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A note on commutators in compact semisimple Lie algebras

Linus Kramer

Dedicated to Jacques Tits

Given any two elements A, B in a compact semisimple Lie algebra, we show that
there exist elements X, Y, Z such that

A = [X, Y ] and B = [X, Z ].

The proof uses Cartan subalgebras and their root systems. We also review some
related problems about Cartan subalgebras in compact semisimple Lie algebras.

Gotô’s commutator theorem [1949; Hofmann and Morris 2020, Corollary 6.56]
states that in a compact connected semisimple Lie group G, every element is a
commutator. There is an infinitesimal version of Gotô’s theorem which says that
every element in a compact semisimple Lie algebra g is a commutator, see [Hofmann
and Morris 2007, Theorem A3.2]. The proof given in loc. cit., which uses Kostant’s
convexity theorem, is attributed to K.-H. Neeb. Other proofs were given later by
D’Andrea and Maffei [2016] and Malkoun and Nahlus [2016; 2017]. We prove the
following somewhat stronger result by elementary means.

Theorem 1. Let g be a semisimple compact Lie algebra and let A, B ∈ g. Then
there is a regular element X ∈ g with

A, B ∈ [X, g] = ad(X)(g).

Our Key Lemma 6, which is the main step of the proof, uses a variant of Jacobi’s
method, see [Kleinsteuber et al. 2004; Malkoun and Nahlus 2016, Appendix B]1

and [Wildberger 1993]. In the course of the proof we show in Corollary 7 that every
linear subspace W ⊆ g of codimension at most 2 contains a Cartan subalgebra.
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We refer to the books [Adams 1969; Bröcker and tom Dieck 1985; Helgason 1978;
Hilgert and Neeb 2012; Hofmann and Morris 2020; Tits 1983] for general facts
about semisimple compact Lie algebras.

Definition 2. A finite dimensional real semisimple Lie algebra g is called compact
if its Killing form ⟨−, −⟩ is negative definite. In this case its adjoint group

G = ⟨exp(ad(X)) | X ∈ g⟩

is compact and
|X | =

√
−⟨X, X⟩

is a G-invariant euclidean norm on g. In what follows, orthogonality in g will
always refer to the Killing form. The centralizer of A ∈ g is the Lie subalgebra

Ceng(A) = {X ∈ g | [X, A] = 0}.

Lemma 3. Let g be a compact semisimple Lie algebra and let A ∈ g. Then g

decomposes (as a Ceng(A)-module) orthogonally as

g = Ceng(A) ⊕ [A, g].

Proof. Let X, Y ∈ g. If X centralizes A, then

⟨X, [A, Y ]⟩ = ⟨[X, A], Y ⟩ = 0,

whence X ∈ [A, g]⊥. Conversely, if X ∈ [A, g]⊥, then

0 = ⟨X, [A, Y ]⟩ = ⟨[X, A], Y ⟩

holds for all Y and thus [X, A] = 0. This shows that Ceng(A) = [A, g]⊥. Since the
Killing form is negative definite, g = Ceng(A) ⊕ [A, g]. The Jacobi identity shows
that [X, [A, g]] ⊆ [A, g] for X ∈ Ceng(A), hence this is a decomposition of g into
Ceng(A)-modules. □

We recall some facts about the structure of compact semisimple Lie algebras,
which can be found in [Adams 1969; Bröcker and tom Dieck 1985; Helgason 1978;
Hilgert and Neeb 2012; Hofmann and Morris 2020].

Facts 4. Let g be a compact semisimple Lie algebra. We call a maximal abelian
subalgebra h of g a Cartan subalgebra. All Cartan subalgebras in g are conjugate
under the action of G, see [Helgason 1978, Theorem V.6.4] or [Hofmann and Morris
2020, Theorem 6.27]. The dimension of h is called the rank of g. Let h ⊆ g be a
Cartan subalgebra. Then

T = {exp(ad(H)) | H ∈ h}
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is a maximal torus in G. As a T -module, the Lie algebra g decomposes as an
orthogonal direct sum of irreducible T -modules,

g = h⊕

∑
α∈8+

Lα,

see [Hofmann and Morris 2020, Chapter 6]. The positive real roots α ∈ 8+ are
certain nonzero linear forms α : h → R. Each T -module Lα is 2-dimensional and
carries a complex structure i such that Lα

∼= C and

exp(ad(H))(X) = exp(2π iα(H))X

holds for all H ∈ h, α ∈ 8+ and X ∈ Lα. Hence H ∈ h acts on Lα as

ad(H)(X) = [H, X ] = 2π iα(H)X.

The positive real roots separate the points in h, i.e.,
⋂

{ker(α) | α ∈ 8+
} = {0}. The

centralizer of an element H ∈ h is therefore

Ceng(H) = h⊕

∑
α(H)=0

Lα.

Hence Ceng(H) = h holds if and only if α(H) ̸= 0 for all positive real roots α.
Such elements H are called regular.

Lemma 5. Let g be a compact semisimple Lie algebra, with a Cartan subalgebra h

and the corresponding decomposition

g = h⊕

∑
α∈8+

Lα

as above, and let γ ∈ 8+ be a positive real root. Let Hγ ∈ h be a nonzero vector
orthogonal to ker(γ ). Then

mγ = RHγ ⊕ Lγ
∼= so(3)

is the Lie algebra generated by Lγ .

Proof. We let mγ denote the Lie algebra generated by Lγ . The centralizer of ker(γ )

is h⊕ Lγ , whence mγ ⊆ h⊕ Lγ . Let X ∈ Lγ be an element of norm |X | = 1. Then
X, i X is an orthonormal basis for Lγ , and we put Y = [X, i X ]. Then

⟨X, Y ⟩ = ⟨[X, X ], i X⟩ = 0 = ⟨X, [i X, i X ]⟩ = ⟨Y, i X⟩,

and thus Y ∈ h. For H ∈ h we have

⟨H, Y ⟩ = ⟨[H, X ], i X⟩ = 2πγ (H)⟨i X, i X⟩ = −2πγ (H),
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hence Y is nonzero and orthogonal to ker(γ ). Thus Hγ = tY for some nonzero
real t . Moreover, ⟨Y, Y ⟩ = −2πγ (Y ) < 0. If we put ϱ = 1/

√
2πγ (Y ) and U = ϱX ,

V = ϱi X , W = ϱ2Y , then

[U, V ] = W, [V, W ] = U, [W, U ] = V,

and thus mγ
∼= so(3). □

Key Lemma 6. Let g be a compact semisimple Lie algebra and let A, B ∈ g.
Suppose that A is orthogonal to some Cartan subalgebra. Then there exists a
Cartan subalgebra h ⊆ g which is orthogonal both to A and to B.

Proof. Among all Cartan subalgebras h orthogonal to A, we choose one for which
the orthogonal projection B0 of B to h has minimal length r = |B0|. We claim
that r = 0. Assume towards a contradiction that this is false. We decompose g

orthogonally as
g = h⊕

∑
α∈8+

Lα.

Accordingly we have A =
∑

α Aα and B = B0 +
∑

α Bα, with Aα, Bα ∈ Lα. By
assumption, B0 ̸= 0. Hence there is a positive real root γ ∈ 8+ with γ (B0) ̸= 0. We
decompose B0 further in h as an orthogonal sum B0 = B00 + Hγ , where γ (B00) = 0
and Hγ ̸= 0. Then

h = RHγ ⊕ ker(γ )

and
mγ = RHγ ⊕ Lγ

∼= so(3)

by Lemma 5. In the 3-dimensional Lie algebra mγ
∼= so(3) there is a 1-dimensional

subspace V ⊆mγ which is orthogonal to Hγ and to Aγ . The adjoint representation
of SO(3) on its Lie algebra so(3) is transitive on the 1-dimensional subspaces.
Hence there is an element g ∈ G of the form g = exp(ad(Z)), for some Z ∈ mγ ,
with g(Hγ ) ∈ V . Moreover, g fixes ker(γ ) pointwise. The Cartan subalgebra
h′

= g(h) = V ⊕ ker(γ ) is then orthogonal to A. The projection of B to h′ is B00

and has therefore strictly smaller length than B0. This is a contradiction. □

Corollary 7. Let g be a compact semisimple Lie algebra and let A, B ∈ g. Then
A⊥

∩ B⊥ contains a Cartan subalgebra h.

Proof. We apply Key Lemma 6 to 0 and A to obtain a Cartan subalgebra which is
orthogonal to A. Another application of Key Lemma 6 to A and B then yields a
Cartan subalgebra h which is orthogonal to both A and B. □

Proof of Theorem 1. Let h be a Cartan subalgebra which is orthogonal to A and to
B and let X ∈ h be a regular element. Then h = Ceng(X) and thus A, B ∈ [X, g]

by Lemma 3. □
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The proofs above made strong use of the assumption that g is a compact semisim-
ple Lie algebra. The fact that the Killing form is (negative) definite was used at
several places in order to find orthogonal decompositions. Nevertheless, I conjecture
that a similar result holds for other semisimple Lie algebras.

Further remarks and an open problem

We close with some remarks and an open problem. Suppose that h is a Cartan
subalgebra in the compact Lie algebra g. If we pick nonzero elements Zα ∈ Lα,
for every positive root α, and if we put Z =

∑
α∈8+ Zα, then h ∩ Ceng(Z) = 0.

Since Ceng(Z) contains a Cartan subalgebra h′, this shows that there exists a Cartan
subalgebra h′ which intersects h trivially. However, one can do better. The following
is shown in [Malkoun and Nahlus 2017].

Theorem 8 (Malkoun–Nahlus). Let h be a Cartan subalgebra in a compact semisim-
ple Lie algebra g. Then there exists a Cartan subalgebra h′

⊆ h⊥.

We reproduce the beautiful proof from [Malkoun and Nahlus 2017].

Proof. We may assume that g ̸= 0. Let w be a Coxeter element in the Weyl
group W = N/T , where T is the maximal torus corresponding to h, and N ⊆ G
is the normalizer of T . Then W acts as a finite reflection group on h, and 1 is
not an eigenvalue of w in this action, see [Humphreys 1990, Section 3.16]. We
choose X ∈ g with w = exp(ad(X))T and we claim that every Cartan subalgebra
h′ containing X is orthogonal to h. The linear endomorphism exp(ad(X)) − idg of
g maps h onto h, and

exp(ad(X)) − idg =

∞∑
k=1

1
k!

ad(X)k
= ad(X)

∞∑
k=1

1
k!

ad(X)k−1.

In particular, ad(X)(g) ⊇ h. Thus Ceng(X) ⊆ h⊥ by Lemma 3. □

Christoph Böhm has explained to me the following remarkable result.

Theorem 9. The orthogonal Lie algebras so(m), for m ≥ 3, can be decomposed as
orthogonal direct sums of Cartan subalgebras.

Proof. The rank of so(m) is r =
⌊ 1

2 m
⌋

, and the dimension of so(m) is n =
1
2 m(m−1).

We let e1, . . . , em denote the standard basis of Rm , and we put X i, j = ei eT
j − ej eT

i .
Then the X i, j with i < j form an orthonormal basis of so(m). Moreover, two
distinct basis elements X i, j , Xk,ℓ commute if and only if {i, j} ∩ {k, ℓ} = ∅. The
standard Cartan subalgebra for so(m) is spanned by X1,2, X3,4, . . . , X2r−1,2r . The
claim follows if we can partition the set Tm of all two-element subsets of {1, . . . , m}

into n/r subsets consisting of r pairwise disjoint two-element subsets. The latter is
possible by the scheduling algorithm for round robin tournaments.
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An explicit construction of such a partition of Tm can be described as follows,
see [van Lint and Wilson 1992, Example 36.2]. For odd m ≥ 3 put

Mk = {{i, j} | i < j and i + j ≡ 2k (mod m)},

for k = 1, . . . , m. The Mk partition Tm into m subsets of cardinality 1
2(m −1), each

consisting of pairwise disjoint two-element subsets. From this we obtain also such
a partition of Tm+1 by putting M ′

k = Mk ∪ {{k, m + 1}}. □

We cannot expect such a result for general compact semisimple Lie algebras. For
example, the compact semisimple Lie algebra g = so(5) ⊕ so(3) has dimension 13,
hence such a decomposition cannot exist. The following question is thus very
natural.

Problem 10. Which compact semisimple Lie algebras g can be decomposed as an
orthogonal sum of Cartan subalgebras?

The monograph [Kostrikin and Tiep 1994] is devoted to the complex version of
this problem.

For the Lie algebras su(m), Problem 10 can be rephrased as follows, using the
Veronese embedding of CPm−1. To each unit vector u ∈ Cm we may assign the
selfadjoint projector

P(u) = uu∗,

where ∗ denotes the conjugate transpose, and its traceless part

P0(u) = uu∗
−

1
m

idCm .

We note that P(uz) = P(u) holds for all complex numbers z with |z| = 1. Suppose
that u1, . . . ,um is an orthonormal basis of Cm . Then the projectors P(u1), . . . , P(um)

commute, and the matrices i P0(u1), . . . , i P0(um) span a Cartan subalgebra h in
su(m). Conversely, the Cartan subalgebra h determines the set of subspaces
u1C, . . . , umC uniquely, since these are the fixed points of the maximal torus
T ⊆PSU(m) with Lie algebra h in its action on the complex projective space CPm−1.
Hence h determines the orthonormal basis u1, . . . , um up to a permutation of vectors,
and up to multiplication of the basis vectors by complex numbers of norm 1.

The Killing form for su(m) is given by ⟨X, Y ⟩ = 2m tr(XY ). The Cartan sub-
algebras h and h′ provided by two orthonormal bases u1, . . . , um, v1, . . . , vm are
thus orthogonal if and only if

|⟨uk, vℓ⟩|
2
=

1
m

holds for all k, ℓ. In this case, the two bases are called mutually unbiased. Such bases
were considered in quantum mechanics by J. Schwinger [1960]. The construction of
mutually unbiased bases has interesting connections to finite geometry, see [Kantor
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2012; 2017; Thas 2016; 2018]. It is an open problem in which dimensions m there
exist m + 1 pairwise mutually unbiased orthonormal bases. They are known to
exist if m is a prime power [Wootters and Fields 1989; Klappenecker and Rötteler
2004]. As we have seen, this question is equivalent to the existence of an orthogonal
decomposition of su(m) into Cartan subalgebras. There is a related problem about
maximal abelian subalgebras in operator theory, see [Haagerup 1997]. It is presently
an open problem if su(6) admits an orthogonal decomposition into seven Cartan
subalgebras.

Acknowledgments. I thank Christoph Böhm, Theo Grundhöfer, Karl Heinrich
Hofmann, Karl-Hermann Neeb and the referee for helpful remarks.
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