Further 

examples of groups which are in the class G are diagram groups, see [24, Theorem 16]. In 

particular, the Thompson’s group F is a diagram group and this group contains a free 

abelian group which is not finitely generated.

We obtain the following results.

Proposition C. Let ϕ be an abstract homomorphism from a locally compact group L to a 

group G in the class G. Then ϕ factors through the canonical projection π : L → L/L◦. 

If L is almost connected, then ϕ(L) is finite.

Theorem D. Let ϕ be an abstract homomorphism from a locally compact group L to a 

group G in the class G. Then either ϕ is continuous, or ϕ(L) lies in the normalizer of a 

finite non-trivial subgroup of G.

The following is an immediate consequence of Theorem D.

Corollary E. Every abstract homomorphism from a locally compact group L to a torsion 

free group G in the class G is continuous. In particular, every abstract homomorphism 

from a locally compact group to a right-angled Artin group or to an Artin group of finite 

type is continuous.

Related results on abstract homomorphisms into right-angled Artin groups and into 

Artin groups of non-exceptional finite type were recently proved in [18].

Our proofs depend heavily on a theorem of Iwasawa on the structure of connected 

locally compact groups and on a theorem of van Dantzig on the existence of compact 

open subgroups in totally disconnected groups. For the proof of Proposition A we use 

the structure of the right-angled building XΓ associated to a graph product GΓ.
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2. Graph products

In this section we briefly present the main definitions and properties concerning graph 

products. These groups are defined by presentations of a special form.

A simplicial graph Γ = (V, E) consists of a set V of vertices and a set E of 2-element 

subsets of V which are called edges. We allow infinite graphs. Given a subset S ⊆ V , the 

graph generated by S is the graph with vertex set S and edge set E|S = {{v, w} ∈ E |

v, w ∈ S}. We call S a clique if E|S = {{v, w} | v, w ∈ S with v �= w} =
(

S
2

)

. We count 

the empty set as a clique. We say that Γ has finite dimension if there is a uniform upper 

bound on the cardinality of cliques in Γ. For a subset S ⊆ V we define its link as

lk(S) = {w ∈ V | {v, w} ∈ E for all v ∈ S}.

Definition 2.1. Let Γ be a simplicial graph, as defined above. Suppose that for every 

vertex v ∈ V we are given a nontrivial1 abstract group Gv. The graph product GΓ is the 

group obtained from the free product of the Gv, for v ∈ V , by adding the commutator 

relations gh = hg for all g ∈ Gv, h ∈ Gw with {v, w} ∈ E, i.e.

GΓ =

(

∗
u∈V

Gu

)

/

〈〈[Gv, Gw] for {v, w} ∈ E〉〉.

Graph products are special instances of graphs of groups, and in particular colimits 

in the category of groups [20, §5]. We call the graph product finite dimensional if Γ has 

finite dimension as defined above, i.e. if there is an upper bound on the size of cliques 

in Γ.

The first examples to consider are the extremes. If E = ∅, then GΓ is the free product 

of the groups Gv, for v ∈ V . On the other hand, if E =
(

V
2

)

is the set of all 2-element 

subsets of V , then GΓ is the direct sum of the Gv, for v ∈ V . So graph products 

interpolate between free products and direct sums of groups.

2.2. Parabolic subgroups

Let Γ = (V, E) be a simplicial graph, let GΓ denote the graph product of a family of 

groups {Gv | v ∈ V } and let S be a subset of V . The subgroup GS of GΓ generated by 

the Gv, for v ∈ S, is again a graph product, corresponding to the subgraph Γ′ = (S, E|S). 

1 We need nontrivial vertex groups in order to obtain a building. Alternatively, one may remove all vertices 
v from Γ whose vertex group Gv is trivial, without changing the resulting graph product.
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This follows from the Normal Form Theorem [23, Thm. 3.9]. There is also a retraction 

homomorphism

rS : GΓ → GS

which is obtained by substituting the trivial group for Gv for all v ∈ V −S [3, Section 3].

If S ⊆ V is a subset (resp. a clique), then GS is called a special parabolic subgroup (resp. 

a special complete parabolic subgroup). The conjugates in GΓ of the special (complete) 

parabolic subgroups are called (complete) parabolic subgroups. We note that parabolic 

subgroups behave well. For R, S ⊆ V and a, b ∈ GΓ we have

aGRa−1 ⊆ bGSb−1 ⇒ R ⊆ S (1)

see [3, Corollary 3.8]. If gGSg−1 ⊆ GS , then by [3, Lemma 3.9]

gGSg−1 = GS . (2)

Let X be a subset of GΓ. If the set of all parabolic subgroups containing X has a 

minimal element, then this minimal parabolic subgroup containing X is unique by the 

remarks above. In this case, it is called the parabolic closure of X and denoted by Pc(X). 

The parabolic closure always exists if Γ is finite or if X is finite [3, Proposition 3.10].

Let H ⊆ GΓ be a subgroup. We denote by NorGΓ
(H) the normalizer of H in GΓ. For 

a parabolic subgroup of GΓ there is a good description of the normalizer.

Lemma 2.3. [3, Lemma 3.12 and Proposition 3.13]

(i) Let H ⊆ GΓ be a subgroup. Suppose that the parabolic closure of H in GΓ exists. 

Then NorGΓ
(H) ⊆ NorGΓ

(Pc(H)).

(ii) Let GS be a non-trivial special parabolic subgroup of GΓ. Then NorGΓ
(GS) =

GS∪lk(S).

3. Actions on cube complexes

A detailed description of CAT(0) cube complexes can be found in [12] and in [36]. Let 

C denote the class of finite dimensional CAT(0) cube complexes and let A denote the 

subclass of C consisting of simplicial trees. Inspired by Serre’s fixed point property FA, 

Bass introduced the property FA′ in [5]. A group G has property FA′ if every simplicial 

action of G on every member T of A is locally elliptic, i.e. if each g ∈ G fixes some 

point on the tree T . A generalization of property FA′ was defined in [28]. A group G has 

property FC′ if every simplicial action of G on every member X of C is locally elliptic, 

i.e. if each g ∈ G fixes some point on X. Bass proved in [5] that every profinite group 

has property FA′. His result was generalized by Alperin to compact groups in [1] and to 

almost connected locally compact groups in [2].
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The next result was proved by Caprace in [14, Theorem 2.5].

Proposition 3.1. Let X be a locally Euclidean CAT(0) cell complex with finitely many 

isometry types of cells, and L be a compact group acting as an abstract group on X

by cellular isometries. Then every element of L is elliptic. In particular, every compact 

group has property FC′.

We recall that a group G is called divisible if {gn | g ∈ G} = G holds for all integers 

n ≥ 1. Another result which we will need in order to prove Proposition A is the following.

Lemma 3.2. [14, Theorem 2.5 Claim 7] Every divisible group has property FC′.

The following result is due to Sageev and follows from the proof of Theorem 5.1 in 

[36], see also [28, Theorem A].

Proposition 3.3. Let G be a finitely generated group acting by simplicial isometries on a 

finite dimensional CAT(0) cube complex. If the G-action is locally elliptic, then G has a 

global fixed point.

The last fact we need for the proof of Proposition A concerning global fixed points is 

the following easy consequence of the Bruhat-Tits Fixed Point Theorem [30, Lemma 2.1].

Lemma 3.4. Suppose that a group H acts isometrically on a complete CAT(0) space. If 

H = H1H2 · · · Hr is a product of finitely many subgroups Hj each fixing some point in X, 

then H has a global fixed point.

3.5. Graph products, cube complexes and the building

Associated to finite dimensional graph products are certain finite dimensional CAT(0)

cube complexes. We briefly describe the construction of these spaces. For a graph product 

GΓ we consider the poset

P = {gGT | g ∈ GΓ and T is a clique} ,

ordered by inclusion (we recall that we allow empty cliques). The group GΓ acts by left 

multiplication on this poset and hence simplicially on the flag complex XΓ associated to 

this coset poset. This flag complex has a canonical cubical structure. With respect to this 

structure XΓ is the Davis realization of a right-angled building, [20, Theorem 5.1]. By 

[20, Theorem 11.1] the Davis realization of every building is a complete CAT(0) space. 

Hence XΓ is a finite dimensional CAT(0) cube complex, and GΓ acts isometrically on XΓ. 

The chambers of XΓ correspond to the cosets of the trivial subgroup, i.e. to the elements 

of GΓ. The GΓ-stabilizer of a chamber (a maximal cube) is therefore trivial. The vertices
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of XΓ correspond to the cosets of the GS, where S ⊆ V is an inclusion-maximal clique. 

The action of GΓ on XΓ preserves the canonical cubical structure.

One nice property of this action is the following: if a subgroup H ⊆ GΓ has a global 

fixed point in XΓ, then there exists a vertex in XΓ which is fixed by H. This follows 

from the fact that the action is type preserving. Furthermore, the stabilizer of a vertex 

gGT is equal to gGT g−1.

Lemma 3.6. Let GΓ be a finite dimensional graph product and let H be a subgroup. If the 

action of H on the building XΓ is locally elliptic, then H has a global fixed point.

Proof. For each finite subset X ⊆ H, the finitely generated group 〈X〉 acts locally 

elliptically on XΓ. Thus 〈X〉 has by Proposition 3.3 a fixed vertex gGS , for some g ∈ GΓ

and some maximal clique S. It follows that the parabolic closure of X is of the form 

Pc(X) = gGSX
g−1, where SX is a clique depending uniquely on X. Since there is an 

upper bound on the size of cliques in Γ, there exists a finite set Z ⊆ H such that SZ is 

maximal among all cliques SX , for X ⊆ H finite. We claim that H ⊆ Pc(Z).

Let h ∈ H and put X = Z ∪{h}. If we put Pc(X) = aGSX
a−1 and Pc(Z) = bGSZ

b−1, 

then

aGSX
a−1 ⊇ bGSZ

b−1

because X ⊇ Z. Then SX ⊇ SZ holds by 2.2(1). From the maximality of SZ we conclude 

that SZ = SX . Then aGSX
a−1 = bGSZ

b−1 by 2.2(2). It follows that H ⊆ Pc(Z) =

bGSZ
b−1, and thus H has a global fixed point. ✷

4. The proofs of Proposition A and Theorem B

Proposition A. Let ϕ : L → GΓ be an abstract homomorphism from an almost connected 

locally compact group L to a finite dimensional graph product GΓ. Then ϕ(L) lies in a 

complete parabolic subgroup of GΓ.

Proof. The group L acts via

L → GΓ → Isom(XΓ)

isometrically and simplicially on the right-angled building XΓ.

Suppose first that L is compact. Then the L-action is by Proposition 3.1 locally 

elliptic. Hence there is global fixed point by Lemma 3.6.

Suppose next that L is connected. By Iwasawa’s decomposition [27, Theorem 13] we 

have

L = H1H2 · · · HrK,



134 L. Kramer, O. Varghese / Journal of Algebra 538 (2019) 127–139

where K is a connected compact group and Hi
∼= R for i = 1, . . . , r. Each group Hj

has a fixed point by Lemma 3.2, and K has a fixed point by the result in the previous 

paragraph. Hence L has a fixed point by Lemma 3.4.

Now we consider the general case. If L is almost connected, then the identity compo-

nent L◦ has a global fixed point by the previous paragraph. The fixed point set Z ⊆ XΓ

of L◦ is a convex CAT(0) cube complex, because the L-action is simplicial and type-

preserving. By Proposition 3.1, the action of L/L◦ on Z is locally elliptic. Hence the 

action of L on X is locally elliptic as well. Another application of Lemma 3.6 shows that 

L has a global fixed point. ✷

Now we may prove Theorem B.

Theorem B. Let ϕ be an abstract homomorphism from a locally compact group L to a 

finite dimensional graph product GΓ. Then either ϕ is continuous, or ϕ(L) lies in a 

conjugate of a parabolic subgroup GS∪lk(S), where S �= ∅ is a clique. If every composite 

L 
ϕ

−→ GΓ
rv−−→ Gv is continuous, then ϕ is continuous.

Proof. Let L◦ be the connected component of the identity in L. We distinguish two 

cases.

Case 1: ϕ(L◦) is not trivial.

By Proposition A we know that ϕ(L◦) ⊆ gGT g−1 where T ⊆ V is a clique and g ∈ GΓ. 

Hence Pc(ϕ(L◦)) = hGSh−1, where ∅ �= S ⊆ T and h ∈ GΓ. Since ϕ(L) normalizes 

ϕ(L◦), we have by Lemma 2.3 that ϕ(L) ⊆ NorGΓ
(Pc(ϕ(L◦))). This normalizer is of the 

form hGS∪lk(S)h
−1, for some h ∈ GΓ. We note that in Case 1, the homomorphism ϕ is 

not continuous, since the image of a connected group under continuous map is always 

connected and a connected subgroup of a discrete group is trivial.

Case 2: ϕ(L◦) is trivial.

Then ϕ factors through an abstract homomorphism ψ : L/L◦ → GΓ, and L/L◦ is a 

totally disconnected locally compact group. By van Dantzig’s Theorem [10, III§4, No. 6]

there exists a compact open subgroup K in L/L◦.

Subcase 2a: There is a compact open subgroup K ⊆ L/L◦ such that ψ(K) is trivial.

Then the kernel of ψ is open in L/L◦ and hence ψ and ϕ are continuous.

Subcase 2b: There is no compact open subgroup K ⊆ L/L◦ such that ψ(K) is trivial.

Let K denote the collection of all compact open subgroups of L/L◦. We note that L

acts on K by conjugation. For K ∈ K we put Pc(ψ(K)) = gGSK
g−1. Thus SK is a clique 

in Γ which depends uniquely on K. We choose M ∈ K in such a way that SM is minimal 

and we note that SM �= ∅. Given a ∈ L/L◦ we have M ∩ aMa−1 ∈ K and

Pc(ψ(aMa−1)) = ψ(a) Pc(ψ(M))ψ(a)−1.

From 2.2(1) and
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Pc(ψ(M)) ⊇ Pc(ψ(M) ∩ ψ(aMa−1)) ⊆ Pc(ψ(aMa−1))

we obtain that

SM ⊇ SM∩aMa−1 ⊆ SaMa−1 .

Since both SaMa−1 and SM are minimal we conclude that

SM = SM∩aMa−1 = SaMa−1

and that

Pc(ψ(M)) = Pc(ψ(aMa−1)) = ψ(a) Pc(ψ(M))ψ(a)−1.

Therefore ψ(a) normalizes Pc(ψ(M)), whence

ϕ(L) = ψ(L/L◦) ⊆ hGSM ∪lk(SM )h
−1,

for some h ∈ GΓ by Lemma 2.3.

Suppose now towards a contradiction that ϕ is not continuous, but that each composite 

L 
ϕ

−→ GΓ
rv−−→ Gv is continuous. Then ϕ(L) ⊆ gGS∪lk(S)g

−1 for some nonempty clique 

S. There is a direct product decomposition

GS∪lk(S) = GS × Glk(S) =
∏

v∈S

Gv × Glk(S)

and therefore ϕ factors as a product of commuting homomorphisms

ϕ(a) = g
∏

v∈S

ϕv(a)ϕlk(S)(a)g−1,

with ϕv = ϕ ◦ rv and ϕlk(S) = ϕ ◦ rlk(S). Here we use the retractions r introduced 

in Section 2. Since the ϕv are all continuous, ϕlk(S) is not continuous. Hence we find 

a clique T ⊆ lk(S) such that ϕlk(S)(L) ⊆ hGT ∪(lk(T )∩lk(S))h
−1. But then S ∪ T is a 

clique (because T ⊆ lk(S)) which is strictly bigger than S. If we continue in this fashion, 

we end up after finitely many steps with an empty link, because Γ has finite dimension. 

Thus ϕ is a finite product of commuting continuous homomorphisms, and therefore itself 

continuous. This is a contradiction. ✷

The referee has pointed out that if every composite L 
ϕ

−→ GΓ
rv−−→ Gv is continuous, 

then ϕ is continuous, whether or not the graph product if finite dimensional (see proof 

of Theorem 3.3 in [17]).
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5. The proof of Proposition C

We consider abstract homomorphisms from locally compact groups L into groups G

which are in the class G. We recall from the introduction that for such a group G, every 

torsion subgroup T ⊆ G is finite, and every abelian subgroup A ⊆ G is a (possibly 

infinite) direct sum of cyclic groups. In particular, such a group G has no nontrivial 

divisible abelian subgroups.

Proposition C. Let ϕ be an abstract homomorphism from a locally compact group L to a 

group G in the class G. Then ϕ factors through the canonical projection π : L → L/L◦. 

If L is almost connected, then ϕ(L) is finite.

Proof. We first show that every homomorphism ρ : K → G has finite image if K

is compact. Suppose that g ∈ K. We claim that ρ(g) has finite order. The subgroup 

H = 〈g〉 is compact abelian, whence ρ(H) = F × Z
(J), where F is a finite abelian 

group. By Dudley’s result [21], a compact group has no nontrivial free abelian quotients. 

Therefore ρ(H) is finite and in particular, ρ(g) has finite order. Since G contains no 

infinite torsion groups, ρ(K) is finite.

Now we show that ϕ(L◦) is trivial. By Iwasawa’s Theorem [27, Theorem 13] there is 

a decomposition L◦ = H1 · · · HrK, where Hj
∼= R for j = 1, . . . , r and where K is a 

compact connected group. The groups H1, . . . , Hr are abelian and divisible. From our as-

sumptions on the class G we see that the abelian groups ϕ(Hj) are trivial, for j = 1, . . . , r. 

The compact group K is connected and therefore divisible [25, Theorem 9.35]. A finite 

divisible group is trivial, and therefore ϕ(K) is trivial as well. This shows that ϕ(L◦) is 

trivial.

The first paragraph of the present proof shows then that ϕ(L) is finite if L/L◦ is 

compact. ✷

6. The proof of Theorem D

We are now ready to prove Theorem D.

Theorem D. Let ϕ be an abstract homomorphism from a locally compact group L to a 

group G in the class G. Then either ϕ is continuous, or ϕ(L) lies in the normalizer of a 

finite non-trivial subgroup of G.

Proof. Let L◦ be the connected component of the identity in L. By Proposition C the 

homomorphism ϕ factors through a homomorphism ψ : L/L◦ → G. The totally discon-

nected locally compact group L/L◦ contains by van Dantzig’s Theorem [10, III§4, No. 6]

compact open subgroups. We distinguish two cases.

Case 1: ψ(K) is trivial for some compact open subgroup K ⊆ L/L◦.

Then the kernel of ψ is open and therefore ψ and ϕ are continuous.
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Case 2: ψ(K) is nontrivial for every compact open subgroup K ⊆ L/L◦.

By Proposition C, the image ψ(K) of such a group K is finite. Among the compact 

open subgroups of L/L◦ we choose M such that ψ(M) is minimal. Given g ∈ L/L◦, we 

have then that ψ(gMg−1) = ψ(M ∩ gMg−1) = ψ(M). It follows that ψ(g) normalizes 

ψ(M). ✷

7. Some remarks on the class G

In this last section we show that the class G contains many groups.

Proposition 7.1. The class G is closed under passage to subgroups, under passage to finite 

products, and under passage to arbitrary coproducts.

Proof. If H ⊆ G ∈ G, then clearly H ∈ G. If G1, . . . , Gr ∈ G and if T ⊆
∏r

j=1 Gj is 

a torsion group, then the projection πj(T ) = Tj ⊆ Gj is also a torsion group. Hence 

T ⊆
∏r

j=1 Tj is finite. Similarly, if A ⊆
∏r

j=1 Gj is abelian, then A is contained in the 

product 
∏r

j=1 πj(A), which is a direct sum of a finite abelian group and a free abelian 

group. Hence A itself is a direct sum of a finite abelian group and a free abelian group. 

Finally suppose that (Gj)j∈J is a family of groups in G. By Kurosh’s Subgroup Theorem 

[4], every subgroup of the coproduct 
∐

j∈J Gj is itself a coproduct F ∗
∐

j∈J gjUjg−1
j , 

were F is a free group, Uj ⊆ Gj is a subgroup and the gj are elements of 
∐

i∈J Gi. If 

such a group is abelian, then it is either cyclic or conjugate to a subgroup of one of the 

free factors. ✷

Proposition 7.2. Every hyperbolic group G is in the class G.

Proof. By a theorem of Gromov [22, Chap. 8, Cor. 36], every torsion subgroup of a 

hyperbolic group is finite. Furthermore, every abelian subgroup of a hyperbolic group is 

finitely generated. ✷

Proposition 7.3. Let A be an Artin group. If A is a right-angled Artin group or an Artin 

group of finite type, then A is torsion free and every abelian subgroup of A is finitely 

generated.

Proof. Every right-angled Artin group is torsion free by [23, Corollary 3.28]. Moreover 

A is a CAT(0) group, see [16]. Hence every abelian subgroup of A is finitely generated, 

see [12, II Corollary 7.6]. If A is an Artin group of finite type, then A is torsion free by 

[13]. By [8, Corollary 4.2], every abelian subgroup of A is finitely generated. ✷

We note that it is an open question if every Artin group is torsion free [15, Conjec-

ture 12].
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Proposition 7.4. Let W be a Coxeter group. Then every torsion subgroup of W is finite 

and every abelian subgroup of W is finitely generated.

Proof. It was proved in [33, Theorem 14.1] that Coxeter groups are CAT(0) groups. 

Hence every abelian subgroup of W is finitely generated [12, II Corollary 7.6] and the 

order of finite subgroups of W is bounded [12, II Corollary 2.8(b)]. Let T ⊆ W be a 

torsion group. Since W is a linear group [19, Corollary 6.12.11] and since every finitely 

generated linear torsion group is finite [37, I], it follows that every finitely generated 

subgroup of T is finite. Since the order of finite subgroups of T is bounded, T is finite. ✷

Proposition 7.5. The groups GLn(Z), the groups Out(Fn) of outer automorphisms of free 

groups and the mapping class groups Mod(Sg) of orientable surfaces of genus g are in 

the class G.

Proof. Since GLn(Z) is a linear group, it follows that every finitely generated torsion 

subgroup is finite [37, I]. Since the order of finite subgroups in GLn(Z) is bounded [31], 

we obtain that every torsion subgroup of GLn(Z) is finite. It was proved in [29] that 

every abelian subgroup of GLn(Z) is finitely generated. Hence GLn(Z) is in the class G.

The kernel of the map Out(Fn) → GLn(Z) which is induced by the abelianization of 

Fn is torsion free [7]. Since every torsion subgroup of GLn(Z) is finite, it follows that 

every torsion subgroup of Out(Fn) is finite. Every abelian subgroup of Out(Fn) is finitely 

generated, see [6]. Thus Out(Fn) is in the class G.

It was proved in [9, Theorem A] that every abelian subgroup of Mod(Sg) is finitely 

generated. Further, it was proved in [34, Theorem 1] that Mod(Sg) is a linear group. 

Hence every finitely generated torsion subgroup is finite [37, I]. We know by [26] that 

the order of finite subgroups in Mod(Sg) is bounded. Therefore every torsion subgroup 

of Mod(Sg) is finite. Thus Mod(Sg) is in the class G. ✷
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