A note on commutators in compact semisimple Lie algebras

Linus Kramer
Dedicated to Jacques Tits

Given any two elements A, B in a compact semisimple Lie algebra, we show that there exist elements X, Y, Z such that

$$
A=[X, Y] \quad \text { and } \quad B=[X, Z] .
$$

The proof uses Cartan subalgebras and their root systems. We also review some related problems about Cartan subalgebras in compact semisimple Lie algebras.

Gotô's commutator theorem [1949; Hofmann and Morris 2020, Corollary 6.56] states that in a compact connected semisimple Lie group G, every element is a commutator. There is an infinitesimal version of Gotô's theorem which says that every element in a compact semisimple Lie algebra \mathfrak{g} is a commutator, see [Hofmann and Morris 2007, Theorem A3.2]. The proof given in loc. cit., which uses Kostant's convexity theorem, is attributed to K.-H. Neeb. Other proofs were given later by D'Andrea and Maffei [2016] and Malkoun and Nahlus [2016; 2017]. We prove the following somewhat stronger result by elementary means.

Theorem 1. Let \mathfrak{g} be a semisimple compact Lie algebra and let $A, B \in \mathfrak{g}$. Then there is a regular element $X \in \mathfrak{g}$ with

$$
A, B \in[X, \mathfrak{g}]=\operatorname{ad}(X)(\mathfrak{g})
$$

Our Key Lemma 6, which is the main step of the proof, uses a variant of Jacobi's method, see [Kleinsteuber et al. 2004; Malkoun and Nahlus 2016, Appendix B] ${ }^{1}$ and [Wildberger 1993]. In the course of the proof we show in Corollary 7 that every linear subspace $W \subseteq \mathfrak{g}$ of codimension at most 2 contains a Cartan subalgebra.

[^0]We refer to the books [Adams 1969; Bröcker and tom Dieck 1985; Helgason 1978; Hilgert and Neeb 2012; Hofmann and Morris 2020; Tits 1983] for general facts about semisimple compact Lie algebras.

Definition 2. A finite dimensional real semisimple Lie algebra \mathfrak{g} is called compact if its Killing form $\langle-,-\rangle$ is negative definite. In this case its adjoint group

$$
G=\langle\exp (\operatorname{ad}(X)) \mid X \in \mathfrak{g}\rangle
$$

is compact and

$$
|X|=\sqrt{-\langle X, X\rangle}
$$

is a G-invariant euclidean norm on \mathfrak{g}. In what follows, orthogonality in \mathfrak{g} will always refer to the Killing form. The centralizer of $A \in \mathfrak{g}$ is the Lie subalgebra

$$
\operatorname{Cen}_{\mathfrak{g}}(A)=\{X \in \mathfrak{g} \mid[X, A]=0\} .
$$

Lemma 3. Let \mathfrak{g} be a compact semisimple Lie algebra and let $A \in \mathfrak{g}$. Then \mathfrak{g} decomposes (as a $\mathrm{Cen}_{\mathfrak{g}}(A)$-module) orthogonally as

$$
\mathfrak{g}=\operatorname{Cen}_{\mathfrak{g}}(A) \oplus[A, \mathfrak{g}]
$$

Proof. Let $X, Y \in \mathfrak{g}$. If X centralizes A, then

$$
\langle X,[A, Y]\rangle=\langle[X, A], Y\rangle=0,
$$

whence $X \in[A, \mathfrak{g}]^{\perp}$. Conversely, if $X \in[A, \mathfrak{g}]^{\perp}$, then

$$
0=\langle X,[A, Y]\rangle=\langle[X, A], Y\rangle
$$

holds for all Y and thus $[X, A]=0$. This shows that $\operatorname{Cen}_{\mathfrak{g}}(A)=[A, \mathfrak{g}]^{\perp}$. Since the Killing form is negative definite, $\mathfrak{g}=\operatorname{Cen}_{\mathfrak{g}}(A) \oplus[A, \mathfrak{g}]$. The Jacobi identity shows that $[X,[A, \mathfrak{g}]] \subseteq[A, \mathfrak{g}]$ for $X \in \operatorname{Cen}_{\mathfrak{g}}(A)$, hence this is a decomposition of \mathfrak{g} into $\operatorname{Cen}_{\mathfrak{g}}(A)$-modules.

We recall some facts about the structure of compact semisimple Lie algebras, which can be found in [Adams 1969; Bröcker and tom Dieck 1985; Helgason 1978; Hilgert and Neeb 2012; Hofmann and Morris 2020].

Facts 4. Let \mathfrak{g} be a compact semisimple Lie algebra. We call a maximal abelian subalgebra \mathfrak{h} of \mathfrak{g} a Cartan subalgebra. All Cartan subalgebras in \mathfrak{g} are conjugate under the action of G, see [Helgason 1978, Theorem V.6.4] or [Hofmann and Morris 2020, Theorem 6.27]. The dimension of \mathfrak{h} is called the rank of \mathfrak{g}. Let $\mathfrak{h} \subseteq \mathfrak{g}$ be a Cartan subalgebra. Then

$$
T=\{\exp (\operatorname{ad}(H)) \mid H \in \mathfrak{h}\}
$$

is a maximal torus in G. As a T-module, the Lie algebra \mathfrak{g} decomposes as an orthogonal direct sum of irreducible T-modules,

$$
\mathfrak{g}=\mathfrak{h} \oplus \sum_{\alpha \in \Phi^{+}} L_{\alpha}
$$

see [Hofmann and Morris 2020, Chapter 6]. The positive real roots $\alpha \in \Phi^{+}$are certain nonzero linear forms $\alpha: \mathfrak{h} \rightarrow \mathbb{R}$. Each T-module L_{α} is 2-dimensional and carries a complex structure \boldsymbol{i} such that $L_{\alpha} \cong \mathbb{C}$ and

$$
\exp (\operatorname{ad}(H))(X)=\exp (2 \pi i \alpha(H)) X
$$

holds for all $H \in \mathfrak{h}, \alpha \in \Phi^{+}$and $X \in L_{\alpha}$. Hence $H \in \mathfrak{h}$ acts on L_{α} as

$$
\operatorname{ad}(H)(X)=[H, X]=2 \pi i \alpha(H) X .
$$

The positive real roots separate the points in \mathfrak{h}, i.e., $\bigcap\left\{\operatorname{ker}(\alpha) \mid \alpha \in \Phi^{+}\right\}=\{0\}$. The centralizer of an element $H \in \mathfrak{h}$ is therefore

$$
\operatorname{Cen}_{\mathfrak{g}}(H)=\mathfrak{h} \oplus \sum_{\alpha(H)=0} L_{\alpha}
$$

Hence $\operatorname{Cen}_{\mathfrak{g}}(H)=\mathfrak{h}$ holds if and only if $\alpha(H) \neq 0$ for all positive real roots α. Such elements H are called regular.

Lemma 5. Let \mathfrak{g} be a compact semisimple Lie algebra, with a Cartan subalgebra \mathfrak{h} and the corresponding decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \sum_{\alpha \in \Phi^{+}} L_{\alpha}
$$

as above, and let $\gamma \in \Phi^{+}$be a positive real root. Let $H_{\gamma} \in \mathfrak{h}$ be a nonzero vector orthogonal to $\operatorname{ker}(\gamma)$. Then

$$
\mathfrak{m}_{\gamma}=\mathbb{R} H_{\gamma} \oplus L_{\gamma} \cong \mathfrak{s o}(3)
$$

is the Lie algebra generated by L_{γ}.
Proof. We let \mathfrak{m}_{γ} denote the Lie algebra generated by L_{γ}. The centralizer of $\operatorname{ker}(\gamma)$ is $\mathfrak{h} \oplus L_{\gamma}$, whence $\mathfrak{m}_{\gamma} \subseteq \mathfrak{h} \oplus L_{\gamma}$. Let $X \in L_{\gamma}$ be an element of norm $|X|=1$. Then $X, \boldsymbol{i} X$ is an orthonormal basis for L_{γ}, and we put $Y=[X, \boldsymbol{i} X]$. Then

$$
\langle X, Y\rangle=\langle[X, X], \boldsymbol{i} X\rangle=0=\langle X,[\boldsymbol{i} X, \boldsymbol{i} X]\rangle=\langle Y, \boldsymbol{i} X\rangle,
$$

and thus $Y \in \mathfrak{h}$. For $H \in \mathfrak{h}$ we have

$$
\langle H, Y\rangle=\langle[H, X], \boldsymbol{i} X\rangle=2 \pi \gamma(H)\langle\boldsymbol{i} X, \boldsymbol{i} X\rangle=-2 \pi \gamma(H),
$$

hence Y is nonzero and orthogonal to $\operatorname{ker}(\gamma)$. Thus $H_{\gamma}=t Y$ for some nonzero real t. Moreover, $\langle Y, Y\rangle=-2 \pi \gamma(Y)<0$. If we put $\varrho=1 / \sqrt{2 \pi \gamma(Y)}$ and $U=\varrho X$, $V=\varrho \boldsymbol{i} X, W=\varrho^{2} Y$, then

$$
[U, V]=W, \quad[V, W]=U, \quad[W, U]=V
$$

and thus $\mathfrak{m}_{\gamma} \cong \mathfrak{s o}$ (3).
Key Lemma 6. Let \mathfrak{g} be a compact semisimple Lie algebra and let $A, B \in \mathfrak{g}$. Suppose that A is orthogonal to some Cartan subalgebra. Then there exists a Cartan subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ which is orthogonal both to A and to B.

Proof. Among all Cartan subalgebras \mathfrak{h} orthogonal to A, we choose one for which the orthogonal projection B_{0} of B to \mathfrak{h} has minimal length $r=\left|B_{0}\right|$. We claim that $r=0$. Assume towards a contradiction that this is false. We decompose \mathfrak{g} orthogonally as

$$
\mathfrak{g}=\mathfrak{h} \oplus \sum_{\alpha \in \Phi^{+}} L_{\alpha} .
$$

Accordingly we have $A=\sum_{\alpha} A_{\alpha}$ and $B=B_{0}+\sum_{\alpha} B_{\alpha}$, with $A_{\alpha}, B_{\alpha} \in L_{\alpha}$. By assumption, $B_{0} \neq 0$. Hence there is a positive real root $\gamma \in \Phi^{+}$with $\gamma\left(B_{0}\right) \neq 0$. We decompose B_{0} further in \mathfrak{h} as an orthogonal sum $B_{0}=B_{00}+H_{\gamma}$, where $\gamma\left(B_{00}\right)=0$ and $H_{\gamma} \neq 0$. Then

$$
\mathfrak{h}=\mathbb{R} H_{\gamma} \oplus \operatorname{ker}(\gamma)
$$

and

$$
\mathfrak{m}_{\gamma}=\mathbb{R} H_{\gamma} \oplus L_{\gamma} \cong \mathfrak{s o}(3)
$$

by Lemma 5. In the 3-dimensional Lie algebra $\mathfrak{m}_{\gamma} \cong \mathfrak{s o}$ (3) there is a 1-dimensional subspace $V \subseteq \mathfrak{m}_{\gamma}$ which is orthogonal to H_{γ} and to A_{γ}. The adjoint representation of $\mathrm{SO}(3)$ on its Lie algebra $\mathfrak{s o}(3)$ is transitive on the 1-dimensional subspaces. Hence there is an element $g \in G$ of the form $g=\exp (\operatorname{ad}(Z))$, for some $Z \in \mathfrak{m}_{\gamma}$, with $g\left(H_{\gamma}\right) \in V$. Moreover, g fixes $\operatorname{ker}(\gamma)$ pointwise. The Cartan subalgebra $\mathfrak{h}^{\prime}=g(\mathfrak{h})=V \oplus \operatorname{ker}(\gamma)$ is then orthogonal to A. The projection of B to \mathfrak{h}^{\prime} is B_{00} and has therefore strictly smaller length than B_{0}. This is a contradiction.
Corollary 7. Let \mathfrak{g} be a compact semisimple Lie algebra and let $A, B \in \mathfrak{g}$. Then $A^{\perp} \cap B^{\perp}$ contains a Cartan subalgebra \mathfrak{h}.
Proof. We apply Key Lemma 6 to 0 and A to obtain a Cartan subalgebra which is orthogonal to A. Another application of Key Lemma 6 to A and B then yields a Cartan subalgebra \mathfrak{h} which is orthogonal to both A and B.

Proof of Theorem 1. Let \mathfrak{h} be a Cartan subalgebra which is orthogonal to A and to B and let $X \in \mathfrak{h}$ be a regular element. Then $\mathfrak{h}=\operatorname{Cen}_{\mathfrak{g}}(X)$ and thus $A, B \in[X, \mathfrak{g}]$ by Lemma 3.

The proofs above made strong use of the assumption that \mathfrak{g} is a compact semisimple Lie algebra. The fact that the Killing form is (negative) definite was used at several places in order to find orthogonal decompositions. Nevertheless, I conjecture that a similar result holds for other semisimple Lie algebras.

Further remarks and an open problem

We close with some remarks and an open problem. Suppose that \mathfrak{h} is a Cartan subalgebra in the compact Lie algebra \mathfrak{g}. If we pick nonzero elements $Z_{\alpha} \in L_{\alpha}$, for every positive root α, and if we put $Z=\sum_{\alpha \in \Phi^{+}} Z_{\alpha}$, then $\mathfrak{h} \cap \operatorname{Cen}_{\mathfrak{g}}(Z)=0$. Since $\operatorname{Cen}_{\mathfrak{g}}(Z)$ contains a Cartan subalgebra \mathfrak{h}^{\prime}, this shows that there exists a Cartan subalgebra \mathfrak{h}^{\prime} which intersects \mathfrak{h} trivially. However, one can do better. The following is shown in [Malkoun and Nahlus 2017].

Theorem 8 (Malkoun-Nahlus). Let \mathfrak{h} be a Cartan subalgebra in a compact semisimple Lie algebra \mathfrak{g}. Then there exists a Cartan subalgebra $\mathfrak{h}^{\prime} \subseteq \mathfrak{h}^{\perp}$.

We reproduce the beautiful proof from [Malkoun and Nahlus 2017].
Proof. We may assume that $\mathfrak{g} \neq 0$. Let w be a Coxeter element in the Weyl group $W=N / T$, where T is the maximal torus corresponding to \mathfrak{h}, and $N \subseteq G$ is the normalizer of T. Then W acts as a finite reflection group on \mathfrak{h}, and 1 is not an eigenvalue of w in this action, see [Humphreys 1990, Section 3.16]. We choose $X \in \mathfrak{g}$ with $w=\exp (\operatorname{ad}(X)) T$ and we claim that every Cartan subalgebra \mathfrak{h}^{\prime} containing X is orthogonal to \mathfrak{h}. The linear endomorphism $\exp (\operatorname{ad}(X))-\mathrm{id}_{\mathfrak{g}}$ of \mathfrak{g} maps \mathfrak{h} onto \mathfrak{h}, and

$$
\exp (\operatorname{ad}(X))-\mathrm{id}_{\mathfrak{g}}=\sum_{k=1}^{\infty} \frac{1}{k!} \operatorname{ad}(X)^{k}=\operatorname{ad}(X) \sum_{k=1}^{\infty} \frac{1}{k!} \operatorname{ad}(X)^{k-1}
$$

In particular, $\operatorname{ad}(X)(\mathfrak{g}) \supseteq \mathfrak{h}$. Thus $\operatorname{Cen}_{\mathfrak{g}}(X) \subseteq \mathfrak{h}^{\perp}$ by Lemma 3 .
Christoph Böhm has explained to me the following remarkable result.
Theorem 9. The orthogonal Lie algebras $\mathfrak{s o}(m)$, for $m \geq 3$, can be decomposed as orthogonal direct sums of Cartan subalgebras.
Proof. The rank of $\mathfrak{s o}(m)$ is $r=\left\lfloor\frac{1}{2} m\right\rfloor$, and the dimension of $\mathfrak{s o}(m)$ is $n=\frac{1}{2} m(m-1)$. We let e_{1}, \ldots, e_{m} denote the standard basis of \mathbb{R}^{m}, and we put $X_{i, j}=e_{i} e_{j}^{T}-e_{j} e_{i}^{T}$. Then the $X_{i, j}$ with $i<j$ form an orthonormal basis of $\mathfrak{s o}(m)$. Moreover, two distinct basis elements $X_{i, j}, X_{k, \ell}$ commute if and only if $\{i, j\} \cap\{k, \ell\}=\varnothing$. The standard Cartan subalgebra for $\mathfrak{s o}(m)$ is spanned by $X_{1,2}, X_{3,4}, \ldots, X_{2 r-1,2 r}$. The claim follows if we can partition the set \mathcal{T}_{m} of all two-element subsets of $\{1, \ldots, m\}$ into n / r subsets consisting of r pairwise disjoint two-element subsets. The latter is possible by the scheduling algorithm for round robin tournaments.

An explicit construction of such a partition of \mathcal{T}_{m} can be described as follows, see [van Lint and Wilson 1992, Example 36.2]. For odd $m \geq 3$ put

$$
M_{k}=\{\{i, j\} \mid i<j \text { and } i+j \equiv 2 k(\bmod m)\}
$$

for $k=1, \ldots, m$. The M_{k} partition \mathcal{T}_{m} into m subsets of cardinality $\frac{1}{2}(m-1)$, each consisting of pairwise disjoint two-element subsets. From this we obtain also such a partition of \mathcal{T}_{m+1} by putting $M_{k}^{\prime}=M_{k} \cup\{\{k, m+1\}\}$.

We cannot expect such a result for general compact semisimple Lie algebras. For example, the compact semisimple Lie algebra $\mathfrak{g}=\mathfrak{s o}(5) \oplus \mathfrak{s o}$ (3) has dimension 13, hence such a decomposition cannot exist. The following question is thus very natural.
Problem 10. Which compact semisimple Lie algebras \mathfrak{g} can be decomposed as an orthogonal sum of Cartan subalgebras?

The monograph [Kostrikin and Tiep 1994] is devoted to the complex version of this problem.

For the Lie algebras $\mathfrak{s u}(m)$, Problem 10 can be rephrased as follows, using the Veronese embedding of $\mathbb{C} \mathrm{P}^{m-1}$. To each unit vector $u \in \mathbb{C}^{m}$ we may assign the selfadjoint projector

$$
P(u)=u u^{*},
$$

where $*$ denotes the conjugate transpose, and its traceless part

$$
P_{0}(u)=u u^{*}-\frac{1}{m} \mathrm{id}_{\mathbb{C}^{m}}
$$

We note that $P(u z)=P(u)$ holds for all complex numbers z with $|z|=1$. Suppose that u_{1}, \ldots, u_{m} is an orthonormal basis of \mathbb{C}^{m}. Then the projectors $P\left(u_{1}\right), \ldots, P\left(u_{m}\right)$ commute, and the matrices $\boldsymbol{i} P_{0}\left(u_{1}\right), \ldots, \boldsymbol{i} P_{0}\left(u_{m}\right)$ span a Cartan subalgebra \mathfrak{h} in $\mathfrak{s u}(m)$. Conversely, the Cartan subalgebra \mathfrak{h} determines the set of subspaces $u_{1} \mathbb{C}, \ldots, u_{m} \mathbb{C}$ uniquely, since these are the fixed points of the maximal torus $T \subseteq \operatorname{PSU}(m)$ with Lie algebra \mathfrak{h} in its action on the complex projective space $\mathbb{C P}^{m-1}$. Hence \mathfrak{h} determines the orthonormal basis u_{1}, \ldots, u_{m} up to a permutation of vectors, and up to multiplication of the basis vectors by complex numbers of norm 1.

The Killing form for $\mathfrak{s u}(m)$ is given by $\langle X, Y\rangle=2 m \operatorname{tr}(X Y)$. The Cartan subalgebras \mathfrak{h} and \mathfrak{h}^{\prime} provided by two orthonormal bases $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}$ are thus orthogonal if and only if

$$
\left|\left\langle u_{k}, v_{\ell}\right\rangle\right|^{2}=\frac{1}{m}
$$

holds for all k, ℓ. In this case, the two bases are called mutually unbiased. Such bases were considered in quantum mechanics by J. Schwinger [1960]. The construction of mutually unbiased bases has interesting connections to finite geometry, see [Kantor

2012; 2017; Thas 2016; 2018]. It is an open problem in which dimensions m there exist $m+1$ pairwise mutually unbiased orthonormal bases. They are known to exist if m is a prime power [Wootters and Fields 1989; Klappenecker and Rötteler 2004]. As we have seen, this question is equivalent to the existence of an orthogonal decomposition of $\mathfrak{s u}(m)$ into Cartan subalgebras. There is a related problem about maximal abelian subalgebras in operator theory, see [Haagerup 1997]. It is presently an open problem if $\mathfrak{s u}(6)$ admits an orthogonal decomposition into seven Cartan subalgebras.

Acknowledgments. I thank Christoph Böhm, Theo Grundhöfer, Karl Heinrich Hofmann, Karl-Hermann Neeb and the referee for helpful remarks.

References

[Adams 1969] J. F. Adams, Lectures on Lie groups, W. A. Benjamin, New York, 1969. MR Zbl
[Bröcker and tom Dieck 1985] T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics 98, Springer, 1985. MR Zbl
[D'Andrea and Maffei 2016] A. D'Andrea and A. Maffei, "Commutators of small elements in compact semisimple groups and Lie algebras", J. Lie Theory 26:3 (2016), 683-690. MR Zbl
[Gotô 1949] M. Gotô, "A theorem on compact semi-simple groups", J. Math. Soc. Japan 1 (1949), 270-272. MR Zbl
[Haagerup 1997] U. Haagerup, "Orthogonal maximal abelian $*$-subalgebras of the $n \times n$ matrices and cyclic n-roots", pp. 296-322 in Operator algebras and quantum field theory (Rome, 1996), edited by S. Doplicher et al., Int. Press, Cambridge, MA, 1997. MR Zbl
[Helgason 1978] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics 80, Academic Press, New York, 1978. MR Zbl
[Hilgert and Neeb 2012] J. Hilgert and K.-H. Neeb, Structure and geometry of Lie groups, Springer, 2012. MR Zbl
[Hofmann and Morris 2007] K. H. Hofmann and S. A. Morris, The Lie theory of connected pro-Lie groups: a structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups, EMS Tracts in Mathematics 2, European Mathematical Society (EMS), Zürich, 2007. MR Zbl
[Hofmann and Morris 2020] K. H. Hofmann and S. A. Morris, The structure of compact groups: a primer for the student - a handbook for the expert, 4th ed., De Gruyter Studies in Mathematics 25, De Gruyter, Berlin, 2020. MR Zbl
[Humphreys 1990] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, 1990. MR Zbl
[Kantor 2012] W. M. Kantor, "MUBs inequivalence and affine planes", J. Math. Phys. 53:3 (2012), art. id. 032204. MR Zbl
[Kantor 2017] W. M. Kantor, "On maximal symplectic partial spreads", Adv. Geom. 17:4 (2017), 453-471. MR Zbl
[Klappenecker and Rötteler 2004] A. Klappenecker and M. Rötteler, "Constructions of mutually unbiased bases", pp. 137-144 in Finite fields and applications, edited by G. L. Mullen et al., Lecture Notes in Comput. Sci. 2948, Springer, 2004. MR Zbl
[Kleinsteuber et al. 2004] M. Kleinsteuber, U. Helmke, and K. Hüper, "Jacobi's algorithm on compact Lie algebras", SIAM J. Matrix Anal. Appl. 26:1 (2004), 42-69. MR Zbl
[Kostrikin and Tiep 1994] A. I. Kostrikin and P. H. Tiep, Orthogonal decompositions and integral lattices, De Gruyter Expositions in Mathematics 15, De Gruyter, Berlin, 1994. MR Zbl
[van Lint and Wilson 1992] J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge University Press, 1992. MR Zbl
[Malkoun and Nahlus 2016] J. Malkoun and N. Nahlus, "Commutators and Cartan subalgebras in Lie algebras of compact semisimple Lie groups", preprint, 2016. arXiv 1602.03479
[Malkoun and Nahlus 2017] J. Malkoun and N. Nahlus, "Commutators and Cartan subalgebras in Lie algebras of compact semisimple Lie groups", J. Lie Theory 27:4 (2017), 1027-1032. MR Zbl
[Schwinger 1960] J. Schwinger, "Unitary operator bases", Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 570-579. MR Zbl
[Thas 2016] K. Thas, "Unextendible mutually unbiased bases (after Manduam, Bandyopadhyay, Grassl and Wootters)", Entropy 18:11 (2016), art. id. 395. MR
[Thas 2018] K. Thas, "On the mathematical foundations of mutually unbiased bases", Quantum Inf. Process. 17:2 (2018), art. id. 25. MR Zbl
[Tits 1983] J. Tits, Liesche Gruppen und Algebren, Springer, 1983. MR Zbl
[Wildberger 1993] N. J. Wildberger, "Diagonalization in compact Lie algebras and a new proof of a theorem of Kostant", Proc. Amer. Math. Soc. 119:2 (1993), 649-655. MR Zbl
[Wootters and Fields 1989] W. K. Wootters and B. D. Fields, "Optimal state-determination by mutually unbiased measurements", Ann. Physics 191:2 (1989), 363-381. MR

Received 23 Aug 2022. Revised 21 Mar 2023.

Linus Kramer:

linus.kramer@wwu.de
Mathematisches Institut, Fachbereich Mathematik und Informatik, Universität Münster, Münster, Germany

[^0]: Funded by the Deutsche Forschungsgemeinschaft through a Polish-German Beethoven grant KR1668/11, and under Germany's Excellence Strategy EXC 2044-390685587, Mathematics Münster: Dynamics-Geometry-Structure.
 MSC2020: 22E60.
 Keywords: Lie algebra, commutator, Cartan subalgebra.
 ${ }^{1}$ Note that [Malkoun and Nahlus 2016] and [Malkoun and Nahlus 2017] differ considerably.

