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Abstract: In this work we describe horofunction compactifications of metric spaces and finite-dimensional real

vector spaces through asymmetric metrics and asymmetric polyhedral norms by means of nonstandard meth-

ods, that is, by ultrapowers of the spaces at hand. The polyhedral compactifications of the vector spaces carry

the structure of stratified spaces with the strata indexed by dual faces of the polyhedral unit ball. Explicit neigh-

borhood bases and descriptions of the horofunctions are provided.
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1 Introduction

We introduce a compactification for certainmetric spaces, using asymmetricmetrics andnonstandardmethods.

Our ultimate goal is to study polyhedral compactifications of Euclidean buildings and related spaces via asym-

metric horofunctions [9]. Such compactifications of Euclidean buildings have been studied recently by several

authors, using quite different methods. The work in [8] and [24] relies heavily on combinatorial properties of

unbounded polytopes or diverging sequences in maximal flats, while [25; 31] employ deep arithmetic methods.

Our approach to these compactifications is different, new, and geometric. Our starting point is Gromov’s

embedding [12], which we briefly recall. If (X, d) is a proper CAT(0) space, with a fixed base point o ∈ X,

then we may map X injectively into the ring of continuous functions on X by assigning to p ∈ X the func-

tion x 󳨃󳨀→ d(p, x) − d(p, o). The closure of X in ⊆ C(X) (in the topology of uniform convergence on compact

sets, or, equivalently, in the topology of pointwise convergence) can be identified with the visual bordification

X ∪ ∂∞X of X, see [6, II.8]. The first main idea is to replace the metric d in Gromov’s construction by a Lipschitz

equivalent asymmetric distance function δ. Stretching the standard terminology slightly, we will call the map

hp(x) = δ(p, x) − δ(p, o) a horofunction centered at p. We put X̂ = {hp | p ∈ X}, and we identify p ∈ X with hp .

The new elements that appear in X̂ may be viewed as horofunctions centered at points ’infinitely far away’.

The traditional approach to these horofunctions is to study divergent sequences in X. This leads to rather

complicated combinatorial notions of different types of divergence of sequences in X. We follow a completely

different approach, which avoids these sequences altogether.We use the nonstandard extension ∗X of themetric

space (X, d), and the nonstandard reals ∗ℝ. The nonstandard reals form a real closed, non-archimedean field.

It contains thus elements which are bigger than any real number. In this way we may view the horofunctions

in X as (standard parts of) functions x 󳨃󳨀→ δ(p, x) − δ(p, o), where now p ∈ ∗X is a point which is possibly

infinitely far away from o.We believe that this viewpoint is both intuitive and particularly simple. The following

picture visualizes the situation. The point p is in the nonstandard extension ∗X of X at infinite distance from the

basepoint o. We put hp(x) = std(δ(p, x) − δ(p, o)).
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Several things can be seen from this picture. Firstly, the horofunction hp is only the restriction of the stan-

dard part of x 󳨃󳨀→ δ(p, x) − δ(p, o) to X. Therefore we should expect that different points p, q ∈ ∗X may yield

the same horofunction on X. This leads to an equivalence relation on ∗X which needs to be studied. It corre-

sponds, roughly speaking, to the different types of divergence of sequences in X. Secondly, we note that we

could rescale the metric so that the distance between p and o becomes 1. This rescaling process shrinks X to

an infinitesimally small spot. If the geometry of X is scale-invariant, then the large scale shape of the level set

hp = 0 is determined by the infinitesimal structure of the unit spheres of the original distance function. If V = X

is a finite-dimensional real vector space and if δ is given by a (possibly asymmetric) norm on V , then there are

two instances where this infinitesimal structure is accessible: if the unit sphere S = {v ∈ V | ho(v) = 1} is a
smooth hypersurface, then the infinitesimal structure is given by the tangent hyperplanes. In this case, the level

set hp = 0, for p at infinite distance from o, is a linear hyperplane and hp is a linear functional on V . Then V̂ can

be identified with the dual unit ball, in the dual vector space V∨ of V . The second case where the infinitesimal

structure is accessible is the case where the unit ball B = {v ∈ V | ho(v) ≤ 1} is a convex compact polyhedron.

This case is analyzed in the present article. The following theorem is one of the main results.

Theorem. The compactification V̂ of a finite-dimensional real vector space V with respect to an asymmetric poly-

hedral norm ν is a stratified space, where the strata are indexed by the dual faces of the polyhedral unit ball B.

The combinatorial structure of the stratification of V̂ (with respect to the closure relation) is isomorphic to the

poset of all faces of the dual polyhedron B∨ of B. Moreover, V̂ is homeomorphic to the dual polyhedron B∨ by a

homeomorphisms that preserves the stratification.

Since Euclidean buildings are composed of copies of Euclidean space, this analysis of polyhedral compact-

ifications of finite-dimensional real vector spaces is crucial for understanding polyhedral compactifications of

Euclidean buildings.

This article is organized as follows. In Section 2 we review the relevant topologies on the space C(X) of con-
tinuous real functions on a metric space X. In Section 3 we review asymmetric metrics and asymmetric norms.

We do this in the setting of metric spaces, which allows us to bypass all questions about backward and forward

topologies which may arise otherwise. In Section 4 we adapt Gromov’s embedding to the case of asymmetric

metrics. We do this with some care, since Gromov’s result is very often misstated in the literature (even in [6]).

The condition that X is in one or the other way geodesic is very often omitted, although it is essential in the

proof. In Section 5 we introduce the necessary facts about ultraproducts. We then show that every horofunction

arises as some hp , as described above. If themetric space X is proper, then conversely every function hp appears

in the bordification. In Section 6 we put everything together to determine the polyhedral compactification of a

finite-dimensional vector space V . Let B denote the unit ball of the asymmetric norm on ℝm , with its polyhe-

dral combinatorial structure. We show that this combinatorial structure determines the equivalence relation

mentioned above (when is hp = hq?). We obtain a stratification of V̂ by subsets homeomorphic to affine spaces,

whose combinatorics is encoded by the dual polytope B∨ of B. The last step is the construction of an explicit

homeomorphism V̂ 󳨀→ B∨ which preserves the stratification.

Some comments on the history may be in order. During the last years, horofunction compactifications of

metric spaces and in particular of Riemannian symmetric spaces have been studied by various authors. We

just mention [7], [14], [15], [17; 18], [20], [19], [30], and the excellent books [4; 13]. The idea to use Gromov’s

embedding for the construction of polyhedral compactifications of buildings via asymmetric polyhedralmetrics

occurred to us in 2012. At about the same time, this approach was developed independently for Riemannian

symmetric spaces byKapovich and Leeb [19], and independently byHaettel, Schilling,Wienhard andWalsh [15].
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We then discovered that Brill, a student of Behr, had already used this idea in his 2006 PhD thesis [7]. This thesis,

which is very concise, lacks just one ingredient: Brill considers only symmetric metrics. Our use of nonstandard

methods in the context of horofunctions is, to the best of our knowledge, new.

In subsequent work [9] we will study horofunctions on an affine building X using the ultrapower ∗X of the

building. We note that ∗X is a so-called Λ-building, as studied in [2; 22; 29; 23], axiomatized in [3] and studied by

Schwer in her PhD thesis [16]. We will also compare these compactifications in [9] with the compactifications

constructed in [24; 25; 31]. Finally, we will study the dynamics of discrete group actions on the building, using

the compactifications.

2 Topologies on function spaces

In this section we review some material on topologies on function spaces and state Ascoli’s theorem. Let (X, d)
be a metric space. Given p ∈ X and ε ≥ 0, we put

Bε(p) = {q ∈ X | d(p, q) < ε} and B̄ε(p) = {q ∈ X | d(p, q) ≤ ε}.
We call (X, d) proper if every closed bounded set K ⊆ X is compact. Proper metric spaces are always complete.

We recall some basic facts about function spaces. Let C(X) denote the commutativeℝ-algebra of all real-valued

continuous functions on X. There are several topologies on C(X) and related ℝ-algebras which we briefly re-

view. We will be interested in the topology of uniform convergence on compact sets, the topology of pointwise

convergence and the topology of uniform convergence on bounded sets. There is a uniformway to construct these

topologies which goes as follows, see [28; 21].

LetS be a collection of subsets of the metric space X and assume that

(i) X = ⋃S and

(ii) for all P, Q ∈ S, there exists R ∈ S with P ∪ Q ⊆ R.

Let CS(X) denote the vector space of all real functions φ on X which are bounded and continuous on every

member Q ofS. Given Q ∈ S, ε > 0 and φ ∈ CS(X) we define

NQ,ε(φ) = {ψ ∈ CS(X) | |ψ(q) − φ(q)| < ε for all q ∈ Q}.
These sets form neighborhood bases for a topology TS on CS(X), see [28, III.3]. A set U ⊆ CS(X) is open if for

every φ ∈ U , there exist Q ∈ S and ε > 0 such that NQ,ε(φ) ⊆ U . In this topology, CS(X) becomes a locally

convex topological vector space and a commutative topological ℝ-algebra. The cases of interest to us are the

following.

(1) S = Fin is the collection of all finite subsets of X. This yields the topology TFin of pointwise convergence

on CFin(X) = Xℝ = ∏X ℝ, which coincides with the product topology. This topology does not depend on the

metric d.

(2) S = Uni = 2X is the collection of all subsets of X. Then we obtain the topology TUni of uniform convergence

on the space CUni(X) = BC(X) of all bounded continuous functions on X, and BC(X) is a Banach space. This

space is not relevant for us, and Uni will not be considered below.

(3) For S = Cmp = {K ⊆ X | K is compact} we obtain on CCmp(X) the topology TCmp of uniform convergence

on compact sets, which coincides with the compact-open topology. Since X is a metric space, a function on

X is continuous if and only if its restriction to every compact subset of X is continuous, see [10, VI.8.3 and

XI.9.3]. Thus CCmp(X) = C(X) is a complete locally convex topological vector space.

(4) If S = Bnd is the collection of all bounded sets, then TBnd is the topology of uniform convergence on

bounded sets, and CBnd(X) ⊆ C(X) is the space of all continuous functions which are bounded on all

bounded sets. If we fix a base point o ∈ X, then the set {B̄2k (o) | k ∈ ℕ} is cofinal inBnd and {NB̄2k (o),2
−ℓ (φ) |

k, ℓ ∈ ℕ} is a countable neighborhood basis of φ ∈ CBnd(X). In particular, we may work with sequences in

this space if we wish so.
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We note that the natural maps

(CFin(X), TFin) ←󳨀 (CCmp(X), TCmp) ←󳨀 (CBnd(X), TBnd) ←󳨀 (CUni(X), TUni)
are continuous, because we have inclusions Fin ⊆ Cmp ⊆ Bnd ⊆ Uni. If X is proper, then TBnd = TCmp and if X

is discrete, then TFin = TCmp. In general, all four spaces and topologies are different. Now let o ∈ X be a base

point and put

IS,o(X) = {φ ∈ CS(X) | φ(o) = 0}.
This is the kernel of the evaluation map at o,

CS(X) 󳨀→ ℝ, φ 󳨃󳨀→ φ(o),
and hence a maximal ideal in the ring CS(X). The evaluation map at o is continuous, hence IS,o(X) ⊆ CS(X) is
a closed hyperplane. There is a continuous linear projector

pro : CS(X) 󳨃󳨀→ IS,o(X), φ 󳨃󳨀→ φ − φ(o).
The kernel of pro is the subring of CS(X) consisting of all constant real functions on X, whichwe identifywithℝ.

Therefore CS(X) splits as a topological vector space as
CS(X) = ℝ ⊕ IS,o(X).

To see this, we note that the natural homomorphism ℝ ⊕ IS,o(X) 󳨀→ CS(X) is continuous and bijective. Its

inverse is the map φ 󳨃󳨀→ (φ(o), pro(φ)), which is also continuous.

It follows from the diagram

CS(X) IS,o(X)

CS(X)/ℝ

inc

pro

that there is a natural isomorphism of topological vector spaces

CS(X)/ℝ ≅ IS,o(X)
that maps φ + ℝ to φ − φ(o). In particular, there is an isomorphism of topological vector spaces

IS,o(X) ≅ IS,p(X)
for all o, p ∈ X. We also recall Ascoli’s Theorem.

Theorem 2.1 (Ascoli’s Theorem). Assume that F ⊆ CCmp(X) is equicontinuous and that for each p ∈ X the set

F(p) = {φ(p) | φ ∈ F} ⊆ ℝ is bounded. Then F has compact closure F in CCmp(X) with respect to the compact-
open topology TCmp.

This closure F coincides (set-theoretically and topologically) with the closure of F in CFin(X) = Xℝ with respect

to the topology TFin.

Proof. The first claim is classical, see [10, XII.6.4]. Since the closure F ⊆ CCmp(X) is compact, the continuous

injection CCmp(X) 󳨀→ CFin(X) restricts to a closed embedding on F. �

The isometry group Isom(X) acts in a natural way from the left on CS(X), for S = Fin, Cmp,Bnd. This

action fixes the subringℝ ⊆ CS(X) of constant functions pointwise, and from this we get an induced left action

on CS(X)/ℝ. If we put

(gψ)(x) = ψ(g−1(x)) − ψ(g−1(o))
for g ∈ Isom(X) and ψ ∈ IS,o(X), then the following diagram is Isom(X)-equivariant:

CS(X) IS,o(X)

CS(X)/ℝ

pro
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Suppose that A ⊆ X is a closed subset. We putS|A = {Q ∩ A | Q ∈ S}. ForS = Fin, Cmp,Bnd, the setS|A
is the set of finite/compact/bounded subsets of A. We have a natural continuous restriction homomorphism of

topological vector spaces

CS(X) 󳨀→ CS|A(A)
that maps a function φ to its restriction φ|A. In the commutative diagram

CS(X) CS|A(A)

CS(X)/ℝ CS|A(A)/ℝ,

pr

rA

the map pr is open and thus rA is a continuous homomorphism.

3 Asymmetric norms and asymmetric metrics

Definition 3.1. Let X be a set. An asymmetric metric on X is a map δ : X × X 󳨀→ ℝ such that the following hold

for all u, v, w ∈ X.

(i) δ(u, v) ≥ 0.

(ii) δ(u, v) = 0 if and only if u = v.

(iii) δ(u, w) ≤ δ(u, v) + δ(v, w).
In contrast to ametric we do not require that δ(u, v) = δ(v, u). Thus, everymetric is in particular an asymmetric

metric. If δ is an asymmetric metric on a metric space (X, d), we put

Isomδ(X) = {g ∈ Isom(X) | δ(g(u), g(v)) = δ(u, v) for all u, v ∈ X}.
In a similar vein, we may define asymmetric norms.

Definition 3.2. An asymmetric norm on a real vector space V is a map ν : V 󳨀→ ℝ such that the following hold

for all u, v ∈ V and all r ≥ 0.

(i) ν(u) ≥ 0.

(ii) ν(u) = 0 if and only if u = 0.

(iii) ν(ru) = rν(u).
(iv) ν(u + v) ≤ ν(u) + ν(v).
In contrast to a norm, we do not require that ν(u) = ν(−u). Thus, every norm is also an asymmetric norm. If ν

is an asymmetric norm, then ν(u) := max{ν(u), ν(−u)} is a (symmetric) norm.

Remark 3.3. Any asymmetric norm ν induces an asymmetric metric δ via δ(u, v) = ν(u − v). Indeed, we have

for u, v, w ∈ V that δ(u, w) = ν(u − w) = ν((u − v) + (v − w)) ≤ ν(u − v) + ν(v − w) = δ(u, v) + δ(v, w).
Lemma 3.4. Let (V, ||.||) be a normed real vector space (not necessarily finite-dimensional) and assume that B ⊆ V

is a closed convex, bounded neighborhood of 0. Put

ν(u) = inf{λ ≥ 0 | u ∈ λB}.
Then ν is an asymmetric norm, with unit ball B. Moreover, there exist real constants α, β > 0 such that

||u|| ≤ αν(u) and ν(u) ≤ β||u||
hold for all u ∈ V.
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Proof. It is clear from the definition that Condition (i) from Definition 3.2 holds. Since B is bounded, there exists

α > 0 such that the closed ball B̄α(0) of ||.||-radius α around 0 contains B. Since

r(1 + ε)B ⊆ r(1 + ε)B̄α(0) = B̄r(1+ε)α(0)
holds for all r ≥ 0 and all ε > 0, we have ||u|| ≤ αr if ν(u) ≤ r. This shows (ii), and also that ||u|| ≤ αν(u). If r > 0,

then ru ∈ λB if and only if u ∈ λ
r B. This shows (iii). For s, t > 0 the convexity of B implies that sB + tB ⊆ (s + t)B.

Suppose that u, v ∈ V with s = ν(u) and t = ν(v). For all ε > 0 we have then u ∈ (ε + s)B, v ∈ (ε + t)B, whence

u + v ∈ (s + t + 2ε)B. Therefore ν(u + v) ≤ ν(u) + ν(v) + 2ε. Since this holds for all ε > 0, we have (iv). Since B is

a 0-neighborhood, there exists β > 0 such that B̄1/β(0) ⊆ B. Then

B̄r(1+ε)(0) ⊆ βr(1 + ε)B
for all r ≥ 0 and ε > 0, and thus ||u|| ≤ r implies that ν(u) ≤ β||u||. �

In the converse direction we have the following.

Lemma 3.5. Let ν be an asymmetric norm on a finite-dimensional real vector space V. Then there is a unique

compact convex 0-neighborhood B ⊆ V such that

ν(v) = inf{λ ≥ 0 | v ∈ λB}.
Proof. We put B = {u ∈ V | ν(u) ≤ 1} and m = dim(V). The definition of B yields ν(u) = inf{λ ≥ 0 | u ∈ λB}. By
the triangle inequality for ν, the set B is convex. Let e1, . . . , em be a basis for V , and put r = maxj{ν(ej), ν(−ej)}.
Then B contains the convex hull of the 2m points ± 1

r ej . In particular, B is a convex neighborhood of 0 in the

standard topology of V . We claim that B is bounded with respect to the Euclidean norm ||.|| determined by the

basis e1, . . . , em . Otherwise we find a ||.||-convergent sequence (uk)k≥1 of ||.||-unit vectors uk such that kuk ∈ B

holds for all k ≥ 1. Here we use that the closed unit ball B̄1(0) is compact, because V has finite dimension. We

put u = limk uk and we note that u ̸= 0, since ||u|| = 1. Given s > 0 and k large enough, we have suk ∈ B

(because B is convex) and s(u − uk) ∈ B (because B is a 0-neighborhood). Hence s
2u ∈ B for all s > 0. But then

ν(u) = 0, a contradiction. Hence B is bounded. Since B is a 0-neighborhood, it contains a ball Bε(0), for some

ε > 0. Therefore ν is 1
ε -Lipschitz and in particular continuous. Hence B is closed and thus compact. If A ⊆ V is

a compact convex identity neighborhood with ν(v) = inf{λ ≥ 0 | v ∈ λA}, then A = {u ∈ V | ν(u) = 1} and thus

A = B. �

4 The asymmetric bordification

In this section we introduce horofunction bordifications of metric spaces with respect to asymmetric metrics.

We discuss conditions under which the space X can be topologically embedded into its bordification.

Throughout the section we assume that (X, d) is a metric space and that δ : X × X 󳨀→ ℝ is an asymmetric

metric on X which is bi-Lipschitz equivalent to d. That is, there exist real constants α, β > 0 such that the

following condition (bL) holds:

(bL) for all p, q ∈ X, we have d(p, q) ≤ αδ(p, q) and δ(p, q) ≤ βd(p, q).
For a finite-dimensional Euclidean vector space every asymmetric norm has Property (bL) by Lemma 3.4 and

Lemma 3.5.

Lemma 4.1. Assume that (X, d) is a metric space and that δ : X × X 󳨀→ ℝ is an asymmetric metric satisfying

condition (bL). Then the map

ιS : X 󳨀→ CS(X), p 󳨃󳨀→ δp = δ(p, −)
is an embedding forS = Fin, Cmp,Bnd.
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Proof. First of all we notice that

δp(x) − δp(y) ≤ δ(y, x) ≤ βd(x, y). (1)

Hence each δp is Lipschitz continuous and therefore contained in CBnd(X). For all p, q, x ∈ X we have

δp(x) − δq(x) ≤ δ(p, q) ≤ βd(p, q).
This shows that the maps ιBnd , ιCmp and ιFin are continuous. Since p is the unique minimum of δp , these maps

are injective.

It suffices to show that ιFin is an embedding. This will imply that ιBnd and ιCmp are also embeddings.

Suppose that A ⊆ X is closed and that p ∈ X − A. Then there exists ε > 0 such that B̄ε(p) ∩ A = ⌀. For y ∈ A we

have that

δy(p) ≥ 1

α
d(y, p) ≥ 1

α
ε.

Since the evaluationmap φ 󳨃󳨀→ φ(p) is continuous on CFin(X) and since δp(p) = 0, we see that ιFin(p) ̸∈ ιFin(A)
(where the closure is taken with respect to TFin). Thus ιFin is an embedding. �

Corollary 4.2. For every o ∈ X the map

ιS,o : X 󳨀→ IS,o(X), p 󳨃󳨀→ δp − δp(o)
is a continuous injection, with respect toS = Fin, Cmp andBnd.

Proof. The map δp − δp(o) has a unique minimum at the point p. Hence ιS,o is injective. The map ιS,o is the

composite of the continuous map ιS and of the continuous projector pro : CS(X) 󳨀→ IS,o(X) and hence con-

tinuous. �

Remark 4.3. Contrary to claims made in the literature (e. g. [6, p. 268]) the map ιS,o need not be an embedding

with respect toS = Fin, Cmp orBnd, even if X is proper. For an example, put X = ℕ, with the metric

d(k, ℓ) = {
{
{
0 for k = ℓ
k + ℓ else.

Then (ℕ, d) is a discrete proper metric space, whence Fin = Cmp = Bnd. Put δ = d. For o = 0 we have

ιFin,o(k)(ℓ) = (ℓ + k) − k = ℓ = ιFin,o(0)(ℓ)
for all ℓ ̸= k. It follows that the sequence (ιFin,o(k))k≥0 converges pointwise to ιFin,o(0). In particular, the image

ιFin,o(ℕ) ⊆ IFin,o(X) is not discrete.
We need a geometric condition on X that ensures that ιS,o is an embedding.

Definition 4.4. We say that an asymmetricmetric δ on a set X satisfies the interval condition, or has Property (ic)

if the following holds:

(ic) for all p, q ∈ X and s ∈ [0, δ(p, q)], there is z ∈ X such that δ(p, q) = δ(p, z) + δ(z, q) and δ(p, z) = s.

Every asymmetric metric induced by an asymmetric norm on a vector space has Property (ic). Also, every

geodesic metric space (X, d) has this property for δ = d.

Proposition 4.5. Assume that (X, d) is a metric space and that δ is an asymmetric metric on X satisfying the

conditions (bL) and (ic). Then the map

̃ιBnd : X 󳨀→ CBnd(X)/ℝ, p 󳨃󳨀→ δp + ℝ
is a topological embedding.

Proof. Being the composite X
Bnd󳨀󳨀󳨀󳨀󳨀→ CBnd(X) 󳨀→ CBnd(X)/ℝ, the map ̃ιBnd is continuous. Suppose that A ⊆ X

is closed and that p ∈ X − A. We claim that ̃ιBnd(p) is not in the closure of ̃ιBnd(A). For this it suffices to show

that ιBnd,p(p) is not in the closure of ιBnd,p(A) in IBnd,p(X) ≅ CBnd(X)/ℝ. This is what we will show.
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There exists ε > 0 such that B̄ε(p) ∩ A = ⌀. We claim that for every y ∈ A there exists a point z in the

bounded set B̄2ε(p) such that

|ιBnd,p(p)(z) − ιBnd,p(y)(z)| ≥ min{ 1
α ε,

2
α2β

ε}.
This will show that ιBnd,p(p) is not in the closure of ιBnd,p(A). In order to prove the claim, let y ∈ A. If d(p, y) ≤
2ε, we put z = y. Then

ιBnd,p(y)(z) = δy(z) − δy(p) = −δy(p) ≤ 0,

and

ιBnd,p(p)(z) = δp(z) − δp(p) = δ(p, z) ≥ 1
α ε,

whence

|ιBnd,p(p)(z) − ιBnd,p(y)(z)| ≥ 1
α ε

in this case. If d(p, y) > 2ε, then δy(p) ≥ 2
α ε. By (ic) we can find a point z ∈ X with δy(z) + δz(p) = δy(p) and

with δz(p) = 2
α ε. Then d(p, z) ≤ 2ε and

ιBnd,p(y)(z) = δy(z) − δy(p) = −δz(p) ≤ 0,

while

ιBnd,p(p)(z) = δ(p, z) − δ(p, p) ≥ 1
α d(p, z) = 1

α d(z, p) ≥ 1
αβ
δ(z, p) = 2

α2β
ε.

Hence

|ιBnd,p(p)(z) − ιBnd,p(y)(z)| ≥ 2
α2β

ε

in this case. �

Proposition 4.6. Assume that (X, d) is a metric space and that δ is an asymmetric metric on X satisfying (bL).

Then ιCmp,o(X) has compact closure in ICmp,o(X), and the same set is also the closure of ιFin,o(X) in IFin,o(X).
Proof. We put

F = {δp − δp(o) | p ∈ X} ⊆ CCmp(X).
We have

|(δp(x) − δp(o)) − (δp(y) − δp(o))| ≤ δ(y, x) ≤ βd(x, y)
by Inequality (1), which shows that F is equicontinuous. For x ∈ X fixed we have

|δp(x) − δp(o)| ≤ δ(o, x) ≤ βd(o, x),
which is a bounded set. Hence we may apply Ascoli’s Theorem 2.1. �

Definition 4.7. Let (X, d) be a metric space and assume that δ is an asymmetric metric on X having properties

(bL) and (ic). We call the closure of ̃ιBnd(X) in CBnd(X)/ℝ the bordification X̂ of X (with respect to δ),

X̂ = ̃ιBnd(X) ⊆ CBnd(X)/ℝ.

If (X, d) is a complete CAT(0) space, then this construction gives, for δ = d, the bordification of X̂ = X ∪ ∂∞X by

its visual boundary ∂∞X, as described for example in [6, III.8].

The space X̂ is a complete uniform space. The uniform structure on CBnd(X)/ℝ is defined by means of the

countable family (dk)k∈ℕ of pseudo-metrics

dk(φ, ψ) = sup{|(φ(x) − φ(o)) − (ψ(x) − ψ(o))| | x ∈ X and d(x, o) ≤ 2k},
where o ∈ X is a fixed basepoint.

If (X, d) as inDefinition 4.7 is in addition proper, thenTBnd = TCmp and thus X̂ is compact by Proposition 4.6.

The representatives in CBnd(X) of the elements of X̂ are called horofunctions.Horoballs are the sublevel sets of

horofunctions. Every horofunction h has a unique representative in IBnd,o(X), namely h − h(o). We call these

representatives normalized horofunctionswith respect to the base point o. The group Isomδ(X) acts in a natural

way from the left on the bordification of X, because every isometry g preserves δ, and maps NQ,ε(δ(p, −)) to
Ng(Q),ε(δ(gp, −)). We recall that the action of Isomδ(X) on the set of normalized horofunctions is given by

(gφ)(x) = φ(g−1(x)) − φ(g−1(o)).
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5 Horofunctions via nonstandard analysis

Our aim now is to describe horofunctions using nonstandard analysis. We fix a free ultrafilter μ on a countably

infinite index set J. Given any set X, we denote by ∗X the ultrapower of X with respect to μ. Thus

∗X = ∏
J
X/μ,

where two sequences x, y ∈ ∏J X are identified in ∏J X/μ if {j ∈ J | xj = yj} ∈ μ. There is a natural diagonal

injection

X 󳨀→ ∗X
which allows us to view X as a subset of ∗X. If f : X → Y is a function, then f has a natural extension ∗f : ∗X → ∗Y .
If X = ℝ, then ∗ℝ, endowed with the extended multiplication and addition, is a field, the field of nonstandard

reals. Łos’ Theorem [1, 5.2.1] guarantees that the ultrapower of a given first-order structure satisfies exactly the

same first-order formulas as the original first-order structure. Thus ∗ℝ is an ordered real closed field, because

this is a first-order property: wemaywrite out a sentence, for each n ≥ 1, saying that every polynomial of degree

2n + 1 has a zero. Likewise, we can write out that every positive element is a square. We put |r| = max{±r} for
r ∈ ∗ℝ.

The reason why nonstandard structures are interesting is that they contain in general new elements with

remarkable properties. This phenomenon is called ω1-saturation of ultrapowers. If fn is a countable sequence of

first-order formulas in a free variable and if for each n there is an element xn ∈ X that witnesses fk for all k ≤ n,

then there is an element x ∈ ∗X that witnesses all formulas fn simultaneously, see e. g. [1, 11.2.1]. For instance,

there exists for every n ∈ ℕ a real number r such that r > k, for k = 0, 1, 2, . . . , n (e. g. r = n + 1). It follows

that in ∗ℝ, there exist elements r such that r > n holds for every natural number n, i.e. ∗ℝ is a non-archimedean

ordered real closed field ¹ which contains ℝ as a subfield. The set of finite elements in ∗ℝ is defined as

∗ℝfin := {r ∈ ∗ℝ | |r| ≤ n for some n ∈ ℕ}.
This subset is a local ring, whose unique maximal ideal is the set of infinitesimal elements, defined as

∗ℝinf := {r ∈ ∗ℝ | |r| ≤ 2−n for every n ∈ ℕ}.
The natural map std : ∗ℝfin 󳨀→ ∗ℝfin/∗ℝinf ≅ ℝ is called the standard part map. It splits surjectively as

0 ∗ℝinf
∗ℝfin ℝ 0,

� std

inc

compare [26] 9.4.3.

Definition 5.1. Assume that (X, d) is a metric space with basepoint o and that δ is an asymmetric metric on X

which satisfies conditions (bL) and (ic). Then d and δ extend to maps

∗d : ∗(X × X) = ∗X × ∗X 󳨀→ ∗ℝ and ∗δ : ∗(X × X) = ∗X × ∗X 󳨀→ ∗ℝ.

By Łos’ Theorem, ∗δ and ∗d have the same first-order properties as δ and d. In particular, they satisfy the axioms

(i)-(iii) from Definition 3.1, and the conditions (bL) and (ic).

We recall that X may be viewed as a subset of ∗X. For p ∈ ∗X we define a map hp : X 󳨀→ ℝ by

hp(x) := std(∗δ(p, x) − ∗δ(p, o)).
The right-hand side is well-defined, since the triangle inequality for ∗δ implies that ∗δ(p, x) − ∗δ(p, o) ∈ ∗ℝfin for

all x ∈ X. We note that hp is β-Lipschitz for the constant β in Condition (bL) and that hp ∈ IBnd,o(X). For p ∈ X

we obtain hp = δp − δp(o), which is a horofunction.

1 An ordered field is called archimedean if for every field element r, there exists an integer n such that r ≤ n.
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In general, not every such hp is a horofunction. We therefore introduce the following notion. Let us call a

metric space (X, d) almost proper if the following holds. For every bounded set Y ⊆ X and every ε > 0, there

exists a finite set Y0 ⊆ X such that Y ⊆ ⋃{Bε(x) | x ∈ Y0}, where Bε(x) := {y ∈ X | d(x, y) < ε}. ² Every proper

metric space is almost proper. Conversely, the metric completion of an almost proper metric space is proper. An

example of a non-proper, almost proper metric space isℚ, endowed with the Euclideanmetric induced fromℝ.

Theorem 5.2. Let (X, d) be ametric space and assume that δ is an asymmetric metric on X having properties (bL)

and (ic). Let o ∈ X be a basepoint. For every normalized horofunction φ ∈ X̂, there exists p ∈ ∗X with φ = hp. If

(X, d) is almost proper, then conversely every hp with p ∈ ∗X is a normalized horofunction.

Proof. Suppose that φ : X 󳨀→ ℝ is a normalized horofunction. Let ∗φ : ∗X 󳨀→ ∗ℝ denote its extension to the

ultrapower and consider the countable set F = {fk,ℓ(v) | k, ℓ ∈ ℕ} of formulas fk,ℓ in one free variable v, where

fk,ℓ(v) = ∀x[d(x, o) ≤ 2k → |φ(x) − (δ(v, x) − δ(v, o))| ≤ 2−ℓ].
For every finite subset F0 ⊆ F, there exists a point p ∈ X such that if we substitute p for the free variable v,

then fk,ℓ(p) holds simultaneously for all formulas fk,ℓ ∈ F0. This is true since φ is a horofunction, which can be

approximated to arbitrary precision on each ball of radius 2k by a map x 󳨃󳨀→ δ(p, x) − δ(p, o), for some choice

of p ∈ X. By the aforementioned ω1-saturation of ultraproducts based on countable index sets, there exists a

point p ∈ ∗X such that fk,ℓ(p) holds simultaneously for all formulas fk,ℓ ∈ F. Hence

φ(x) − (∗δp(x) − ∗δp(o)) ∈ ∗ℝinf

holds for all x ∈ X, that is, hp = φ.

Assume now that (X, d) is almost proper, and that δ ≤ βd. Since X is almost proper, we find finite sets

Yk,ℓ ⊆ X such that B̄2k (0) ⊆ ⋃{B̄2−ℓ (y) | y ∈ Yk,ℓ}. Let p ∈ ∗X and put hp(x) = std(∗δp(x) − ∗δp(o)). Let (pj)j∈J be
a sequence in ∏J X representing p in the ultrapower ∏J X/μ. We put

φj(x) = δ(pj , x) − δ(pj , o)
and we note that these maps are normalized horofunctions. Given ℓ ∈ ℕ and x ∈ X, the set

Jℓ(x) := {j ∈ J | |hp(x) − φj(x)| ≤ 2−ℓβ}
is in the ultrafilter μ, by the definition of hp . Since Yk,ℓ is finite, the set

Jk,ℓ = ⋂{Jℓ(y) | y ∈ Yk,ℓ}
is also in μ and in particular nonempty. For x ∈ B̄2k (0), there exists y ∈ Yk,ℓ with d(x, y) ≤ 2−ℓ. For j ∈ Jk,ℓ we

have thus

|hp(x) − φj(x)| ≤ |hp(x) − hp(y)| + |hp(y) − φj(y)| + |φj(y) − φj(x)|
≤ 3 ⋅ 2−ℓβ.

Thus the set of normalized horofunctions {φj | j ∈ J} has hp in its closure (with respect to the topology TBnd),

whence hp ∈ X̂. �

If X is not almost proper, not every hp needs to be a horofunction. Put X = ℕ with the discrete metric

d(i, j) = 1 if i ̸= j. Then X̂ = X. Put J = ℕ, and consider the point p ∈ ∗X which is represented by the sequence

(0, 1, 2, 3, . . . ) ∈ ℕℕ. The ∗d(k, p) = 1 for every k ∈ X, whence hp = 0.

Corollary 5.3. Let (X, d) be an almost proper metric space and assume that δ is an asymmetric metric on X.

Let A ⊆ X be a closed subset and assume that both δ and the restriction of δ to A have properties (bL) and (ic).

Then every horofunction on A is the restriction of some horofunction on X.

2 In other words, we require that every bounded subset of X is totally bounded.
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Proof. Let φ be a horofunction on A. We may assume that φ is normalized with respect to a base point o ∈ A.

There exists p ∈ ∗A such that φ(x) = std(∗δ(p, x) − ∗δ(p, o)). Since X is almost proper and since ∗A ⊆ ∗X, the map

hp is a horofunction on X, with hp|A = φ. �

In the setting of proper metric spaces the previous corollary follows also directly. If A ⊆ X is a subspace, we

may consider the commutative diagram

A X

CCmp|A(A)/ℝ CCmp(X)/ℝ.

inc

̃ιCmp|A ̃ιCmp

rA

By continuity we have an inclusion rA( ̃ιCmp(inc(A))) ⊆ ̃ιCmp|A(A) and by compactness of the set ̃ιCmp(inc(A))
we have equality. Hence rA( ̃ιCmp(inc(A))) = Â if A and X are proper and satisfy (bL) and (ic). In particular, rA
maps ̃ιCmp(inc(A)) homeomorphically onto Â if and only if rA is injective on ̃ιCmp(inc(A)).

6 Polyhedral norms

In this section we introduce asymmetric norms determined by compact convex polyhedra. We fix a finite-

dimensional real vector space V , with dual V∨ = Homℝ(V,ℝ) and assume that d(u, v) = ||u − v|| is a Euclidean
metric on V . Then the metric space (V, d) is proper. We also fix o = 0 ∈ V as the base point.

Let B ⊆ V be a compact convex polyhedral 0-neighborhood and let A0, . . . , Am ⊆ B be the codimension-1-

faces of B. Corresponding to each Aj ⊆ B, there is a unique linear functional ξj ∈ V∨ such that Aj = {v ∈ B |
ξj(v) = 1}. This allows us to write B as

B = {u ∈ V | ξ0(u), . . . , ξm(u) ≤ 1}.
The asymmetric norm ν determined by B as in Lemma 3.4 is then given by

ν(u) = max{ξ0(u), . . . , ξm(u)}.
We put K = {0, . . . ,m}. A nonempty subset L ⊆ K is called a dual face if there exists v ∈ V with ν(v) = 1 such

that

L = {k ∈ K | ξk(v) = 1}.
The geometric motivation for this is as follows. The set B has a polyhedral dual B∨ ⊆ V∨, which is given by

B∨ = {ξ ∈ V∨ | ξ(u) ≤ 1 for all u ∈ B}.
Thus B∨ is the convex hull of ξ0, . . . , ξm . The proper faces of the polyhedron B∨ are precisely the convex hulls

of the sets {ξℓ | ℓ ∈ L}, where L ⊆ K is a dual face as defined above. We emphasize that a dual face in our setup

is just a subset of the index set K. We denote the set of all dual faces by

Σ = {L ⊆ K | L is a dual face}.
For any nonempty subset L ⊆ K we put

νL(u) = max{ξℓ(u) | ℓ ∈ L}.
Thus ν = νK . The negative cone of L is the set

NL = {v ∈ V | ξℓ(v) ≤ 0 for all ℓ ∈ L}.
IfW ⊆ V is a linear subspace withW ∩ NL = {0}, then the restriction νL|W is an asymmetric norm onW .
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Lemma 6.1. There is a real constant γ > 0 such that

|νL(p) − νL(q)| ≤ γ||p − q||
and

|νL(p − u) − νL(p) − νL(q − u) + νL(q)| ≤ 2γ||p − q||
hold for all subsets L ⊆ K and all u, p, q ∈ V.

Proof. We choose γ in such a way that |(ξk − ξℓ)(u)| ≤ γ||u|| holds for all k, ℓ ∈ K and u ∈ V . �

The metric space (V, d) is proper. If we put

δ(u, v) = ν(u − v),
the asymmetric metric δ satisfies conditions (bL) and (ic). Its normalized horofunctions are by Theorem 5.2 the

maps

hp(v) = std(∗ν(p − v) − ∗ν(p)),
for p ∈ ∗V . The first aim of this section is to show the following.

Theorem 6.2. The normalized horofunctions of V with respect to the asymmetric metric δ as above are precisely

the maps

u 󳨃󳨀→ ν(p − u) − ν(p),
for p ∈ V, and the maps

u 󳨃󳨀→ νL(p − u) − νL(p),
for p ∈ V and L ⊆ K a dual face.

The following picture illustrates the result. It shows on the left the polygonal unit sphere ho = 1, and on the

right the level set hp = 0, for p at infinite distance from o.

X

o

ho = 1 X

p

o
hp = 0

The proof of this theorem requires some preparations and can be found on page 426.

Lemma 6.3. Let V be a finite-dimensional real vector space and let η1, . . . , ηn be nonzero linear functionals on V.

Let d be a Euclidean metric on V. Then there exists a real constant c > 0, depending only on η1, . . . , ηn and d,

such that the following holds. If v ∈ V is a vector with |ηi(v)| ≤ 1 for all i = 1, . . . , n, then there exists a vector

w ∈ η⊥1 ∩ ⋅ ⋅ ⋅ ∩ η⊥n with d(v, w) ≤ c.

Proof. Recall that η⊥i = {v ∈ V | ηi(v) = 0}. First suppose η⊥1 ∩ ⋅ ⋅ ⋅ ∩ η⊥n = {0}. Then the ηi generate the

dual space V∨. We may assume that η1, . . . , ηk is a basis for the dual space. Let e1, . . . , ek be the dual basis in V

associated to η1, . . . , ηk . If v ∈ V is a vector with |ηi(v)| ≤ 1 for all i = 1, . . . , k, thenwe have v ∈ Q := {∑k
i=1 eiλi |

λi ∈ [−1, 1]} ≅ [−1, 1]k . This set Q ⊆ V is compact and hence bounded.

For the general case we put H := η⊥1 ∩ ⋅ ⋅ ⋅ ∩ η⊥n and we choose a complementary subspaceW ⊆ V such that

V = W ⊕ H. The previous argument shows that every vector v ∈ V , with |ηk(v)| ≤ 1 for all k = 1, . . . , n, is

contained in Q + H, where Q is compact. The claim follows. �

Our proof of Theorem 6.2 will rely on the results about ultrapowers in the previous section. The ultrapower
∗V of V is a finite-dimensional vector space over ∗ℝ, with dual space (∗V)∨ ≅ ∗(V∨). We put

∗Vfin = {v ∈ ∗V | ∗||v|| ∈ ∗ℝfin} and ∗Vinf = {v ∈ ∗V | ∗||v|| ∈ ∗ℝinf},
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where ||.|| is a Euclidean norm on V . There is a split short exact sequence of ∗ℝfin-modules

0 ∗Vinf
∗Vfin V 0.

std

inc

By property (bL) we have

∗Vfin = {v ∈ ∗V | ∗ν(v) ∈ ∗ℝfin} and ∗Vinf = {v ∈ ∗V | ∗ν(v) ∈ ∗ℝinf}. (2)

By Theorem 5.2, the horofunctions are the maps

hp(u) = std(∗δ(p, u) − ∗δ(p, o)) = std(∗ν(p − u) − ∗ν(p)),
for p ∈ ∗V and u ∈ V . Our goal is now to analyze these horofunctions more closely. We define some more

combinatorial data.

Definition 6.4. For k, ℓ ∈ K we put

Hk,ℓ := (ξk − ξℓ)⊥ = {v ∈ V | ξk(v) = ξℓ(v)} ⊆ V.

For a nonempty subset L ⊆ K we put

HL := ⋂
k,ℓ∈L

Hk,ℓ = {u ∈ V | ξk(u) = ξℓ(u) for all k, ℓ ∈ L}.

If k ̸= ℓ, then the set Hk,ℓ is a hyperplane in V . If L = {k} then HL = V and if L = K then HL = {0}. If L ⊆ K is

a dual face, then HL is the linear subspace of V which intersects the affine span FL of {ξℓ | ℓ ∈ L} orthogonally
(if we identify V∨ with V via the Euclidean inner product). In the case where L is a dual face, we have thus

dim(V) = dim(HL) + dim(FL).
All these objects ξi , Hk,ℓ etc. extend in a naturalway as ∗ξi ,

∗Hk,ℓ etc. to the ultrapower ∗V of V whichwe consider

now.

Lemma 6.5. Let L ⊆ K be a nonempty set. Then

∗HL + ∗Vfin = ⋂
k,ℓ∈L

(∗Hk,ℓ + ∗Vfin).

Proof. The claim is true if L consists of a single element, sowemay assume that L contains at least two elements.

Also, the left-hand side is contained in the right-hand side, since

∗HL + ∗Vfin ⊆ ∗Hk,ℓ + ∗Vfin

for k, ℓ ∈ L.

Let v ∈ ⋂k,ℓ∈L(∗Hk,ℓ + ∗Vfin). We claim that v ∈ ∗HL + ∗Vfin. Let c > 0 be the real constant from Lemma 6.3,

for the set of linear forms {ξk − ξℓ | k, ℓ ∈ L and k > ℓ}. Since v ∈ ∗Hk,ℓ + ∗Vfin holds for k, ℓ ∈ L, we have that

(∗ξk − ∗ξℓ)(v) ∈ ∗ℝfin. Therefore there exists an integer n > 0 such that for every k, ℓ ∈ L

∗|(∗ξk − ∗ξℓ)(v)| ≤ n.

Then ∗|(∗ξk−∗ξℓ)( 1n v)| ≤ 1. By Łos’ Theorem, there existsw ∈ ∗HL such that ∗||w− 1
n v|| ≤ c. Thus nw−v ∈ ∗Vfin. �

Definition 6.6. We say that two nonstandard reals s, t ∈ ∗ℝ have the same order of magnitude, denoted by s ≈ t,

if s − t ∈ ∗ℝfin. Since
∗ℝfin ⊆ ∗ℝ is a subgroup, this is an equivalence relation. For p ∈ ∗V we put

Kp = {k ∈ K | ∗ξk(p) ≈ ∗ν(p)}
and we note that

∗ν(p) = max{∗ξk(p) | k ∈ K} = max{∗ξk(p) | k ∈ Kp} = ∗νKp
(p). (3)

If p ∈ ∗Vfin, then Kp = K.
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Lemma 6.7. For p ∈ ∗V and q ∈ p + ∗Vfin we have

Kq = Kp .

Proof. Since p − q ∈ ∗Vfin we have ∗ν(p − q), ∗ν(q − p) ∈ ∗ℝfin by Equation (2). Now ∗ν(p) ≤ ∗ν(p − q) + ∗ν(q) and
∗ν(q) ≤ ∗ν(q − p) + ∗ν(p), whence ∗ν(p) ≈ ∗ν(q). For all k ∈ K we have ∗ξk(p − q) ∈ ∗ℝfin, whence ∗ξk(p) ≈ ∗ξk(q).
The claim follows. �

We record at this stage the following.

Lemma 6.8. The normalized horofunctions of V are the maps

hp(u) = std(∗νKp
(p − u) − ∗νKp

(p)),
for p ∈ ∗V.
Proof. This is true for u ∈ V , since Kp−u = Kp by Lemma 6.7, and since ∗ν(p−u) = ∗νKp−u

(p−u) by Equation (3). �

Definition 6.9. We write s ≫ 0 if s ∈ ∗ℝ is a nonstandard real with s > n for all n ∈ ℕ (an infinitely large

nonstandard real), and we write s ≫ t if s − t ≫ 0. For a subset L ⊆ K we put

∗H
large
L := {v ∈ ∗HL | ∗ξℓ(v) ≫ ∗ξk(v) for all ℓ ∈ L and all k ∈ K − L}.

If q ∈ ∗Hlarge
L , then Kq = L. Note that ∗H

large
K = {0}.

Lemma 6.10. For p ∈ ∗V we have

p ∈ ∗Hlarge
Kp

+ ∗Vfin.

In particular, ∗H
large
Kp

̸= ⌀.

Proof. If Kp = {k}, then ∗H{k} = ∗V . Moreover, ∗ξk(p) ≫ ∗ξℓ(p) for all ℓ ̸= k and thus p ∈ ∗Hlarge
{k} . If k, ℓ ∈ Kp

are different indices, then ∗ξk(p) ≈ ∗ξℓ(p) and thus p ∈ ∗Hk,ℓ + ∗Vfin. By Lemma 6.5 we have p = p1 + p2, with

p1 ∈ ∗HKp
and p2 ∈ ∗Vfin. Suppose that k ∈ Kp and ℓ ∈ K − Kp . Then

∗ξk(p1) ≈ ∗ξk(p) ≫ ∗ξℓ(p) ≈ ∗ξℓ(p1). Thus
p1 ∈ ∗Hlarge

Kp
and p ∈ ∗Hlarge

Kp
+ ∗Vfin. �

Note that p ∈ ∗Vfin if and only if Kp = K. For the remaining points p ∈ ∗V we have the following result.

Lemma 6.11. For every p ∈ ∗V − ∗Vfin, the set Kp is a dual face.

Proof. We put p = p1 + p2, with p1 ∈ ∗Hlarge
Kp

and p2 ∈ ∗Vfin, as in Lemma 6.10. Then Kp = Kp1 by Lemma 6.7.

Also, p1 ̸= 0 because p ̸∈ ∗Vfin. We put q = 1
∗ν(p1)

p1. Then
∗ν(q) = 1 and

Kp = Kp1 = {k ∈ K | ∗ξk(q) = 1},
because ∗ξk(p1) ≫ ∗ξℓ(p1) holds for all ℓ ∈ K − Kp1 and all k ∈ Kp1 . Łos’ Theorem shows that a subset L ⊆ K is a

dual face if and only if there exists v ∈ ∗B with ∗ν(v) = 1, such that L = {ℓ ∈ K | ∗ξℓ(v) = 1}. Hence Kp is a dual

face. �

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. By Lemma 6.8, a normalized horofunction for V with respect to the asymmetric metric δ

is of the form hp(u) = std(∗νKp
(p − u) − ∗νKp

(p)), for some q ∈ ∗V . Let u ∈ V . If q ∈ ∗Vfin, we put p = std(q). Then
std(∗ν(q − u)) = std(∗ν(p − u)) = ν(p − u)

by Equation (2) and thus

hq(u) = std(∗ν(q − u) − ∗ν(q)) = ν(p − u) − ν(p).
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Suppose now that q ∈ ∗V − ∗Vfin. Then q = q1 + q2, with q1 ∈ ∗Hlarge
Kq

and q2 ∈ ∗Vfin. We put p = std(q2) and
x = ∗ν(q1) ≫ 0, using Lemma 6.10. For all k ∈ Kq we have ∗ξk(q1 + q2 − u) = x + ∗ξk(q2 − u) and thus

∗ν(q − u) = ∗νKq
(q1 + q2 − u) = x + ∗νKq

(q2 − u).
Similarly, ∗ν(q) = ∗νKq

(q1 + q2) = x + ∗νKq
(q2) and therefore

∗ν(q − u) − ∗ν(q) = ∗νKq
(q2 − u) − ∗νKq

(q2).
Hence

hq(u) = std(∗ν(q − u) − ∗ν(q)) = std(∗νKq
(q2 − u) − ∗νKq

(q2)) = νKq
(p − u) − νKq

(p).
This shows that all horofunctions are as claimed in Theorem 6.2.

Conversely, we claim that each of these functions is indeed a horofunction. This is clear by definition for

the functions

u 󳨃󳨀→ ν(p − u) − ν(p), for p ∈ V.

Suppose that L ⊆ K is a dual face. We fix a vector w ∈ V with ν(w) = 1 such that L = {ℓ ∈ K | ξℓ(w) = 1}. There
exists ε > 0 such that ξk(w) < 1 − ε for all k ∈ K − L. We choose a nonstandard real t ≫ 0 and we put q = tw.

Since tε ≫ 0, we have Kq = L and ∗νL(q − u) = t + ∗νL(−u) for all u ∈ V , whence

hq(u) = νL(−u).
Hence this map is a horofunction. But translation by −p is an isometry in Isomδ(V) and thus

u 󳨃󳨀→ νL(p − u) − νL(p)
is also a horofunction, for all p ∈ V . This completes the proof of Theorem 6.2. �

Remark 6.12. The previous proof gives us in addition the following. For p ∈ ∗V − ∗Vfin and u ∈ V we have

hp(u) = νL(q − u) − νL(q), (4)

where L = Kp and q = std(p2) in the decomposition p = p1+p2, with p1 ∈ H
large
Kp

and p2 ∈ ∗Vfin as in Lemma 6.10.

We noted above that the abelian group V ⊆ Isomδ(V) acts on the set of normalized horofunctions. To fix

some notation, we put

τw(x) = w + x,

for x, w ∈ V . Now we calculate the V -stabilizers of the normalized horofunctions. Since V is abelian and acts

transitively on the sets

{v 󳨃󳨀→ ν(p − v) − ν(p) | p ∈ V} and {v 󳨃󳨀→ νL(p − v) − νL(p) | p ∈ V},
it suffices to do this for the horofunctions

v 󳨃󳨀→ ν(−v) and v 󳨃󳨀→ νL(−v),
where L is any dual face. The first horofunction has 0 as its unique minimum. Hence its V -stabilizer is trivial.

To analyze the second case, we put, for k ∈ L,

Ck,L = {v ∈ V | ξk(v) > ξℓ(v) for all ℓ ∈ L − {k}}.
Lemma 6.13. Let L be a dual face, and k ∈ L. Then Ck,L is a nonempty open set.

Proof. Recall that A0, . . . , Am are the codimension-1-faces of B. We choose a point u ∈ Ak such that ξℓ(u) < 1

for all ℓ ∈ K − {k}. Therefore u ∈ Ck,L . It is clear from the definition that Ck,L is open. �
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The Ck,L are thus nonempty open positive cones ³ in the vector space V , with

V = ⋃{Ck,L | k ∈ L} ∪ ⋃{Hk,ℓ | k, ℓ ∈ L, k ̸= ℓ}.
In particular, ⋃{Ck,L | k ∈ L} is open and dense in V .

Lemma 6.14. If L is a dual face, then the V-stabilizer of νL is HL.

Proof. For w ∈ V we have

(τwνL)(u) = νL(u − w) − νL(−w).
Hence if w ∈ HL , then τwνL = νL . Therefore HL is contained in the stabilizer of νL .

Let w ∈ V and suppose τwνL = νL . We choose ℓ ∈ L in such a way that νL(−w) = ξℓ(−w). Let k ∈ L

be arbitrarily. Since Ck,L is an nonempty open cone, Ck,L ∩ (w + Ck,L) ̸= ⌀. Hence we may choose an element

v ∈ Ck,L in such a way that v − w ∈ Ck,L . Then νL(v) = ξk(v) and νL(v − w) = ξk(v − w). Since
νL(v) = νL(v − w) − νL(−w),

we conclude that

ξk(v) = ξk(v) − ξk(w) − ξℓ(−w),
whence ξk(w) = ξℓ(w). Since k ∈ L was chosen in an arbitrary way, ξk(w) = ξℓ(w) holds for all k ∈ L, whence

w ∈ HL . �

Lemma 6.15. Let L, L󸀠 ⊆ K be two different dual faces and let p ∈ V. Then ν ̸= τpνL ̸= νL󸀠 .

Proof. The V -stabilizer of ν is trivial, while the V -stabilizer of τpνL is HL ̸= {0}. This shows the first inequality.

Assume towards a contradiction that τpνL = νL󸀠 . For every k󸀠 ∈ L󸀠, there exists some k ∈ L such that

U = (p + Ck,L) ∩ Ck󸀠 ,L󸀠 is nonempty. For u ∈ U we have

ξk󸀠 (u) = ξk(u − p) − νL(−p). (5)

Since U is open, Equation (5) holds for all u ∈ V , because two affine hyperplanes in V × ℝ which intersect in

a nonempty relatively open set are equal. Thus k = k󸀠 and hence L󸀠 ⊆ L, Similarly, we have L󸀠 ⊇ L. This is a

contradiction. �

Lemma 6.16. Let L be a dual face. Then there exists a linear subspace WL ⊆ V such that V = HL ⊕ WL and such

that νL is an asymmetric norm on WL.

Proof. We need to find a subspace WL which is a complement of HL such that the intersection WL ∩ NL = {0},
where NL = {v ∈ V | νL(v) ≤ 0} is the negative cone of νL . Then νL restricts to an asymmetric norm onWL .

We put η = ∑ℓ∈L ξℓ. There exists u ̸= 0 such that ξℓ(u) = 1 holds for all ℓ ∈ L. Therefore η(u) ̸= 0 and thus

η ̸= 0. Since u ∈ HL , we have V = HL + η⊥. We choose a subspace WL ⊆ η⊥ such that V = HL ⊕ WL . Suppose

that w ∈ WL ∩ NL . Then ξℓ(w) ≤ 0 for all ℓ ∈ L. On the other hand η(w) = 0, whence ξℓ(w) = 0 for all ℓ ∈ L.

Thus w ∈ HL and therefore w = 0. This shows that νL restricts to an asymmetric norm onWL . �

Combining these results, we can describe the bordification V̂ of V now as a stratified space. Recall that

Σ = {L ⊆ K | L is a dual face}. We put

VL = V/HL for L ∈ Σ and VK = V.

Theorem 6.17. There is a V-equivariant bijection

Φ : V̂ 󳨀→ ⨆{VL | L ∈ Σ ∪ {K}}
given by

Φ[v 󳨃󳨀→ ν(p − v) − ν(p)] = p and Φ[v 󳨃󳨀→ νL(p − v) − νL(p)] = p + HL .

The restriction of Φ−1 to each of the vector spaces VL is a homeomorphism.

3 A cone C in a real vector spaceW is a subsemigroup C ⊆ W such that sC ⊆ C holds for all s > 0.
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On the right-hand side we have to use the disjoint union since it may happen that HL = HL󸀠 holds for

different dual faces L, L󸀠, e. g. if B is a cube.

Proof. By Lemma 6.15, the map Φ is well-defined and surjective. By Lemma 6.14, it is also injective. The V -

stabilizer of the map [v 󳨃󳨀→ ν(p − v) − ν(p)] is trivial and the V -stabilizer of the map [v 󳨃󳨀→ νL(p − v) − νL(p)]
is HL by Lemma 6.14. Hence Φ is an equivariant bijection.

For the horofunctions v 󳨃󳨀→ ν(p − v) − ν(p), the map Φ is just the inverse of the topological embedding

V 󳨀→ V̂ and therefore a homeomorphism.

Assume now that L ⊆ K is a dual face and put φp(v) = νL(p−v)−νL(p). LetWL ⊆ V be as in Lemma 6.16. The

map p 󳨃󳨀→ φp is a continuous map WL 󳨀→ V̂ ⊆ IBnd,0(V) by Lemma 6.1. If we combine it with the restriction

map IBnd,0(V) 󳨀→ IBnd|WL ,0(WL), we obtain an embedding WL 󳨃󳨀→ ŴL . Therefore the map WL 󳨀→ V̂ is also

an embedding. Now there is an isomorphism of topological vector spacesWL 󳨀→ VL = V/HL and thus Φ−1 is a

homeomorphism on VL . �

The description of the horofunctions in Theorem 6.2 allows us also to describe the horofunctions using rays

in V .

Definition 6.18. Let L ⊆ K be a dual face. We put

H+L = {v ∈ HL | ξℓ(v) > ξk(v) for all ℓ ∈ L and k ∈ K − L}.
From the definition of a dual face we see that H+L ̸= ⌀. Thus H+L is a nonempty open cone in HL . For formal

reasons it will be convenient to put

H+K = HK = {0}.
Lemma 6.19. Let L be a dual face and assume that w ∈ H+L . Then the family of functions (τ−twν)t>0 converges in
IBnd,0(V) to νL as t gets large.
Proof. There exists ε > 0 such that ξℓ(v) > ξk(v) holds for all ℓ ∈ L, k ∈ K − L and v ∈ Bε(w). Hence τ−twν and

τ−twνL = νL agree on the ball Btε(0), for t > 0. As t grows, this ball becomes arbitrarily large. �

We note also the following. If w ∈ V is a nonzero vector, then the set

K(w) = {ℓ ∈ K | ξℓ(w) = ν(w)}
is a dual face ⁴, and w ∈ H+K(w). Moreover {u ∈ H+L | ν(u) = 1} is an open face of the polyhedron B = {u ∈ V |
ν(u) ≤ 1}. In particular,

V − {0} = ⨆{H+L | L ⊆ K is a dual face}.
The sets H+{ℓ}, for ℓ ∈ K, are pairwise disjoint open cones in V , and their union is dense in V .

Proposition 6.20. Let p, w ∈ V. Then the family of normalized horofunctions

u 󳨃󳨀→ ν(p + tw − u) − ν(p + tw)
converges to the normalized horofunction u 󳨃󳨀→ νK(w)(p − u) − νK(w)(p) as t gets large, where K(w) = {ℓ ∈ K |
ξℓ(w) = ν(w)}. In particular, every normalized horofunction arises as such a limit along an affine line in V.
Proof. This follows from Lemma 6.19 and the remark preceding this proposition. �

Now we improve on Theorem 6.17 by describing the topology on the right-hand side.

Definition 6.21. Let L be a dual face. Given ε > 0 and q ∈ V , we put D = q + Bε(0) + H+L and

U(L, ε, q) = D ⊔ ⨆{(D + HL󸀠 )/HL󸀠 | L󸀠 ∈ Σ with L󸀠 ⊇ L} ⊆ ⨆{VL󸀠 | L󸀠 ∈ Σ ∪ {K}}.
We put also

U(K, ε, q) = q + Bε(0) ⊆ V ⊆ ⨆{VL󸀠 | L󸀠 ∈ Σ ∪ {K}}.

4 The relation between Kw and K(w) is as follows. If t ≫ 0 is a nonstandard real, then Ktw = K(w).
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We note that the collection of these sets is invariant under the action of the group V by translations. Now

we show that these sets form a basis for the topology imposed on ⨆{VL󸀠 | L󸀠 ∈ Σ ∪ {K}} by the bijection Φ in

Theorem 6.17.

Lemma 6.22. Let L ∈ Σ ∪ {K}. Given real numbers r, s > 0 there exist ε > 0 and q ∈ H+L such that

|νL(−u) − φ(u)| < s

holds for every u ∈ B̄r(0) and every normalized horofunction φ with Φ(φ) ∈ U(L, ε, q).
Proof. We put ε = s

2γ , where γ > 0 is as in Lemma 6.1. If K = L, then |ν(−u) − ν(p− u) + ν(p)| < s holds for every

p ∈ U(K, ε, 0) = Bε(0).
Now suppose that K ̸= L. We choose q ∈ H+L in such a way that for all u ∈ B̄r+ε(q) we have (ξℓ − ξk)(u) > 0

whenever ℓ ∈ L and k ∈ K−L. ⁵ Let p1 ∈ Bε(0) and p2 ∈ H+L . If L
󸀠 ⊆ K is any subset containing L and if u ∈ B̄r(0),

we have

|νL(−u) − νL󸀠 (q + p1 + p2 − u) + νL󸀠 (q + p1 + p2)|
= |νL(−u) − νL(q + p1 + p2 − u) + νL(q + p1 + p2)|

= |νL(−u) − νL(p1 − u) + νL(p1)| < 2γε = s.

The claim follows. �

Proposition 6.23. Let L ∈ Σ ∪ {K}, let ε > 0 and q ∈ V. Then the set Φ−1(U(L, ε, q)) ⊆ V̂ is open.

Proof. We have to show that for every normalized horofunction φ ∈ Φ−1(U(L, ε, q)) there exist r, s > 0 such

that every normalized horofunction ψ with

|φ(u) − ψ(u)| < s for all u ∈ B̄r(0)
is contained in the set Φ−1(U(L, ε, q)). From the definition of U(L, ε, q), we may write

φ(u) = νL󸀠 (q + q1 + q2 − u) − νL󸀠 (q + q1 + q2),
with q1 ∈ Bε(0) and q2 ∈ H+L and L󸀠 ⊇ L a dual face, or L󸀠 = K. We put

D = q + Bε(0) + H+L .

If L󸀠 ⊇ L is a dual face or if L󸀠 = K, then

H+L󸀠 ⊆ H+L ⊆ Bε(0) + H+L . (6)

We argue by contradiction, using again the ultrapower.

Suppose that the claim is false. Then we find for every pair of natural numbers (m, n) a counterexample,

that is, a normalized horofunction

ψm,n(u) = νLm,n (pm,n − u) − νLm,n (pm,n),
which satisfies

|φ(u) − ψm,n(u)| < 2−m for all u ∈ B̄2n (0),
and which is not in U(L, ε, q). We note also that then

|φ(u) − ψm,n(u)| < 2−m
󸀠

for all u ∈ B̄2n󸀠 (0)

5 This is possible because every w ∈ H+L has a small neighborhood such that for every u in this neighborhood, (ξℓ − ξk)(u) > 0, for

k, ℓ as above. Then we multiply w by a large real number to obtain q.
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holds for all m󸀠 ≤ m and all n󸀠 ≤ n. The ω1-saturation of the ultrapower gives us therefore an L󸀠󸀠 ∈ Σ ∪ {K}, a
point p ∈ ∗V , and nonstandard reals r, s > 0 with r ≫ 0 and s ∈ ∗ℝinf , such that

∗|∗φ(u) − ∗νL󸀠󸀠 (p − u) + ∗νL󸀠󸀠 (p)| < s (7)

holds for all u ∈ ∗Br(0). The map ∗V 󳨀→ ∗ℝ given by v 󳨃󳨀→ ∗νL󸀠󸀠 (p − v) − ∗νL󸀠󸀠 (p) is not contained in ∗U(L, ε, q).
In case L󸀠󸀠 ⊇ L󸀠, we have therefore necessarily p ̸∈ ∗D + ∗HL󸀠󸀠 . The Inequality (7) shows that for all u ∈ V we

have

φ(u) = std(∗νL󸀠󸀠 (p − u) − ∗νL󸀠󸀠 (p)),
because r ≫ 0 and std(s) = 0. We distinguish three cases.

Case (i). If p ∈ ∗Vfin we put w = std(p). Then
νL󸀠 (q + q1 + q2 − u) − νL󸀠 (q + q1 + q2) = φ(u) = νL󸀠󸀠 (w − u) − νL󸀠󸀠 (w)

holds for all u ∈ V . But then L󸀠 = L󸀠󸀠 by Lemma 6.15, and q + q1 + q2 + v = w for some v ∈ HL󸀠 by Lemma 6.14.

Thus w is contained in the open set D + HL󸀠 . This set is open and contains therefore a small ε󸀠-neighborhood of

w, for some real ε󸀠 > 0. Hence ∗D + ∗HL󸀠 contains p, because
∗d(w, p) < ε󸀠 holds for every positive real ε󸀠 > 0.

We have arrived at a contradiction.

Case (ii). Suppose next that p ∈ ∗V − ∗Vfin and that L󸀠󸀠 = K. For u ∈ V we have then

std(∗νK(p − u) − ∗νK(p)) = hp = φ.

We decompose p as p = p1 + p2, with p1 ∈ ∗Hlarge
Kp

and p2 ∈ ∗Vfin as in Lemma 6.10. If we put w = std(p2), then
hp(u) = νKp

(w − u) − νKp
(w).

Therefore L󸀠 = Kp and w + v = q + q1 + q2 for some v ∈ HL󸀠 by Lemma 6.15 and Lemma 6.14. We have

p1 − v ∈ ∗Hlarge
L󸀠 ⊆ ∗H+L󸀠 ⊆ ∗(HL)

by Equation 6, and the right-hand side is a subsemigroup of ∗V . As in the previous case, we have also

p2 + v ∈ ∗D = q + ∗Bε(0) + ∗H+L = q + ∗Bε(0) + ∗(H+L ).
Thus

p = p1 + p2 ∈ q + ∗Bε(0) + ∗(H+L ) = ∗D.
Again, we have arrived at a contradiction.

Case (iii). Suppose finally that p ∈ ∗V − ∗Vfin and that L󸀠󸀠 ⊊ K. We choose p󸀠 ∈ ∗H+L󸀠󸀠 in such a way that

ξℓ(p󸀠 + p + u) ≫ ξk(p󸀠 + p + u) holds for all ℓ ∈ L󸀠󸀠, all k ∈ K − L󸀠󸀠 and all u ∈ ∗Vfin.
5 Thus Kp+p󸀠 ⊆ L󸀠󸀠, and

∗νL󸀠󸀠 (p − u) − ∗νL󸀠󸀠 (p) = ∗νL󸀠󸀠 (p + p󸀠 − u) − ∗νL󸀠󸀠 (p + p󸀠) = ∗ν(p + p󸀠 − u) − ∗ν(p + p󸀠)
holds for all u ∈ ∗Vfin. Therefore Kp+p󸀠 = L󸀠 byRemark 6.12, and thus L󸀠󸀠 ⊇ L󸀠 ⊇ L.We decompose p+p󸀠 = p1+p2,
with p1 ∈ ∗H+L󸀠 and p2 ∈ ∗Vfin as in Lemma 6.10, and we put w = std(p2). Then w + v = q + q1 + q2 for some

v ∈ H󸀠L and hence

p2 + v ∈ ∗D = q + ∗Bε(0) + ∗(H+L )
as in the previous case. Moreover, p1 − v ∈ ∗H+L󸀠 ⊆ ∗(H+L ). Thus p + p󸀠 ∈ ∗D and therefore p ∈ ∗D + HL󸀠󸀠 . Again,

this is a contradiction. This last case finishes the proof. �

Theorem 6.24. The sets U(L, ε, q), for ε > 0, q ∈ V and L ∈ Σ ∪ {K}, form a basis for the topology imposed on

⨆{VL | L ∈ Σ ∪ {K}} by the bijection Φ.
Proof. By Proposition 6.23 the sets U(L, q, ε) are open and by Lemma 6.22 the sets containing a given point form

a neighborhood basis of this point. �
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Corollary 6.25. Let p ∈ V. Then the set

{U(L, ε, p + q) | q ∈ H+L and ε > 0}
is a neighborhood basis of the point p + HL ∈ VL in⨆{VL | L ∈ Σ ∪ {K}}, in the topology imposed by Φ.
Proof. Assume first that p = 0. Then 0 ∈ q+Bε(0)+H+L +HL = Bε(0)+HL , hence each of these open sets contains

the point HL ∈ VL . By Lemma 6.22, these sets form a neighborhood basis of the point. The general claim follows

now by translation by p. �

Corollary 6.26. Let (pn)n∈ℕ be a sequence in V. Then the sequence of normalized horofunctions
u 󳨃󳨀→ ν(pn − u) − ν(pn)

converges to the normalized horofunction

u 󳨃󳨀→ νL(p − u) − ν(p),
for L ∈ Σ ∪ {K} and p ∈ V if and only if for each q ∈ H+L , we have

lim
n→∞

d(pn , p + q + H+L ) = 0.

Proof. We have U(L, ε, p + q) ∩ V = p + q + Bε(0) + H+L . �

This yields in particular another proof of Proposition 6.20.

Corollary 6.27. For L ∈ Σ ∪ {K}, the closure of VL in ⨆{VL | L ∈ Σ ∪ {K}}, in the topology imposed by Φ, is

⨆{VL󸀠 | L󸀠 ∈ Σ ∪ {K} with L ⊇ L󸀠}.
The combinatorial structure of the stratification of V̂ in Theorem 6.17, with respect to the closure operation,

is therefore poset-isomorphic to the poset (Σ ∪ {K}, ⊆). This poset, in turn, is anti-isomorphic to the poset of all

proper faces of B, including the empty face.

Now we show that there is a homeomorphism between V̂ and the dual polyhedron B∨ of B. We use gener-

alized moment maps, similarly to [11; 18]. To construct such a homeomorphism we define auxiliary maps. For

L ∈ Σ ∪ {K} we put

aL(p) = ∑
k∈L

exp(ξk(p))ξk
bL(p) = ∑

k∈L

exp(ξk(p))

cL(p) = aL

bL
.

Remark 6.28. We note the following.

(i) The Taylor expansion of bL(p + tv) at the point p is

bL(p + tv) = ∑k∈L exp(ξk(p))(1 + tξk(v) + 1
2 t

2ξk(v)2 + . . . ).
Hence the derivative of bL at p is

DbL(p)(v) = aL(p)(v)
and the Hessian of bL at p is the quadratic form

HbL(p)(v) = ∑
k∈L

exp(ξk(p))ξk(v)2.

(ii) Therefore cL(p) is the derivative of the map

fL(p) = log(bL(p)).
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(iii) The image of cL is contained in the convex hull B∨L of {ξk | k ∈ L}, which is a face in the dual polyhedron

B∨ ⊆ V∨.

(iv) If v ∈ HL , then cL(p + v) = cL(p), because aL(p + v) = exp(ξL(v))aL(p) and bL(p + v) = exp(ξℓ(v))bL(v),
for any choice of ℓ ∈ L.

(v) Since V 󳨀→ VL is an open map, the map VL 󳨃󳨀→ V∨, p + HL 󳨃󳨀→ cL(p) is continuous.
Lemma 6.29. Let L ∈ Σ ∪ {K}. Then the map p + HL 󳨃󳨀→ cL(p) is injective and open on VL.
Proof. LetWL ⊆ V be a linear subspace such that V = WL ⊕ HL . We claim that

(cL(q) − cL(p))(q − p) > 0

holds for all p, q ∈ WL with p ̸= q. This will clearly show that cL is injective onWL . The Hessian of the map fL is

HfL(p)(v) = bL(p)HbL(p)(v) − DbL(p)(v)2
bL(p)2 .

We claim that this quadratic form is positive definite. We put ek = exp(ξk(p)) for short, and we have to show

that

∑
k,ℓ∈L

ekeℓξk(v)2 > ∑
k,ℓ∈L

ekeℓξk(v)ξℓ(v)

holds for all v ̸= 0. Equivalently, we have to show for v ̸= 0 that

∑
(k,ℓ)∈M

ekeℓ(ξℓ(v)2 + ξk(v)2) > ∑
(k,ℓ)∈M

2ekeℓξℓ(v)ξk(v), (8)

where M = {(k, ℓ) ∈ L × L | k < ℓ}. Young’s Inequality says that x2 + y2 ≥ 2xy, with equality if and only if x = y.

Hence the left-hand side of Inequality (8) is not smaller than the right-hand side. If wewould have equality, then

we would have ξk(v) = ξℓ(v) for all k, ℓ ∈ L and thus v = 0. Therefore the Hessian of fL is positive definite. This

implies by convexity that

(DfL(q) − DfL(p))(q − p) > 0

holds for all p, q ∈ WL with p ̸= q, see e. g. [27] Thm. 2.14. This follows also directly, since

(DfL(q) − DfL(p))(q − p) =
1

∫
0

HfL((1 − t)p + tq)(q − p)dt.

Since HfL is positive definite, the derivative DcL(p) of cL has rank dim(WL) = dim(VL) at every point p ∈ WL .

Hence cL is an open map onWL ≅ VL . �

Definition 6.30. We define a map

c : ⨆{VL | L ∈ Σ ∪ {K}} 󳨃󳨀→ B∨

by putting

c(p + HL) = cL(p) for L ∈ Σ and c(p) = cK(p) for p ∈ V.

Lemma 6.31. The map c is continuous.

Proof. Let q0 ∈ V and L ∈ Σ ∪ {K}. We show that c is continuous at the point

q0 + HL ∈ ⨆{VL | L ∈ Σ ∪ {K}}.
To this end, we show that given a real number s > 0, we can choose a neighborhood U(L, ε, q0 + q) of q0 + HL

in such a way that ||c(p + HL󸀠 ) − c(q0 + HL)|| < s holds for all p + HL󸀠 ∈ U(L, ε, q0 + q). Here ||.|| is the dual

Euclidean norm on V∨ determined by the Euclidean norm ||.|| on V .

We choose ε > 0 in such a way that

||aL(q0 + q1) − aL(q0)||bL(q0)
bL(q0)2 < s

8
(9)
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||aL(q0)|| |bL(q0 + q1) − bL(q0)|
bL(q0)2 < s

8
(10)

and

bL(q0) < 2bL(q0 + q1) (11)

hold for all q1 ∈ Bε(0). Then we choose ℓ ∈ L and q ∈ H+L in such a way that

μ

bL(q0)2 ∑
j∈K

exp(ξj(q0 + q1) − (ξℓ − ξj)(q)) ≤ s

8
(12)

holds for all q1 ∈ Bε(0), where

μ = max{||aL(q0)||, ||ξ1||bL(q0), . . . , ||ξm||bL(q0)}.
Suppose that p + HL󸀠 ∈ U(L, ε, q0 + q). Then L󸀠 ⊇ L and

p + v = q0 + q1 + q2 + q,

for some v ∈ HL󸀠 , q1 ∈ Bε(0) and q2 ∈ H+L . We compute

bL󸀠 (p + v) = ∑
k∈L

exp(ξk(q0 + q1 + q2 + q)) + ∑
j∈L󸀠−L

exp(ξj(q0 + q1 + q2 + q))

= exp(ξℓ(q2 + q))( ∑
k∈L

exp(ξk(q0 + q1)) + ∑
j∈L󸀠−L

exp(ξj(q0 + q1) − (ξℓ − ξj)(q2 + q)))

= exp(ξℓ(q2 + q))(bL(q0 + q1) + ∑
j∈L󸀠−L

exp(ξj(q0 + q1) − (ξℓ − ξj)(q2 + q))).

We expand aL󸀠 similarly and obtain

cL󸀠 (p) = cL󸀠 (p + v) = aL(q0 + q1) + a󸀠

bL(q0 + q1) + b󸀠
,

with

a󸀠 = ∑
j∈L󸀠−L

exp(ξj(q0 + q1) − (ξℓ − ξj)(q2 + q))ξj and b󸀠 = ∑
j∈L󸀠−L

exp(ξj(q0 + q1) − (ξℓ − ξj)(q2 + q)).

We note that ||a󸀠||bL(q0)
bL(q0)2 < s

8
and

||aL(q0)||b󸀠
bL(q0)2 < s

8

by Inequality (12) and that
1

2
bL(q0)2 ≤ bL(q0)(bL(q0 + q1) + b󸀠)

by Inequality (11). Hence we have, by the Inequalities (9) and (10),

󵄩󵄩󵄩󵄩cL󸀠 (p) − cL(q0)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
aL(q0 + q1) + a󸀠

bL(q0 + q1) + b󸀠
− aL(q0)
bL(q0)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= ||(aL(q0 + q1) + a󸀠)bL(q0) − aL(q0)(bL(q0 + q1) + b󸀠)||

bL(q0)(bL(q0 + q1) + b󸀠)
≤ 2

||(aL(q0 + q1) + a󸀠)bL(q0) − aL(q0)(bL(q0 + q1) + b󸀠)||
bL(q0)2

≤ 2
||(aL(q0 + q1) + a󸀠 − aL(q0)||bL(q0)

bL(q0)2 + 2
||aL(q0)||(bL(q0 + q1) + b󸀠 − bL(q0))

bL(q0)2
≤ 2

(||(aL(q0 + q1) − aL(q0)||bL(q0)
bL(q0)2 + 2

||a󸀠||bL(q0)
bL(q0)2

+ 2
||aL(q0)||(|bL(q0 + q1) − bL(q0)|)

bL(q0)2 + 2
||aL(q0)||b󸀠
bL(q0)2

≤ s. �
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We need at this stage a topological result.

Lemma 6.32. Let f : (X, A) 󳨀→ (Y, B) be a continuous map of compact topological pairs. Assume that A = f −1(B)
and that the restriction f : X −A 󳨀→ Y − B is injective and open. If X −A and Y − B are homeomorphic toℝn, then

the restriction f : X − A 󳨀→ Y − B is surjective.

Proof. We consider the induced map ̄f : X/A 󳨀→ Y/B. Both spaces are compact (they are Hausdorff since X

and Y are regular) and may therefore be identified with the Alexandrov compactifications of X − A and Y − B,

respectively. Hence X/A ≅ 𝕊n ≅ Y/B. It suffices to show that ̄f is surjective. Let p ∈ X − A and q = f(p).
Since f is a homeomorphism near p, we obtain by excision in singular homology an isomorphism ̄f∗ :

Hn(X/A, (X − {p})/A) 󳨀→ Hn(Y/B, (Y − {q})/B). From the long exact homology sequence we obtain an iso-

morphism ̄f∗ : Hn(X/A) 󳨀→ Hn(Y/B). Thus ̄f has degree ±1 and is therefore surjective. Indeed, if ̄f was not

surjective, then ̄f would factor through a map X/A 󳨀→ Y/B − {y} 󳨀→ Y/B, for some y ∈ Y/B. But Y/B − {y} is
contractible, whence ̄f∗ = 0. On the other hand, ̄f∗ ̸= 0 because Hn(X/A) ≅ ℤ. Hence ̄f is surjective. �

For L ∈ Σ∪{K}we let B∨L denote the face of B
∨whose vertex set is {ξℓ | ℓ ∈ L}, andUL ⊆ B∨L the corresponding

open face.

Theorem 6.33. The map c is a homeomorphism between V̂ and B∨ that maps VL homeomorphically onto UL, for

each L ∈ Σ ∪ {K}.
Proof. The restriction of the continuousmap c to any stratum VL is injective by Lemma 6.29. Since cL is an open

map, c(VL) is contained in the open face UL ⊆ B∨L . These open faces partition B∨ and thus c is injective. Given

L ∈ Σ ∪ {K}, let A denote the union of all VL󸀠 with L󸀠 ⊊ L, and put X = VL ∪ A. Then (X, A) is a compact pair. Let

M denote the union of all proper faces of the face B∨L . Then (B∨L ,M) is also a compact pair, and c restricts to a

map of pairs f : (X, A) 󳨃󳨀→ (B∨L ,M). The assumptions of Lemma 6.32 are satisfied and thus f is surjective.

Hence c is surjective. Being a continuous bijection between compact spaces, it is a homeomorphism. �
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