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Abstract. A topological vector space over the real or complex field K is weakly complete if it
is isomorphic to a power K”. For each topological group G there is a weakly complete topological
group Hopf algebra K[G] over K =R or C, for which three insights are contributed:

Firstly, there is a comprehensive structure theorem saying that the topological algebra K[G] is the
cartesian product of its finite dimensional minimal ideals whose structure is clarified.

Secondly, for a compact abelian group G and its character group G the weakly complete complex
Hopf algebra C[G] is the product algebm CC with the comultiplication c: CC — CGxCG ~ 6 ®(CG

c(F)(x1,x2) = F(x1 + x2) for F: G —C in (CG. The subgroup F((CG) of grouplike elements of
the group of units of the algebra CC is Hom(G, (C\ {0}, .)) while the vector subspace of primitive
elements is Hom(G, (C, +)). This forces the group I'(R[G]) C T(C[G]) to be Hom(G,S') =~ G ~ G
with the complex circle group S'. While the relation I'(R[G]) = G remains true for any compact
group, I'(C[G]) & G holds for a compact abelian group G if and only if it is profinite.

Thirdly, for each pro-Lie algebra L a weakly complete universal enveloping Hopf algebra Ug(L)
over K exists such that for each connected compact group G the weakly complete real group Hopf
algebra R[G] is a quotient Hopf algebra of Ur(£(G)) with the (pro-)Lie algebra £(G) of G.
The group T'(Ur(£(G))) of grouplike elements of the weakly complete enveloping algebra of £(G)
maps onto T'(R[G]) = G and is therefore nontrivial in contrast to the case of the discrete classical
enveloping Hopf algebra of an abstract Lie algebra.
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1. Introduction

For much of the material surrounding a theory of group Hopf algebras in the category
of weakly complete real or complex vector spaces we refer to [3] and the forthcoming
fourth edition of [6]. Some additional facts are presented here. A topological vector
space over a locally compact field K is called weakly complete if it is isomorphic
to K’/ for some set J. This text considers K = R or K = C only and deals
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with the categories G of topological groups, respectively, WA of weakly complete
topological algebras. Inside each WA-object A we have the subset A~! of all units
(i.e., invertible elements) which turns out to be a G-object in the subspace topology.
In [3] it was shown that the functor A — A™!: WA — G has a left adjoint functor
G — K[G] : G = WA. Automatically, K[G] is a topological Hopf algebra. Then
for each topological group G there is a G-morphism 7¢: G — K[G]™! such that for
each WA-object A and G-morphism f: G — A~! there is a unique WWA-morphism
I+ K[G] — A such that f(g) = f'(ne(g9)). The weakly complete algebra A = K[G]
is seen to have a comultiplication ¢: A — A ® A making it into a symmetric Hopf
algebra. The subset
G(A)={ac A :cla) =a®a}

is a subgroup of A™! and its elements are called grouplike. If G is a discrete group,
then K[G] is the traditional group algebra over K and 7 is an embedding and its
image is G(K[G]). In [3] it was shown that for a compact group G the map ng is
an embedding and for K = R induces an isomorphism onto G(R[G]). We shall see
in this text that this fails over the complex ground field even for all compact abelian
groups which are not profinite. The assignment G — G(C[G]) may be viewed as
as ‘complexification’ of the compact group G. This viewpoint becomes important if
one considers the module category of C[G] in W, i.e. the representations of G on
weakly complete complex vector spaces, but we will not pursue this in the present
note.

Since we shall deal with compact groups throughout this paper, we shall always
consider G as a subgroup of the group K[G]™! of units of K[G]. In particular, this
means G C R[G] C C[G].

The article [3] and the 4th Edition of the book [6] identify a category H of weakly
complete topological Hopf algebras for which the functor G — K[G] implements
an equivalence of the category of compact groups and the category H. The vector
space continuous dual of K[G] turns out to be the traditional representation algebra
R(G,R). This approach yields a new access to the Tannaka-Hochschild duality of
the categories of compact groups and “reduced” real Hopf algebras.

In all of this, the precise nature of the weakly complete Hopf algebras K[G] even for
compact groups remained somewhat obscure in the nondiscrete case. The present
paper will present a precise piece of information on the topological algebra structure
of K[G] in terms of a direct product of its finite dimensional minimal ideals whose
precise structure links this presentation with the classical information of finite di-
mensional G-modules (cf. e.g. [6], Chapters 3 and 4). Certain complications have
to be overcome on that level if one insists on an explicit identification of the algebra
and ideal structure of R[G] as the case C[G] is easier.

For abelian compact groups G we shall present a very direct access to the structure
of the weakly complete Hopf algebra of C[G] by identifying an isomorphism between
C|G] and CE and by further identifying the group of grouplike elements to be
isomorphic to (£(G),+) & G with the pro-Lie algebra £(G) of G (see [6]). The
subgroup G of C[G]™! therefore agrees with the group of grouplike elements of C[G]
if and only if £(G) = {0} if and only if G is totally disconnected.

The presence of weakly complete Lie algebras over K in the group K-Hopf algebra
of a compact group motivates a proof of the existence of a weakly complete universal
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enveloping algebra over K for WA Lie algebras over K. In contrast to the case of
enveloping algebras on the purely algebraic side, the WA enveloping Hopf algebras
will sometimes have grouplike elements. The universal property of the WA envelop-
ing Hopf algebras will show that each WA Hopf-group algebra K[G] of a compact
connected group G is a quotient algebra of the WA enveloping algebra of £(G). So
WA enveloping algebras have a tendency of being larger than WA group algebras.

For a special class of profinite dimensional Lie algebras a similar but different ap-
proach to appropriate enveloping algebras is considered in [4].

A preprint of the present material appeared in the Series of Preprints of the Mathe-
matical Research Institute of Oberwolfach [5].

2. Weakly Complete Hopf Algebras

For the basic theory of weakly complete Hopf algebras we may safely refer to [3]
and [6], 4th Edition. For the present discussion we need a reminder of some basic
concepts.

Definition 2.1.  Let A be a weakly complete symmetric Hopf algebra, i.e. a group
object in the monoidal category (W, ®y ) of weakly complete vector spaces (see
[6], Appendix 7 and Definition A3.62), with comultiplication ¢: A - A ® A and
coidentity k: A — K.

An element a € A is called grouplike if ¢(a) = a®a and k(a) = 1. The subgroup of
grouplike elements in the group of units A~! will be denoted G(A).

An element a € A is called primitive, if c¢(a) = a® 1+ 1® a. The Lie algebra of
primitive elements of Ar;e, i.e. the weakly complete Lie algebra obtained by endowing
the weakly complete vector space underlying A with the Lie bracket obtained by
[a,b] = ab — ba, will be denoted II(A).

We recall that any weakly complete symmetric Hopf algebra A has an exponential
function exp,: A — A~ as explained in [3], Theorem 3.12 or in [6], 4th edition,
AT7.41.

Theorem 2.2. Let A be a weakly complete symmetric Hopf algebra. Then the
following statements hold:

(i) The set T'(A) of grouplike elements of a weakly complete symmetric Hopf algebra
A is a closed subgroup of (A,-) and therefore is a pro-Lie group.

(ii) The set II(A) of primitive elements of A is a closed Lie subalgebra of Apie and
therefore is a pro-Lie algebra.

(iii) II(A) = £(G(A)) and the exponential function exp, of A induces the exponen-
tial function expp 4y: I(A) — I'(A) of the pro-Lie group I'(A).

For a proof see e.g. [3], Theorem 6.15.

Definition 2.3. For an arbitrary topological group G we define R(G,K) C
C(G,K) to be that set of continuous functions f: G — K for which the linear
span of the set of translations ,f, ,f(h) = f(hg), is a finite dimensional vector
subspace of C(G,K). The functions in R(G,K) are called representative functions.
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Clearly R(G,K) is a subalgebra of C(G,K) also known as the representation algebra
of G. In [3], Theorem 7.7(a) the following duality result was shown.

Theorem 2.4. (The Dual of a Weakly Complete Group Algebra K[G])
For an arbitrary topological group G, the function

Fe: K[G] = R(G,K), Fg(w)=wong

is a natural isomorphism of Hopf algebras.

This applies, of course, to compact groups, in which case the Hopf algebra R(G,K)
is a well-known object.

For easy reference we record the following facts in the case of a compact group G
for which we recall G C K[G]:

Theorem 2.5. For any compact topological group G, the following statements hold:
(i)  We have G C T(K(G)) C K[G]™!
(ii) In the case of K =R the equality G = T'(R[G]) holds.

For (1) see [3], 5.4, and for (ii) see [3], 8.7.
For the complex case, we shall see later in this paper that in many cases, a compact
group G is a proper subgroup of I'(C[G]).

3. Some preservation properties of K[—]

Let us explicitly formulate and prove some preservation properties of our functor
K[—]. Left adjoint functors preserve epics. A morphism of compact groups is an
epimorphism if and only if it is surjective (see [6], RA3.17). Therefore the following
lemma is to be expected.

Lemma 3.1.  For every surjective morphism f: G — H of compact groups the
morphism K[f]: K[G] — K[H] of weakly complete K- Hopf algebras is surjective.

Proof. From the surjectivity of f: G — H we conclude that

f(span(G)) = span(f(G)) = span(H)
is dense in K[H]| by Proposition 5.3 of [3], and likewise K(f)(K[G]) is dense in
K[H]. But K[f] is, in particular, a W-morphism, that is, a morphism of weakly
complete vector spaces. Every such has a closed image by [6], Theorem 7.30(iv).

Hence K(f)(K[G]) = K[H]. [
This particular left adjoint functor K[—], however, also preserves the injectivity of
morphisms:

Theorem 3.2. If G is a closed subgroup of the compact group H, then K[G]| C
K[H] (up to natural isomorphism,).

Proof. From the injectivity of a morphism of compact groups j: G — H we
derive the surjectivity of C(j,K): C(H,K) — C(G,K) by the Tietze Extension
Theorem. Now we set M := C(f,K)(R(H,K)) C R(G,K). Since R(H,K) is dense
in C(H,K) in the norm topology, M is dense in R(G,K) in the norm topology.
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Then it is dense in L?*(G,K) in the L*-topology, and M is a GG-module. In the case
of K =R we can now apply Lemma 8.11 of [3] and conclude that M = R(G,R).
Thus R(G,j): R(H,R) — R(G,R) is surjective. By Theorem 7.7 of [3] this implies
that R[f]": R[H]" — R[G]’ is surjective. The duality between K-vector spaces and
weakly complete K-vector spaces shows that R[f]: R[G] — R[H] is injective. This
proves the theorem for K = R. But then the commuting diagram

CoRG] =, coRrH

gl lg

ClG] W ClH]

shows that C[f] is also injective. In the category of weakly complete vector spaces

every injective morphism is an embedding by duality since every surjective morphism
of vector spaces is a coretraction. [ ]

Corollary 3.3. Let Gy denote the identity component of the compact group G.
Then

(i)  The Hopf algebra K[Gy] is a Hopf subalgebra of K[G].
(ii) R[Gy] is algebraically and topologically generated by II(R[G]) = £(G).

Proof. (i) is a consequence of Theorem 3.2.

(ii) Note that the compact group Gq is algebraically and topologically generated
by exps(£(G)) (cf. [7], Corollary 4.22, p. 191), and that span(Gy) = R[Go] by [3],
Corollary 5.3. [ |

4. A principal structure theorem of K[G]

Let G be a compact group and let E be a finite dimensional vector space over
K € {R,C}. We recall that the character of a representation p: G — Endg(F) is the
continuous map ¢ — trg(p(g)). We also say that y is the character of the G-module
E. A representation, respectively, a G module, is determined by its character up
to isomorphism. A character is called irreducible if the corresponding representation
is irreducible (over the ground field K), equivalently, the corresponding G-module
is simple. We denote the set of all irreducible characters of G over K by Grx. For
cach character x of G, we select a finite dimensional G-module E, x having x as
its character. If € is an irreducible character, then the ring L. x = Endg(E: k) of all
K-linear endomorphisms of E,x which commute with the G-action is, by Schur’s
Lemma, a finite dimensional division ring over K. Hence

L.x = C if K=C,
L.x € {R,CH} if K=R,

where H, as is usual, denotes the skew-field of quaternions. We view E, x as a right
module over L. x. We denote the corresponding representation by

PeK - G — EIld]]_‘g,K(E&K) - EHdK(EE,K).

Before we enter the presentation of the principal theorem on the weakly complete
group algebra K[G] of a compact group we elaborate on some basic ideas of finite
dimensional representation theory, indeed extending some of the presentation such
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as it can be found e.g. in Chapter 3 of [6]. The first lemma extends the details of
Proposition 3.21 of [6] and the comments which precede it.

Lemma 4.1. Let E be a finite dimensional vector space over K and p: G —>
Endg(E) an irreducible representation of a group G. Let A denote the K-span of
the set {p(g) | ¢ € G}. Then A = Endy(F), where L. = Ends(E) = Endg(F),
L € {R,C,H}.

Proof. First of all we note that A is a K-algebra containing idg. Hence every A-
submodule of the additive group FE is a G-invariant linear subspace, and vice versa.
Therefore E is a simple A-module and so Jacobson’s Density Theorem applies,
which, for the sake of completeness, we cite here in its entirety (see e.g. [2]).

Theorem 4.2. (Jacobson’s Density Theorem) Let M # 0 be an (additive) abelian
group, let A C End(M) be a subring and suppose that M is simple as a left A-
module. Put L = Enda(M). Then L is a division ring and M is a right L.-module
in a natural way. For every 2k-tuple (x1,...,Tx,y1,---,yr) € M, such that the

elements x1, ...,z are linearly independent, there exists a € A such that a(x;) = y;
holds for all i =1,...k.

Now the division ring L is a finite dimensional K-algebra over K, and hence is
isomorphic to R, C, or H. Moreover, A C Endy(F). Let z,...,x, be a L-basis
for E, and let ¢ € Endp(F) be arbitrary. Then there exists an element a € A
such that a(z;) = ¢(z;) holds for all i« = 1,...,m. Therefore ¢ = a and thus
EIld]L(E) =A. |

The following result now extends [6], Lemma 3.14.

Lemma 4.3. Let E and F be finite dimensional vector spaces over K and suppose
that p: G — Endg(F) and o: H — Endg(F) are irreducible representations of
groups G, H . Suppose also that Endg(E) = L = Endy(F). Then Homy(F, E) is
an irreducible G x H -module over K, where (g,h)(f) = p(g) o foo(h™!).

Proof. We define A C Endg(F) and B C Endg(F') as in Corollary 4.1. Then
A = Endp(F) and B = Endp(F). The K-vector space Hom(F, F) is in a natural
way a right A-module and a left B-module. For every nonzero f € Homp (F, FE) we
have AfB = Homy (F, E). Therefore Homy,(F, E) is simple as G x H-module over
K. n

We are now ready to prove a principal structure theorem for the weakly complete
group algebra K[G] of a compact group G for either K = R or K = C. For each
€€ @K we have the G-module E. x and the corresponding irreducible representation
pex: G — End.x(F.x) into the group of units of the concrete matriz ring M, :=
End. x(E:x)) over L = L.k of L-dimension (dimy, E.x)?. Accordingly there is a
unique function pg: G — HSE@K M, which is an injective group morphism into the
multiplicative group of units of the product defined by the universal property of the
product such that the following diagram commutes for all xy € Gk:

p
G . HEE@]K ME

:l lprx

G —— M,
Px K
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Theorem 4.4.  For any compact group G the weakly complete symmetric Hopf
algebra K[G| is a direct product
= [[ k6]

EEG]K
of finite dimensional minimal two-sided ideals K |G| such that for each € € Gg there
is a K-algebra isomorphism

Ka[G] = Ms == End]LE’K(E&K).

In particular, each of these two-sided ideals K. |G| is a two sided simple G X G -module
and as an algebra is isomorphic to a full matriz ring over L.

Remark 4.5. The diagram

T - 5 K[G]
(f p—c> HEECTME
_ pr,
¢ = M

commutes for all y € @K.

Proof. By Theorem 2.4 and [6] Theorem 3.28, the topological dual K[G] =
R(G,K) is the direct sum of the finite dimensional two-sided G-submodules R (G, K)

as € ranges through the set of irreducible characters in @K. The G x G-module
R.(G,K) is defined in [6] as the image of the linear map

gb : E;,K QK EE,K — R(G, K),
where P(u@v)(g) = (u, p=(g)v)-

If we put ¥(f)(g) = trx(pex(9)f), for f € Endg(E.x) and ¢g € G, then the diagram

£’ K Rk E&K L) G

T

EHdK<E€7K) e R G K)

commutes, where s(u ® v) = [w — v(u,w)]. We recall that group G x G acts on
R.(G,K) via (a,b)(\) = [g — A(a~'gb)]. If we put

(a,0)(u @ v) = (uo pex(a™)) ® pex(b)v and (a,b)(f) = pex(b) o f © pec(a™™),
then all maps in this diagram are G x G-equivariant.
Suppose that K = L. Then Endg(E. x) = End;(E. k) is simple as a G x G-module
by Lemma 4.3 and thus % is an isomorphism.

Suppose next that K C L. Then K =R and L = C or L = H. By the averaging
process in [6] Lemma 2.15 there exists a G-invariant positive definite L-hermitian
form (:|-) on F, semilinear in the first argument and linear in the second argument.
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This allows us to rewrite R.(G,K) as the span of the maps g — Re(u|gv), for
u,v € E. The G-invariance of (-]-) yields that Re(au|gbv) = Re(u|la~tgbv). If we
consider the algebra inclusion

j: EndL(EsyK) — EndK<E57K),

then Re(ulv) = trg[w +— v(u|w)] holds for the trace map of Endg(E. k). It follows
that the map 1 o 5 in the diagram

Ely ®x Box —%— R.(G,K)

s =

End.x(Eex) —2— R.(G,K)

J

EHd]L (E&K)

is surjective and G x G-equivariant. Since Endy(E. k) is a simple G x G-module
over K by Lemma 4.3, the map % o j is an isomorphism.

For the remaining part of the proof we apply standard duality theory. We put

R*= P R.(G.K)

x#e€lx

and define K, [G] as the annihilator of RX. The annihilator mechanism supplies us
with the diagram

Ky [G] +— RX
| | pEmEw
{0} <= R(GK).
By the duality of Vi and Wk it follows that K[G] = []. 5, Kc[G] with

K.[G] 2 R(G,K)"

Now, if any closed vector subspace J of K[G] satisfies G-J C J and J-G C J, then
we also have span(G)-J C J and J-span(G) C J (where we view G as a subset of
K[G]). Then Proposition 5.3 of [3] says that span(G) = K[G], and so K[G]-J C J
and J - K[G] C J. That is, J is a closed two-sided ideal of K[G]. Therefore each
K [G] is a two-sided ideal in K[G].

It remains to clarify the multiplicative structure of the ideals K.[G]. If we consider
€€ @K and the representation p. x, then the map

GA) GI]LE,K (EE,K) = End]LS,]K (EE,K>71L>EndLa,JK<EE7K)

and the universal property of K[G] described in the Weakly Complete Group Algebra
Theorem 5.1 of [3] provides a morphism of weakly complete algebras

. K[G] = Endy,_, (E.x)
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extending p.x. We also have the product projection of weakly complete algebras
pr.: K[G] — K[G]. Both maps 7. and pr, have the same kernel [] . g Ae. So
there is an injective morphism

a: K[G] = Endr_, (E.x)

such that m. = «a o pr.. Since both algebras have the same dimension, a is an
isomorphism of K-algebras. [ |

Corollary 4.6.  There is an isomorphism of G x G -modules

R(G,K) = @ Endy, , (E-x).

EGéK

Thus the multiplicity m of E.x as a G-module in R(G,K) is

. dlm]K EEK
=d E.x)=——"-/—.
m = dimg, (Eex) dimg LL
This conclusion is well-known for K = C (see e.g Theorems 3.22 and 3.28 in

[6]) but we could not readily find a reference for K = R. While the algebra
structure of the weakly complete symmetric Hopf algebra K[G] is satisfactorily
elucidated in Theorem 4.4, the comultiplication seems to be not easily accessible
due to complications of the way how the representation theory of G x G reduces to
that of G in general. In the case of commutative compact groups G and the complex
ground field C these complications go away, and so we shall clarify the situation in
these circumstances in the subsequent section.

5. The weakly complete group algebras
of compact Abelian groups: an alternative view

We have seen the usefulness of the concept of a weakly complete group algebra
K[G] over the real or complex numbers. We obtained its existence from the Adjoint
Functor Existence Theorem. This is rather remote from a concrete construction. It
may therefore be helpful to see the whole apparatus in a much more concrete way
at least for a substantial subcategory of the category of compact groups, namely,
the category of compact abelian groups for which we already have a familiar duality
theory due to PONTRYAGIN and VAN KAMPEN (see e.g. [6], Chapter 7).

In this section let G be a compact abelian group and G = CAB(G,T) (with the
category CAB of compact abelian groups and T = R/Z) its discrete character group.
These groups are written additively. For K = C there is a natural bijection G — G¢

from the character group to the set of equivalence classes of complex simple G-
modules (cf. [6], Lemma 2.30 (p.43), Exercise E3.10 (p.66)), and also Proposition

3.56 (p.87) for some information on GR). This bijection associates with a character
X € G = Hom(G, T) the class of the module E, = C, x - ¢ = e*™Xc. Accordingly,

[6] Theorem 3.28 (12) reads R(G,C) =3 5 C- fy, for a suitable basis f,, x € G,

fi(g) = X9 In other words, as a G-module, R(G,C) = c@®. Accordingly, we
expect C[G] to be uncomplicated. Our Theorem 4.4 makes this clear:



416 HoFMANN AND KRAMER

The complex algebra C[G] may be naturally identified with the compo-
nentwise algebra C& .

In the abelian case, our understanding of the comultiplication of C|G| = CC is much
more explicit than in the general situation of Theorem 4.4. FEach character y: G — T
determines a morphism f,: G — C' = C*, f,(9) = X9 g€ G C CC. By
the universal property of C[G| = Cé, this value agrees with the y-th projection of
ge G C C%. Hence

(Vg € G, x € G)nalg)(x) = 209,

Qn
[l
Q

Accordingly, if we write S' = {z € C;|z| = 1}, then g € Hom(G,S!) =
Then in view of G C R[G] C C[G] we have

Hom(G, S') C spang(Hom(G, 1)) = R[G] C C[G] = C°.
Recall from [3], Theorem 5.5 that we have an isomorphism
Qg: C[G X G] — C[G] Rw C[G],

and from [3] Lemma 5.12 we recall the comultiplication v : C[G] — C[G] ®y C[G]
to be the composition

C[G]—2¢—C[G x G]—2¢—C[G] &w C[G].

Now for a compact abelian group G, the diagonal morphism dg: G — G X G has
the group operation of G as its dual, namely:

5;: GxG—G. g;(XhXQ) = X1+ X2,

as we write abelian group operations additively in general. If now we also write

C[G] @w C[G] = C“*¢ (identifying ¢ ® ¢ with (x1,x2) — ¢(x1)¥(x2)), then we
have

e = C%: C% = CPC e, (V6 € C%), va(8) (x1, x2) = (x1 + X2)-

This allows us to determine explicitly the elements of the group G((Cé) of all
grouplike elements: Indeed a nonzero element ¢ € C¢ is in G(C%) if and only if

where (¢ ® ¢)(x1, x2) = ¢(x1)P(x2). This is the case if and only if

(V1,02 € G) dx1 + x2) = 16(8) (x1, X2) = (6@ 9)(x1, X2) = (x1)d(x2);
that is, if and only if ¢ is a morphism of groups from G to C* = (C\ {0}, ).
Similarly, an element ¢ € CC is primitive if and only if

d(x1+ x2) = 16(9)(x1,x2) = (0 ®1) +1® ¢)) (x1, x2) = ¢(x1) + d(x2)

if and only if ¢: G — (C,+) is a morphism of topological groups.

Let us summarize this discourse:
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Theorem 5.1. (The Group Hopf Algebra C[G| for Compact Abelian G) Let G
be a compact abelian group and A its weakly complete commutative symmetric group
Hopf algebra C[G] and let G = Hom(G, T) be its character.

(i)  Then A may be identified with C% such that g: G— A1 s defined by
(Vx € @) g(x) = ¥ e st

where S' = {z € C: |z| = 1} C C*. The natural image of G in A~ is

~ N

G = Hom(@, St = G, and G= Hom(@,Sl) C R[G] € C[G] = C°.

(ii) If, as is possible in the category of weakly complete vector spaces, the weakly com-

plete vector spaces A @y A and CE*C are identified, then the comultiplication
Yo: A— ARw A of A is given by

(V6: G = C, xi.x2 € G) 76(0)(x1, x2) = d(x1 + x2) € C.
(iii) The group of grouplike elements of A is
G(A) = Hom(G,C*) C CC.
(iv) The weakly complete Lie algebra of primitive elements of A is

P(A) = Hom(G, C) C CC. n
We write R} for the multiplicative subgroup {z € C: 0 < z € R C C} of C*.

Corollary 5.2.  For a compact abelian group G and the weakly complete commu-
tative unital algebra A := C[G| we have a commutative diagram
P(A) = Hom(G,R)+Hom(G,iR) —— £(G) x £(G)
eprl ide(g) X expg

G(A) = Hom(G,RY)-Hom(G,S') ——— £(G) x G.
The unique mazimal compact subgroup of G(A) is G = Hom(G,S?).

Proof. There is an elementary isomorphism of topological groups
(r,t +7Z) — e"e?™ = "M R x T — C*.

Accordingly, G(A) = Hom(G, C*) = Hom(G, R) & Hom(G, T).
Now Hom(G,R) = Hom(R, G) (cf. [6], Proposition 7.11(iii)), Hom(R, G)=£(G) by

[6], Definition 5.7 (cf. Proposition 7.36ff., Theorem 7.66) and Hom(G, T)=G = G
by [6], Theorem 2.32. For the exponential function exp, of a weakly complete unital
symmetric Hopf algebra is treated in Theorem 2.2 above. ]

A compact abelian group is totally disconnected (i.e. profinite) if and only if £(G) =
{0} (ct. [6], Corollary 7.72).

Remark 5.3.  For a compact abelian group G the equality G = G(C[G]) holds if
and only if G is totally disconnected (i.e. profinite).
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Proof. By Theorem 5.1, the equality holds if and only if L(G) = {0} if and only
if Hom(G,R) = {0} if and only if G is a torsion group (cf. e.g. [6], Propositions
A1.33, A1.39) if and only if G is totally disconnected (see Corollary 8.5). ]

In particular, e.g., T # G(CJ[T]).

Now we understand C[G] = CC rather explicitly, but R[G] only rather implicitly.
However, Theorem 4.4 applies with K = R in order to shed some light on its intrinsic
structure.

We define the function og: C[G] — C[G] as follows: For y € G we set Y(g) =
X(—g) = —x(g). Then we define

(Vo € C) o (d)(x) = (X)-

Exercise 5.4. For a compact abelian group G, the function o4 is an involution
of weakly complete real algebras of C|[G]| whose precise fixed point algebra is R[G].
Accordingly, C[G] = R[G| @ iR[G].

Remark 5.5. If R is any cardinal and G is any abelian group with torsion free
rank N, then Hom(G,R) = R*.

Proof. In [6], Theorem 8.20, pp.387ff. it is discussed that G contains totally
disconnected compact subgroups A such that the annihilator in the character group
of G, say, At C G is free, and G\/AL is a torsion group. This means that
G/A is a torus. We note that the inclusion A+ — G induces an isomorphism
K ®; At — K®y G and the (torsion free) rank of G is rank AL, If AL = 75 for
a set X of cardinality rank A+, then Hom(G, K) = KX ]

5.1. The exponential function of C[G| = ce

We recall from Theorem 2.2 that every weakly complete associative unital algebra
W has an exponential function, which is immediate in the case of W = C% as it is
calculated componentwise. If the weakly complete algebra W' is even a Hopf algebra,
such as CY, then the group I'(W) of grouplike elements is a pro-Lie group and II(W)
is the (reall) Lie algebra of the pro-Lie group I'(IW) ([3], Theorem 6.15). If indeed
W = C¢ = C[G] for a compact abelian group G, then the exponential function
exprayy: S(W)) — L(W)) of I'(W) is the restriction of the (componentwise!)

exponential function exp: CZ — (C%)~! = ((C*,.))¢ to L (W)) = Hom({, C).

6. The weakly complete enveloping algebra
of a weakly compact Lie algebra

We have observed that for compact groups G the weakly complete real group algebra
R[G] contains a substantial volume of different materials: the pro-Lie group G itself,
its Lie algebra £(G), the exponential function between them and, as was discussed in
detail in [3], a substantial portion of the Radon measure theory of G. The topological
Hopf algebra K[G] is, in a sense, universally generated by G. So it seems natural to
ask the question whether £(G) generates K[G] in a universal way — perhaps in some
fashion that would resemble the universal enveloping algebra of a Lie algebra such
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as it is presented in the famous POINCARE-BIRKHOFF-WITT-Theorem (see e.g. [1],
§2, n° 7, Théoreme 1., p.30). This is not exactly the case, but a few aspects should
be discussed.

So we let K again denote one of the topological fields R or C. Let WA denote
the category of weakly complete associative unital algebras over K and and WL
the category of weakly complete Lie algebras over K. The functor A — Ap;. which
associates with a weakly complete associative algebra A the weakly complete Lie
algebra obtained by considering on the weakly complete vector space A the Lie
algebra obtained with respect to the Lie bracket [z,y] = xy — yx is called the
underlying Lie algebra functor.

Since A is a strict projective limit of finite dimensional K -algebras by [3], Theorem
3.2, then A, is a strict projective limit of finite dimensional K-Lie algebras, briefly
called pro-Lie algebras. Every pro-Lie algebra is weakly complete. (Caution: A
comment following Theorem 3.12 of [3] exhibits an example of a weakly complete
K-Lie algebra which is not a pro-Lie algebral!)

Lemma 6.1.  The underlying Lie algebra functor A — Ay from WA to WL has
a left adjoint U: WL — WA.

Proof. The category WL is complete. (Exercise. Cf. Theorem A3.48 of [6],
p. 781.) The “Solution Set Condition” (of Definition A3.59 in [6], p. 786) holds.
(Exercise: Cf. the proof of [3], Section 5.1 “The solution set condition”) Hence
U exists by the Adjoint Functor Existence Theorem (i.e., Theorem A3.60 of [6], p.
786). |

In other words, for each weakly complete Lie algebra L there is a natural morphism
Ar: L — U(L) such that for each continuous Lie algebra morphism f: L — Ape
for a weakly complete associative unital algebra A there is a unique WWA-morphism
f'+ U(L) = A such that f = f{,, 0 \L.

WL WA
L —2 U@ U(L)

vfl lfﬁle lalf/
ALje — ALie A.
If necessary we shall write Uk instead of U whenever the ground field should be

emphasized. We shall call Ug(L) the weakly complete enveloping algebra of L (over

Example 6.2. Let L = K, the smallest possible nonzero Lie algebra over K.
Then U(L) = K(X) (see [3], Definition following Corollary 3.3), and define A: L —
U(L)Lie by AL(t) = t-X. Indeed the universal property is satisfied by [3], Corollary
3.4. Namely, let f: K — Ap;. be a morphism of weakly complete Lie algebras. Then
there is a unique morphism f’: U(L) — A such that f'(X) = f(1) by [3], Corollary
3.4. Then f'(t-X) =t-F'(X)=t-f(1) = f(t).
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Thus by Lemma 3.5 of [3] and the subsequent remarks we have:

The weakly complete enveloping algebra Uc(C) over C of the small-
est nonzero complex Lie algebra is isomorphic to the weakly complete

commutative algebra C[[X]]© with the complex power series algebra
C[[X]]= CN, Ny =1{0,1,2,...}.

The size of the weakly complete enveloping algebras therefore is considerable.

Proposition 6.3.  The universal enveloping functor U s multiplicative, that is,

there is a natural isomorphism ar,r,: U(L; X Ly) — U(Ly) @y U(Ls).

Proof.  We have a natural bilinear inclusion map of weakly complete vector spaces
)\1 ><)\2 j

Ly x Lo——"="5U(Ly)pie X U(L2)Lie;> U(L1)Lie®w U(L2)Lie

and U(L1)Lie ®w U(L2)Lie=(U(L1) @w U(L2))Lie,

the composition «q of which is a morphism of weakly complete Lie algebras. Hence
the universal property yields a morphism of weakly complete associative algebras

(1) a: U(Ly x Ly) — U(L,) @y U(Ly)

such that ag = ape 0 A\, ® A,

The functorial property of U allows us to argue that each of U(L,,), m =1,2 is a
retract of U(L; x Lg) so that we may assume U(L,,) C U(L; X Ly), m = 1,2.
Now the multiplication in U(L; x Lg) gives rise to a continuous bilinear map
U(Ly) xU(Ly) — U(L;y X L), and then the universal property of the tensor product
of weakly complete vector spaces yields the morphism

2) B: U(L1) @ U(Ls) — U(Ly x Ly).

Similarly to the proof of [3], Theorem 5.5 (preceding the statement of the theorem)
we argue that a and [ are inverses of each other, and so « of (1) is the desired
isomorphism oy, 1, . [ |

Lemma 6.4.  For any weakly complete unital algebra A, the vector space morphism
Ag: A= AQw A, Ayla) =a® 1+ 1®a is a morphism of weakly complete Lie
algebras Arie — (A Qw A)Lie -

Proof.  Since the functions a — a®1, 1®a are morphisms of topological vector
spaces, so is Ay For y1,y2 € A, write z; := Au(y;) = y; ® 1 + 1 ® y; Then just as
in the classical case, we calculate

[Aa(y1), Aa(y2)] = [21,22] = 2120 — 2221
=nR1+12y) (11 +11y,)
—(12®1+10y) (@ 1+1®y)
=011+ @y + 1y + 18 yy)
— (Y @1+ 1R @y + 11 @y + 1@ yoyn)
= [y1,%2] @ L+ 1® [y1, 5] = Aalyn, v

Thus A4 is a morphism of Lie algebras as asserted. |
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Now we consider a weakly complete Lie algebra L and recall that Ar: L — U(L)yie
is a morphism of weakly complete Lie algebras. Thus by Lemma 6.4,

prL = AU(L) ¢} )\LZ L — (U(L) X U(L))Lie

is a morphism of weakly complete Lie algebras. Now by the universal property of U,
pr, induces a unique natural morphism of weakly complete associative unital algebras
v U(L) — U(L) @ U(L) such that p;, = (7)Lie © Ar. This yields the following
insight, where kr: L — {0} denotes the constant morphism.

Corollary 6.5. Fach weakly complete enveloping algebra U(L) is a weakly complete
Hopf algebra with the comultiplication vy and the coidentity U(ky): U(L) — K.

Proof. Observe that ~, is a morphism of weakly complete unital algebras sat-
isfying v.(y) =y®1+1®y for y = A(z), x € L. The associativity of this co-
multiplication is readily checked as in the case of abstract enveloping algebras. The
constant morphism of weakly complete Lie algebras L — {0} yields a morphism of
weakly complete unital algebras U(L) — U({0}) = K which is the coidentity of the
Hopf algebra. [ |

Our results from [3] regarding weakly complete associative unital algebras and Hopf
algebras over K apply to the present situation.

Theorem 6.6. (The Weakly Complete Enveloping Algebra) Let L be a weakly
complete Lie algebra. Then the following statements hold:

(i) U(L) is a strict projective limit of finite-dimensional associative unital algebras
and the group of units U(L)™" is dense in U(L). It is an almost connected
pro-Lie group (which is connected in the case of K = C). The algebra U(L)
has an exponential function exp: U(L),e — U(L)™,

(ii) The pro-Lie algebra II(U(L)) of primitive elements of U(L) contains Ar(L),
(iii) The subalgebra generated by Ap(L) in U(L) is dense in U(L).

(iv) The pro-Lie algebra II(U(L)) s the Lie algebra of the pro-Lie group T'(U(L))
of grouplike elements of U(L). We use the abbreviation G := I'(U(L)) and
note that the exponential function expqs: £(G) — G is the restriction and
corestriction of the exponential function exp of U(L) to II(U(L)), respectively,
G. The image exp(£(G)) generates algebraically and topologically the identity
component Gy of G.

Proof. (i) See [3], Theorems 3.2, 3.11, 3.12, 4.1.

(ii) The very definition of the comultiplication v, for Corollary 6.5 shows that for
any y € Ap(L), the image under the comultiplication v is y ® 1 + 1 ® y, which
means that y is primitive.

(iii) An argument analogous to that in the proof of Proposition 5.3 of [3] showing that,
for the case of any topological group 7', the subset 7g(T') of the weakly complete
group algebra K[T'] spans a dense subalgebra, shows here that the closed subalgebra
S generated in U(L) by Ap(L) has the universal property of U(L) and therefore
agrees with U(L).

(iv) See Theorem 2.2 and [3], Theorem 6.15. |
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Remark 6.7. We note right away that for any weakly complete Lie algebra L
which has at least one nonzero finite dimensional K-linear representation, the mor-
phism Ap: L — U(L)y is nonzero. By Ado’s Theorem, this applies, in particular,
to any Lie algebra which has a nontrivial finite dimensional quotient and therefore
is true for the Lie algebra £(P) of any pro-Lie group P.

Corollary 6.8. (i) The weakly complete enveloping algebra U(L) of a weakly
complete Lie algebra L with a nontrivial finite dimensional quotient has nontrivial
grouplike elements.

(ii) If L is a pro-Lie algebra, then \p: L — U(L)rie maps L isomorphically onto a
closed Lie subalgebra of the pro-Lie algebra II(U(L)) of primitive elements.

Proof. (i) If II(U(L)) is nonzero, then U(L) has nontrivial grouplike elements
by Theorem 6.6(iii), and by (ii) of 6.6, this is the case if A\; is nonzero which is the
case for all L satisfying the hypothesis of the Corollary by the remark preceding it.

(ii) Since each finite dimensional quotient of L has a faithful representation by the
Theorem of Ado, and since the finite dimensional quotients separate the points of
L, the morphism Ay, is injective. However, injective morphisms of weakly complete
vector spaces are open onto their images. [

It follows that for pro-Lie algebras L we may assume that L is in fact a closed Lie
subalgebra of primitive elements of U(L) which generates U(L) algebraically and
topologically as a weakly complete algebra.

It remains an open question under which circumstances we then have in fact L =
P(U(L)). In the classical setting of the discrete enveloping Hopf algebra in charac-
teristic O this is the case: see e.g. [8], Theorem 5.4.

One application of the functor U is of present interest to us. Recall that for a
compact group we naturally identify G with the group of grouplike elements of R[G]
(cf. [3], Theorems 8.7, 8.9 and 8.12), and that £(G) may be identified with the
pro-Lie algebra II(R[G]) of primitive elements. (Cf. also Theorem 2.2 above.) We
may also assume that £(G) is contained the set [I(U(L(G))) of primitive elements

Theorem 6.9. (i) Let G be a compact group. Then there is a natural morphism
of weakly complete algebras we: Ur(L(G)) — R[G] fizing the elements of £(G)
elementwise.

(ii) The image of wg is the closed subalgebra R[Gy] of R|G].

(iii) The pro-Lie group T'(Ur(£(G))) is mapped onto Gy = I'(R[Go]) C R[G].
The connected pro-Lie group T'(Ug(£(G)))o maps surjectively onto Gy and
P(Ugr(L£(G))) onto P(R[G]).

Proof. (i) follows at once from the universal property of U.

(ii) As a morphism of weakly complete Hopf algebras, wg has a closed image which
is generated as a weakly complete subalgebra by £(G) which is R[Gy] by Corollary
3.3 (ii).
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(iii) The morphism wg of weakly complete Hopf algebras maps grouplike elements
to grouplike elements, whence we have the commutative diagram

£(G) CT(UR(£(@) —“ T(R(G))=L(G)
EXPT(UR (£(G))) l eXpa
I'(Ur(£(G))) W I'(R[G]) =G.

Since P(w) is a retraction and the image of exp, topologically generates Gy, the
image of G(wg) o eXPuy,(e(q)) topologically generates Go. Since the image of the
exponential function of the pro-Lie group G(Ug(£(G))) generates topologically its
identity component, G(wg) maps this identity component onto Gj.

Since £(G) C P(Ug(£(G)), and since any morphism of Hopf algebras maps a primi-
tive element onto a primitive element we know wg(P(Ug(£(G)))) = P(R[G]). ]

It remains an open question whether G(Ug(£(G))) is in fact connected.

An overview of the situation may be helpful:

R[G]
Us(£(G) —22= R[Go]
N(Un(G) —— —— TR[G) =G
F(Us(L(@))o —"—=  T(R[Go))=GCo = Go
H(UR&Z;(?G» - H(R[Gd)zﬁfg[an _ 2(5%

A noteworthy consequence of the preceding results is the insight that

for any nonzero weakly complete real Lie algebra L = R¥ x H]EJ L;
for any set X and any family of compact finite dimensional simple Lie
algebras L;, the weakly complete enveloping algebra U(L) has grouplike
elements.

In the discrete situation, the enveloping algebra U(L) of a Lie algebra L for char-
acteristic zero has no grouplike elements.
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