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Two-transitive Lie groups

By Linus Kramer*) at Würzburg

Abstract. Using a characterization of parabolics in reductive Lie groups due to
Furstenberg, elementary properties of buildings, and some algebraic topology, we give a
new proof of Tits’ classification of 2-transitive Lie groups.

Among many other results, Tits classified in [41] all 2-transitive Lie groups. His proof
is based on Dynkin’s classification of maximal complex subalgebras in complex simple Lie
algebras; it is long and depends on consideration of various cases. Since the resulting list of
groups is also long (at least in the a‰ne case), it is clear that there cannot be a very short
proof of the full classification. On the other hand, Lie theory has developed since the time
[41] was written. In particular, Tits himself changed the picture through his theory of
buildings (as he pointed out, his paper [41] was one of the motivations for him to invent
buildings). The language, the methods, and the terminology have changed since then, and it
is natural to look for a new (and shorter) proof of Tits’ classification. Note also that the
proof presented in [41], IV F 1.2, p. 222, does not cover certain real forms of exceptional
groups—a footnote on p. 223 asserts that Tits found a proof for these cases, too, after the
manuscript went into print; see also loc.cit., p. 240. The details were never published.

Almost at the same time as Tits, Borel [4] determined all 1-connected spaces X which
admit a 2- or 3-transitive Lie group action; however, Borel did not classify the corre-
sponding groups. His proof relies on spectral sequences, Freudenthal’s theory of ends, and
on the results of Borel and De Siebenthal about homogeneous spaces of positive Euler
characteristic.

In this paper, we give a complete proof for Tits’ classification. The main ingredients
are a characterization of parabolics in Lie groups due to Furstenberg, elementary proper-
ties of buildings, some algebraic topology (certainly more elementary than the machinery
employed in Borel’s work [4]), and representation theory of semisimple (compact) Lie
groups.

As we remarked before, the only published proof for the classification is [41]. The
classification in the a‰ne case is also stated (but not proved) in Völklein [47], and some
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remarks on the strategy of Tits’ original proof can be found in Salzmann et al. [36], 96.15
and 96.16.

Related results for other classes of groups are Knop’s classification [26] of 2-transitive
actions of algebraic groups over algebraically closed fields in arbitrary characteristic (which
is achieved by quite di¤erent methods), and the classification of all finite 2-transitive
groups; see Dixon-Mortimer [11], 7.7 for a description of these groups. In the course of our
classification, we recover Knop’s result for the special case of complex algebraic groups.

The main results of the classification are as follows.

Theorem A. Let G be a locally compact, s-compact topological transformation group

acting e¤ectively and 2-transitively on a space X which is not totally disconnected. Then G is

a Lie group and X GG=Gx is a connected manifold. The connected component G� is simple if

and only if X is compact.

Note that it is not enough to assume that the group G is locally compact; the full
homeomorphism group of any topological manifold, endowed with the discrete topology,
satisfies all the other conditions of the theorem.

Theorem B. If ðG;XÞ is as in Theorem A, and if X is compact, then X is either the

point set of a projective space, or the set of all absolute points of a polarity (of index 1) in a

projective space. In the first case, G is (a finite extension of ) the little projective group, and in

the second case, G is (a finite extension of ) the centralizer of the polarity in the little projec-

tive group of the projective space.

The projective spaces in question real, complex, quaternionic, or octonionic, and the
possibilities for the groups G are explicitly determined, see Theorem 3.3.

Theorem C. If ðG;XÞ is as in Theorem A, and if X is noncompact, then X GRm is a

real vector space, and G is a semidirect product G ¼ GxyRm, where GxeGLmR is a linear

group acting transitively on the nonzero vectors.

We determine explicitly the connected linear groups which act transitively on the
nonzero vectors in Theorem 6.17.

The dichotomy that either X is compact and G� is simple, or that X is noncompact
and G of a‰ne type is proved by ideas similar to Borel’s, but with a modest amount of alge-
braic topology. The classification of transitive linear groups depends very much on repre-
sentation theory.

In case where X is compact, the key ingredient is a characterization of parabolics due
to Furstenberg. This characterization was used by Burns-Spatzier [9] in order to classify
compact connected buildings with strongly transitive automorphism groups. Using Fur-
stenberg’s result, the classification is reduced to a problem about the W-valued distance in
spherical buildings. Here, we need some elementary properties of buildings (but the proof
does not depend on the classification of spherical Moufang buildings). We rely of course on
the classification of real simple Lie groups and their structure theory.
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Outline of the classification. The first section collects some basic material on 2-
transitive permutations groups. Then we show that a 2-transitive locally compact group
(which satisfies some additional hypotheses) is automatically a Lie group. Up to this point,
our proof is more or less the same as Tits’ original proof; these results can also be found in
Salzmann et al. 96.15. After this point, we follow a di¤erent line than Tits. First we con-
sider the case where the space X which G acts on is compact. This case is much easier than
the noncompact case, since one can use a convenient criterion due to Furstenberg which
characterizes parabolics in Lie groups. Using this result, it is not di‰cult to show that G is
essentially a simple (noncompact) Lie group, and that X is a vertex set of the building D
belonging to G. If the real rank of the group G is at least 2, the building has to be a pro-
jective space, and this leads to a full classification in the compact case.

The noncompact case is more involved. Here we use some algebraic topology to
prove that X is contractible if it is noncompact. Once this is proved, it is not di‰cult to see
that X is a real vector space, and that G acts through a‰ne-linear transformations. The task
is then to classify linear Lie groups acting transitively on nonzero vectors in a real vector
space. Such a group acts transitively on the half-rays in the vector space, and we can use the
classification of compact Lie groups acting transitively on spheres. In the last section we
classify those 2-transitive groups in our list which are Moufang sets. This re-proves and
generalizes the classification by Kalscheuer, Tits, and Grundhöfer of all sharply 2-transitive
Lie groups.

1. Preliminaries

In this section we collect a few general and simple facts about 2-transitive groups. An
action of a group G on a nonempty set X is a homomorphism G ! SymðX Þ of G into the
symmetric group of X. For x A X , we denote the stabilizer of x by Gx ¼ fg A G j gðxÞ ¼ xg.
For a subset U LG we put U � x ¼ fgðxÞ j g A Ug. If G acts transitively on X (i.e. if
X ¼ G � x for some x A X ) and if HeG is a subgroup, then H acts transitively on X if and
only if G ¼ GxH. The kernel of an action is the subgroup G½X � ¼

T
fGx j x A Xg. The action

is e¤ective if G½X � ¼ 1 (often this is called a faithful action). If the action is e¤ective, G can
be identified with its image in SymðXÞ. A transitive action is regular if Gx ¼ 1 holds for all
x A X .

The action of G on X is called k-transitive, for jX jf kf 2, if G acts transitively on
the set of all k-tuples ðx1; . . . ; xkÞ A X k with pairwise distinct entries. Clearly, a ðk þ 1Þ-
transitive group acts also k-transitively; in particular, it acts transitively on X. If jX jf 3,
then G acts 2-transitively on X if and only if the stabilizer Gx of x A X acts transitively on
Xnfxg for every x A X . A transitive action (of G on X ) is primitive if the stabilizer Gx is a
maximal subgroup of G, i.e. if Gx < HeG implies H ¼ G.

1.1. Lemma. If G acts primitively on X, and if NtG is a normal subgroup, then
either NeGx (and thus NeG½X �), or N acts transitively on X.

Proof. See e.g. Dixon-Mortimer [11], Theorem 1.6A(v). r

The following criterion for primitivity is very convenient. Let RLX � X be an
equivalence relation, i.e. xRyRz implies xRz, idX LR, and iðRÞ ¼ R, where iðx; yÞ ¼ ðy; xÞ.
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Let us call idX ¼ fðx; xÞ j x A Xg and X � X the trivial equivalence relations. An equi-
valence relation is G-invariant if gðRÞ ¼ R holds for all g A G (with respect to the diagonal
action of G on X � X ).

1.2. Lemma. A transitive action of G on X is primitive if and only if X � X contains

no nontrivial G-invariant equivalence relations.

Proof. See e.g. Jacobson [24], Theorem 1.12, or Dixon-Mortimer [11], Corollary
1.5A. r

If G is 2-transitive, then G acts transitively on Y ¼ X � XnidX , hence there are no
nontrivial G-invariant equivalence relations. Thus, a 2-transitive action is primitive.

1.3. Lemma. Suppose that G acts 2-transitively on X. Then the stabilizer Gx is a

maximal subgroup of G. r

1.4. Lemma. Suppose that G acts primitively and e¤ectively on X. If 13AeG is an

abelian normal subgroup, then G is a semidirect product G ¼ GxyA. The group A acts

regularly on X, and if we identify A with X via the evaluation map evx : a 7! aðxÞ, then each

g A Gx acts by conjugation,

gaðxÞ ¼ gag�1gðxÞ ¼ gag�1ðxÞ:

In particular, Gx acts transitively on Anf1g if G acts 2-transitively on X.

Proof. By Lemma 1.3, A acts transitively on X. A transitive and e¤ective abelian
group acts regularly. Thus Ax ¼ GxXA ¼ 1, and G ¼ GxA is a semidirect product. r

In the next lemma, we identify G with its image in SymðXÞ. The result is used in
Section 3.

1.5. Lemma. Suppose that G acts primitively and e¤ectively on X. If G is not cyclic

of prime order, GYZ=p, then the centralizer of G in the symmetric group is trivial,
CenSymðXÞðGÞ ¼ 1. In particular, G is centerless, and the normalizer NorSymðXÞðGÞ is con-

tained in the automorphism group of G.

Proof. Let C ¼ CenSymðXÞðGÞ, and assume that C3 1. Then C is a nontrivial nor-
mal subgroup in the primitive group CGe SymðXÞ, hence C acts transitively on X by
Lemma 1.3. Let g A Gx. Then cðxÞ ¼ cgðxÞ ¼ gcðxÞ holds for all c A C, so g fixes the orbit
C � x ¼ X elementwise. It follows that G acts regularly on X. Since the action is primitive,
G has no proper subgroups, thus GGZ=p, for some prime p. r

2. Two-transitive Lie groups and locally compact groups

We fix some topological terminology. A homeomorphism is denoted by ‘G’, and a
homotopy equivalence by ‘F’. Unless stated otherwise, all spaces are assumed to be Haus-

dor¤. An n-manifold is a second countable metrizable space which is locally homeomorphic
to Rn. In a topological group we assume always that the singletons are closed, so the
groups themselves are regular topological spaces. A Lie group is a second countable topo-
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logical group which is at the same time a smooth manifold, such that the group operations
are smooth maps. A transformation group is a pair ðG;X Þ consisting of a topological group
G, acting as a group of homeomorphisms on a topological space X 3j, such that the map
G � X ! X is continuous. If G is a Lie group, we call ðG;XÞ a Lie transformation group.
The connected component of the identity in a topological group G is denoted G�.

A space is called s-compact if it is a countable union of compact subsets. With our
conventions, Lie groups are s-compact. If ðG;X Þ is a transitive transformation group, and
if x A X , then the map G ! G=Gx is open, and thus the natural map G=Gx ! X is con-
tinuous. We need the following sharpening of this fact, cp. Salzmann et al. [36], 96.8.

2.1. Proposition. Let ðG;X Þ be a transitive transformation group, and let x A X . If
G and X are locally compact, and if G is s-compact, then the natural map G=Gx ! X is a

homeomorphism; in particular, the evaluation map evx : G ! X , g 7! gðxÞ is open. r

The Approximation Theorem states that every locally compact group can be approx-
imated by Lie groups in the following sense, cp. Salzmann et al. [36], 93.8. Note that every
open subgroup of G contains the connected component G�, and that G� is a closed normal
subgroup of G. However, G� need not be open if G is not a Lie group.

2.2. Approximation Theorem. Let G be a locally compact group.

(1) There exists an open (and s-compact) subgroup V eG such that V=G� is compact.

(2) Given a subgroup V as in (1), and given any neighborhood U of 1 A G, there exists
a compact normal subgroup NtV of V with NLU , such that V=N is a Lie group. r

1???y
N???y

compact

1 ���! G� ���! V ���! V=G� ���! 1???y
V=N???y Lie

1

n

n

Theorem 2.4 below is essentially due to Tits [41]; the present proof is a simplified
version of the proof given in Salzmann et al. [36], 96.15. A space is called totally discon-

nected if the component of every point is trivial. The following useful result is due to
Eilenberg [13], 3.1.

2.3. Lemma. Let X be a connected space, and let

Y ¼ X � XnidX ¼ fðx; yÞ j x; y A X ; x3 yg:
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Let iðx; yÞ ¼ ðy; xÞ. If Y is not connected, then Y has precisely two (necessarily open) com-

ponents A;B, and iðAÞ ¼ B. r

2.4. Theorem. Let ðG;X Þ be an e¤ective topological transformation group, where G

is s-compact and locally compact, and X is locally compact and not totally disconnected.
Suppose that G acts 2-transitively on X. Then G is a Lie group and X GG=Gx is a smooth

and connected manifold. Every open subgroup V eG acts primitively on X; in particular, G�

acts primitively on X. The group G� is noncompact and has at most three orbits in X � X .

Proof. First we prove that X is connected. Define an equivalence relation R on X

by setting xRy if x; y are contained in a connected subset. Since X is not totally discon-
nected, R3 idX . This relation is G-invariant, since G acts by homeomorphisms on X. Thus
R ¼ X � X by Lemma 1.2, and hence X is connected.

Now we show that G�3 1. If G� ¼ 1, then G is totally disconnected, and thus
zero-dimensional, see Hewitt-Ross [21], Thm. 3.5. Therefore, X GG=Gx is also zero-
dimensional, see loc.cit., Thm. 7.11, and X contains arbitrarily small open and closed sub-
sets. This contradicts the fact that X is connected.

Let Y ¼ fðx; yÞ j x; y A X ; x3 yg. This is a locally compact space, and G acts transi-
tively on Y; the evaluation map evðx;yÞ : G ! Y is open by Proposition 2.1. Let V eG be
an open subgroup. Since V contains the normal subgroup G�, it acts transitively on X by
Lemma 1.1. For every ðx; yÞ A Y , the orbit evðx;yÞðVÞ ¼ V � ðx; yÞ is open. By Lemma 2.3,
Y has at most two components A;B, so V has at most two orbits A;B in Y. Moreover,
iðAÞ ¼ B, so X � X contains no nontrivial V-invariant equivalence relation, i.e. the action
of V on X is primitive by Lemma 1.2.

Now choose a cocompact open subgroup V eG as in the Approximation Theorem
2.2 (1), and choose a small neighborhood U LV of the identity such that U � x3X . Then
U cannot contain a proper normal subgroup NtV , since otherwise N � x ¼ X . Therefore,
V � ¼ G� is an open (Lie) subgroup of G by Theorem 2.2, and G=G� is discrete and (by s-
compactness of G ) countable.

If the open subgroup G� is compact, then its orbits in X � X are compact. Since there
are at most three di¤erent orbits A;B; idX , this would imply that AWB ¼ X � XnidX is
compact, a contradiction to the fact that Xnfxg is noncompact (because X is connected).

r

For the remainder of this section, we assume that G is a Lie transformation group acting

on a connected manifold X GG=Gx, and that this action is e¤ective and 2-transitive.

We need two results about the connectivity of complements of discrete subsets.

2.5. Lemma. Let M be a connected manifold of positive dimension. If M is compact

or if dimðMÞf 2, then Mnfxg is path connected for all x A M.

Proof. If dimðMÞf 2, then H1ðM;MnfxgÞ ¼ 0 ¼ ~HH0ðMÞ, and the exact sequence

! H1ðM;MnfxgÞ ! ~HH0ðMnfxgÞ ! ~HH0ðMÞ ! 0
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shows that ~HH0ðMnfxgÞ ¼ 0, so Mnfxg is also path connected. If dimðMÞ ¼ 1 and if M is

compact, then MGS1 is a circle, and MnfxgGR is path connected. r

2.6. Lemma. If X is compact or if dimðX Þ > 1, then the connected component G�

acts also 2-transitively on X.

Proof. The connected component G�eG is a normal subgroup, hence G� acts tran-
sitively on X by Lemma 1.3. The subgroup G�eG is open, hence ðG�Þx is open in Gx. Let
y A Xnfxg. The evaluation map evy : g 7! gðyÞ, Gx ! Xnfxg is open by Proposition 2.1;
since Xnfxg is connected, evy

�
ðG�Þx

�
¼ Xnfxg, i.e. ðG�Þx acts transitively on Xnfxg. r

2.7. Lemma. If G has an abelian normal subgroup A3 1, then AGRn is a vector

group.

Proof. The group A acts regularly on X by Lemma 1.4, hence A is connected
(by Proposition 2.1). A connected abelian n-dimensional Lie group is of the form
Rk=Zk � Rn�k, for some k A f0; . . . ; ng, see Onishchik-Vinberg [33], Ch. 1, §2, Prop. 3,
p. 29. If kf 1, then Rk=Zk contains elements of order l for all l A N. This is not possible by
Lemma 1.4 (all elements of A di¤erent from the identity have to be conjugate under Gx), so
k ¼ 0.

In particular, the existence of a nontrivial proper abelian normal subgroup implies
that X is noncompact. The converse will be proved in Section 4: if X is noncompact, then G

has a nontrivial proper abelian normal subgroup.

2.8. Proposition. If G has no nontrivial proper normal abelian subgroup, then the con-

nected component G� is simple.

Proof. Assume that G has no nontrivial proper abelian normal subgroup. Let
ffiffiffiffi
G
p

denote the radical of G, i.e. the largest normal connected solvable subgroup, see Onishchik-
Vinberg [33], Ch. 1, §4, 6�. Let 1 < Z < � � � <

ffiffiffiffi
G
p

denote the derived series of
ffiffiffiffi
G
p

. Ifffiffiffiffi
G
p

3 1, then Z is a nontrivial normal abelian subgroup in G, since it is characteristic inffiffiffiffi
G
p

. Thus
ffiffiffiffi
G
p
¼ 1. Note also that

ffiffiffiffi
G
p
¼

ffiffiffiffiffiffi
G�
p

. Therefore G� is semisimple and centerless
and thus a direct product of simple Lie groups, see Salzmann et al. [36], 94.23.

If dimðXÞf 2 or if X is compact, then G� acts 2-transitively on X by Lemma 2.6. If
dimðXÞ ¼ 1 and if X is noncompact, then X GR. By Brouwer’s result, no centerless semi-
simple Lie group acts transitively on R, see Salzmann et al. [36], 96.30, so this case cannot
occur.

Assume now that dimðGÞf 2, and that G� ¼ G1 � G2, with G1 3 1 simple. Suppose
that G2 3 1. Then G1 and G2 are normal in G� and thus transitive on X. Suppose that
g1 A G1 fixes x, and that g2 A G2. Then g2ðxÞ ¼ g2g1ðxÞ ¼ g1

�
g2ðxÞ

�
, so g1 fixes g2ðxÞ for all

g2 A G2. Since G2 � x ¼ X , this implies that g1 ¼ 1, i.e. G1 acts regularly on X. We identify
X with G1; then the action of G1 on X is the standard left regular action ðg; xÞ 7! gx of G1

on itself. The centralizer of this action CenSymðXÞðG1Þ is isomorphic to G1 with the action
ðg; xÞ 7! xg�1. It follows that G2 GG1, with the action ðg1; g2ÞðxÞ ¼ g1xg

�1
2 . The stabilizer

of 1 A X is the diagonal subgroup fðg; gÞ j g A G1g; its orbits in X are the conjugacy classes
of G1. But a centerless simple Lie group contains a torus R=Z; in particular, it contains
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elements of arbitrary finite order, and thus infinitely many conjugacy classes. This is a con-
tradiction to the 2-transitivity of G�. Therefore G2 ¼ 1 and G ¼ G1 is simple. r

If we assume in addition that X is compact, then there is a shortcut in the last step of
the proof above: if G� is a product of at least two simple factors, then each simple factor
acts regularly, and thus G� is compact, a contradiction to Theorem 2.4.

3. The case when X is compact

In this section we classify all pairs ðG;XÞ, where G is a Lie group acting e¤ectively
and 2-transitively on a compact connected manifold X. By 2.6, 2.7, and 2.8, G� is a simple
centerless Lie group which acts 2-transitively on X. Recall the definition of a parabolic sub-
group in an arbitrary semisimple Lie group H (of noncompact type). Suppose that

H ¼ KAU

is an Iwasawa decomposition for H (the unipotent subgroup U is denoted ‘N ’ in most
books on Lie groups; we use U, since N has a di¤erent meaning with BN-pairs), see Hel-
gason [20], Ch. IX, §1, Thm. 1.3. Let K0 ¼ CenKðAÞ denote the K-centralizer of A (this is
the reductive anisotropic kernel of H, see Tits [42], p. 39). Then

B ¼ K0AU

is a subgroup, a minimal parabolic subgroup of H, see Helgason [20], Ch. IX, §1, Warner
[48], p. 56. A parabolic subgroup is any subgroup of H which is conjugate to an overgroup
of B. There are precisely 2dimðAÞ conjugacy classes of parabolics in H (including the classes
of H and B), see Warner [48], Thm. 1.2.1.1. If we put N ¼ NorHðK0AÞ, then ðB;NÞ is a
BN-pair of rank dimðAÞ for the group H, see Warner [48], p. 68.

3.1. Theorem. Let HePSLmþ1R be a closed semisimple subgroup, and consider the

standard projective action of PSLmþ1R on the real projective space RPm. Let X LRPm be a

closed H-invariant subset. Assume that the following two conditions are satisfied.

(a) If j3Y LX is closed and H-invariant, then Y ¼ X .

(b) If j3ZLX � X is closed and H-invariant, then ZX idX 3j.

Then X ¼ H=Hx is a homogeneous space of H, and Hx is a parabolic subgroup of H.

Proof. Condition (a) says that the action is minimal in the sense of Furstenberg [14],
p. 278–279, and condition (b) says that it is proximal; by the very definition, it is what Fur-
stenberg calls projective. By Proposition 4.3 in loc.cit., p. 280, there exists an H-equivariant
map from the maximal Furstenberg boundary BðHÞ of H onto X. Since we assumed that
H is semisimple, the discussion in loc.cit., p. 280 shows that there is an H-equivariant
homeomorphism BðHÞGH=B between the Furstenberg boundary and the coset space
H=B, where BeH is a minimal parabolic. The space H=BGK=K0 is compact (it is the
chamber set of the canonical building DðHÞ associated to H ), and thus Hx contains a
conjugate of B, i.e. Hx is a parabolic. r
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3.2. Proposition. If X is compact, and if G is a simple connected Lie group acting

e¤ectively and 2-transitively on X, then the stabilizer P ¼ Gx is a maximal parabolic sub-

group of the simple group G.

Proof. Let p denote the Lie algebra of P, with k ¼ dimRðpÞ. The G-normalizer of
p contains P; by maximality of P, it coincides with P. Consider the adjoint action of G
on the Grassmann manifold GrkðgÞ of all k-dimensional real subspaces of the Lie algebra
g of G. The stabilizer of p A GrkðgÞ is P, as we just saw. The Grassmannian embeds G-
equivariantly into the real projective space Pð

Vk
gÞ of the k-th exterior power of the real

vector space g. The G-orbit of
Vk

p A Pð
Vk

gÞ is therefore G-equivariantly homeomorphic
to X ¼ G=P. Since G acts 2-transitively, the conditions (a) and (b) in Furstenberg’s Theo-
rem 3.1 are clearly satisfied, hence P is a parabolic subgroup, and, by 2-transitivity on X, a
maximal one. r

Recall that the real rank of a semisimple Lie group H is the real vector space dimen-
sion of a, where h ¼ kþ aþ u is an Iwasawa decomposition of the Lie algebra h of H.

3.3. Theorem. Let ðG;XÞ be an e¤ective 2-transitive transformation group. Assume

that G is locally compact and s-compact, and that X is compact and not totally disconnected.
Then G is a Lie group and the connected component G� is simple and noncompact. There
exists a subgroup ĜG of the automorphism group of G� such that either G ¼ G�, or G ¼ ĜG.
Both ĜG and G� act 2-transitively on X. Topologically, the space X is either a sphere or a pro-

jective space over R, C, H, or O. The possibilities for the pair ðG�;XÞ are as follows.

(a) If the real rank of G� is 1, then X is a sphere, and there are the following possibil-

ities.

G� X ĜG jĜG=G�j

PEOn;1R Sn�1 POn;1R 2 ðnf 2Þ
PSUn;1C S2n�1 PGUn;1C 2 ðnf 2Þ
PUn;1H S4n�1 PUn;1H 1 ðnf 2Þ
F4ð�20Þ S15 F4ð�20Þ 1

The simple subgroup PEOn;1R ¼ ðPOn;1RÞ� is the subgroup generated by all Eichler (or Sie-
gel ) transformations, see e.g. Hahn-O’Meara [19], p. 214. Alternatively, the group PEOn;1R

can be described as the commutator group of POn;1R, or as the connected component

ðPOn;1RÞ�.

(b) If the real rank k of G� is at least 2, then X is a projective space of rank k, and there

are only the following possibilities.

G� X ĜG jĜG=G�j

PSLkþ1R RPk PGLkþ1R 2 (k odd )
PSLkþ1R RPk PSLkþ1R 1 (k even)
PSLkþ1C CPk PGLkþ1C 2
PSLkþ1H HPk PSLkþ1H 1
E6ð�26Þ OP2 E6ð�26Þ 1 ðk ¼ 2Þ
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Note that there are the following isomorphisms of simple Lie groups:

PSL2RGPSU1;1RGPEO2;1R;

PSL2CGPEO3;1R;

PU1;1HGPEO4;1R;

PSL2HGPEO5;1R:

Proof of Theorem 3.3. We know already by 2.6, 2.7, and 2.8 that H ¼ G� is a simple
centerless Lie group which acts 2-transitively on X, and by Proposition 3.2 the stabilizer
P ¼ Hx is a maximal parabolic subgroup. If the real rank of H is 1, then Table V in Ch. X,
p. 518 in Helgason [20] shows that ðH;XÞ is as in (a). Note that a group with a BN-pair
of rank 1 is the same as a 2-transitive group; thus, each simple Lie group of real rank 1 is a
2-transitive group. Of course, this follows also by direct inspection of the list of groups.

Now suppose that the real rank k of H is at least 2. Then we consider the irreducible
spherical building D ¼ DðHÞ of H. Theorem 4.3 in the next section shows that D is the
building associated to a projective space (of finite rank, as all buildings related to Lie
groups are of finite rank), and that the parabolic Hx is the stabilizer of a point in this pro-
jective space.

Then H is one of the groups PSLkþ1F, for F ¼ R;C;H, and D is a projective geometry
of rank k over F, or k ¼ 2, and D is the Cayley plane and H ¼ E6ð�26Þ. This follows either
from the topological Fundamental Theorem of Projective Geometry (as proved by Kol-
mogorov [27], see also Kühne-Löwen [30] and the survey by Grundhöfer-Löwen [17]), or
from Cartan’s classification of simple Lie groups and Tits’ classification [42] of their Tits
diagrams (unjustly sometimes called ‘‘Satake diagrams’’) and their relative diagrams, see
Helgason [20], Table VI, Ch. X, p. 532. In any case, we obtain the list of groups G� and
spaces X in (b).

By Lemma 1.5, G is a subgroup of the automorphism group of H ¼ G�. The outer
automorphism groups of all simple Lie groups have been determined by Takeuchi [39], see
also Wolf [49], 8.8, p. 263. In case (b), we have the additional condition that G preserves the
conjugacy class of P, and thus G has to act by type-preserving automorphisms on the pro-

jective space. Thus, we obtain the list of groups ĜG given in (a) and (b). r

3.4. Corollary. If G is 3-transitive, then X GSn�1 and GGPOn;1R, for nf 2, or
GGPEOn;1R and nf 3. None of these groups is 4-transitive.

If the action is sharply 3-transitive (i.e. regular on triples of pairwise distinct points),
then GGPGL2R or GGPSL2C.

Proof. If the building D ¼ DðG�Þ is a projective geometry of rank kf 2, then
there exists triples of collinear points and triples of noncollinear points, so G cannot
be 3-transitive. Therefore, a 3-transitive group is one of the groups given in Theorem
3.3 (a). The unitary groups PGUn;1C and PUn;1H cannot act 3-transitively if nf 2:
choose three linearly independent vectors u; v;w with
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ðujvÞ ¼ ðvjwÞ ¼ ðwjuÞ and ðujuÞ ¼ ðvjvÞ ¼ ðwjwÞ ¼ 0

(we denote the corresponding hermitian form by ðxjyÞ ¼ �x0y0 þ x1y1 þ � � � þ xnyn). Then
x ¼ uþ vi is also isotropic, but no semilinear map fixing the subspace spanned by fu; vg
can move the subspace spanned by x to the subspace spanned by w. There is a more geo-
metric way to see this, which is also valid for the group F4ð�20Þ. These groups can be viewed
as subgroups of PGLnþ1C, PGLnþ1H, acting on the set Q of absolute points of a hyperbolic
polarity in the projective geometry (for the group F4ð�20Þ, the corresponding projective
space is the Cayley plane PG2ðOÞ, see [36], Ch. 1). If we fix two distinct points x; y A Q,
then we fix the line L joining these two points. Now LXO is a proper subset of Q, and
LXQ3 fx; yg if nf 2; in fact, LXQGSdimR F�1 for F ¼ R;C;H;O. This excludes the
unitary groups and F4ð�20Þ.

The group PEO2;1RGPSL2R is not 3-transitive; the remaining orthogonal groups
are 3-transitive, as can be checked. Finally, none of these groups is 4-transitive: Let
p; q; r; s A Q be four distinct points such that the lines pq and rs intersect in an interior point
of Q. Then r; s cannot be moved to two points r 0; s 0 (fixing p; q) such that r 0s 0 intersects pq

in an exterior point. If the action is sharply 3-transitive, then dimðGÞ ¼ 3 dimðX Þ, and thus
only the groups PGL2R and PSL2C remain. r

3.5. Corollary. If X is a complex homogeneous space (i.e. if X is a complex manifold

and if G preserves the complex structure), then X ¼ CPn and GGPSLnþ1C.

Proof. Suppose that X is a complex manifold, and that the G-action preserves the
complex structure. Then dimðX Þ is even. In case (a) of Theorem 3.3, X GS2k is a sphere,
and G� ¼ PEO2kþ1;1R. The compact subgroup K ¼ SOð2k þ 1Þ acts transitively on X,
and the isotropy representation of Kx on the tangent space TxX GR2k is the standard
action of SOð2kÞ. If kf 2, then this action is not complex linear. Thus k ¼ 1 and
G� ¼ PEO3;1RGPSL2C.

In case (b) of 3.3, X is an even-dimensional real projective space or a complex or
quaternionic projective space. Again we consider the isotropy representation of Kx for a
suitable compact subgroup KeG�. For RP2k, we have K ¼ SOð2k þ 1Þ, and Kx ¼ Oð2kÞ
acts in the standard way on TxX GR2k. This action preserves no complex structure
on the tangent space, not even for k ¼ 1. For X ¼ HPn we take K ¼ Spðnþ 1Þ; then
Kx ¼ SpðnÞ � Spð1Þ acts in the standard way (from the left and right) on TxX GHn; again,
there is no invariant complex structure for all kf 1. Thus the only possibility is that
G� ¼ PSLnþ1C in the standard action on CPn. Complex conjugation is not C-linear, hence
G ¼ G�. r

4. Digression: two-transitive actions on buildings

In this section we consider the following situation. D is a building (thick, and of arbi-
trary, possibly infinite rank), and G is a group of (type-preserving) automorphisms of D.
We assume that the action of G on one type of residues of D is 2-transitive. This is a purely
combinatorial problem, and we make no topological assumptions. After I had finished
a first version of this section, Bernhard Mühlherr pointed out to me that the book by
Brouwer-Cohen-Neumaier [8] contains related results.
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Recall that a Coxeter diagram is an undirected labeled graph whose nodes are
labeled by some set I. For each pair i; j A I , there is a number mij ¼ mji A NW fyg,
with mii ¼ 1, and mij f 2 if i3 j. If the nodes i; j are not adjacent ( joined by an edge),
then mij ¼ 2. If the nodes i; j are adjacent, and if mij f 4, then the edge joining them is
labeled with the number mij. The corresponding Coxeter group is the group generated by
a set S ¼ fsi j i A Ig of generators labeled by I, with relations ðsisjÞmij ¼ 1 (for mij 3y).
The pair ðW ;SÞ is called a Coxeter system. The Coxeter system is irreducible if its Coxeter
graph is connected. Reducible Coxeter systems are products (in a natural sense). For JL I ,
the subgroup generated by SJ ¼ fsJ j j A Jg is denoted WJ ; one can prove that the pair
ðW ;SJÞ is again a Coxeter system. We refer to the books by Bourbaki [5] and Humphreys
[22], and to Ch. 2 in Ronan [35]. Recall the Coxeter diagram Ak which is defined as

�
1

�
2

�
3

� � � �
k�2

�
k�1

�
k

We denote the limit of these Coxeter diagrams (as k goes to infinity) by Ao; the corre-
sponding Coxeter diagram is thus

�
1

�
2

�
3

�
4

�
5

�
6

� � �

The next result can also be extracted from Cooperstein [10], cp. Brouwer-Cohen-Neumaier
[8], Thm. 10.2.3, p. 300.

4.1. Proposition. Let ðW ; fsi j i A IgÞ be an irreducible Coxeter system, where I has

( possibly infinite) cardinality k. Let J be a subset of I and assume that W acts 2-transitively
on W=WJ . Then ke@0, and either the Coxeter system is of type Ak, with J ¼ f1g or

J ¼ fkg, or of type Ao, and J ¼ Inf1g (the nodes of the diagram are labeled as above).

Proof. The proof is very simple. We divide it into four basic steps.

(1) J has corank 1, i.e. InJ is a singleton.

Since WJ has to be a maximal subgroup, InJ is a singleton, which we denote by f1g.
Thus we have W ¼WJ WWJs1WJ . Now we use the standard description of shortest double
coset representatives: every element w which has the property that all reduced expressions
of this element start and end with s1 represents a unique double coset WJwWJ .

(2) In the Coxeter diagram, the node 1 has at most one neighbor.

Assume that node 1 has two di¤erent neighboring nodes, say 2; 3. Then s1s2s3s1 is a
reduced word representing a third double coset, WJs1s2s3s1WJ (note that the order of s2s3 is
not important for this argument).

(3) No node in the Coxeter digram has more than two neighbors.

Assume otherwise; let i3 1 be a node with three di¤erent neighbors. Let 1-2-3- � � � -
ði � 1Þ-i be a shortest path in the Coxeter diagram, and let j; k be distinct neighbors of node
i di¤erent from i � 1. Then s1s2 � � � si�1sisjsksisi�1 � � � s1 is a reduced word which represents
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another shortest double coset representative. This implies already that I is finite or count-
able, and that the Coxeter diagram of W is a string diagram (with at least one end).

(4) The Coxeter diagram has no multiple bonds, mij e 3.

Assume that 1-2- � � � -i-j is a shortest path in the diagram, and that i; j are joined
by an edge labeled mij f 4. Then sisj has order at least 4. The reduced word
s1s2 � � � si�1sisjsisi�1 � � � s1 represents another shortest double coset representative.

By (1)–(4), the diagram has only simple bonds and does not branch, and 1 is an end
node. r

Now we consider 2-transitive actions on buildings. Since we allow infinite rank, we
view buildings as chamber systems, see Tits [45] or Ronan [35]. A chamber system is a
set C, endowed with a collection f@i j i A Ig of equivalence relations. For a subset JL I ,
the equivalence relation generated by f@j j j A Jg is denoted@J . Given a Coxeter system
ðW ; fsi j i A IgÞ, a building

D ¼ ðC; f@i j i A Ig; d;W ; fsi j i A IgÞ

is a chamber system C, endowed with a metric d : C� C!W taking its values in a Cox-
eter group (subject to certain axioms which can be found e.g. in Ronan’s book [35], Ch. 3).
An automorphism of a building (in this sense) is a permutation of C which preserves the
equivalence classes (and thus the metric d). A J-residue in a building is a J-equivalence
class.

For i A I , let Vi denote the set of all residues of type Infig in the building. Define an
incidence relation � as follows: two residues are incident if their intersection is nonempty.
The datum G ¼ ðfVigi A I ; �Þ determines a diagram geometry. Suppose now that the building
is of type Ak, for 2e keo. Put P ¼ V1 and L ¼ V2 (the nodes are labeled as before).

4.2. Theorem. If kf 2, then the geometry ðP;L; �Þ obtained from an Ak-building is

a projective space.

Proof. The proof indicated by Tits in [45], p. 540 applies (also for the case k ¼ o).
r

4.3. Theorem. Let D be a thick irreducible building over some type set I, let G be

a group of type preserving automorphisms of D acting 2-transitively on the collection of all

J-residues, for some J. Then D is of type Ak or Ao; the corresponding diagram geometry can

be identified with a projective space ( possibly of infinite rank), and G acts 2-transitively on the
points of this space.

Proof. Let X ;Y ;Z be distinct J-residues. Since the stabilizer of X is a maximal sub-
group, J has corank 1, i.e. InJ is a singleton. There is a unique element w A dðX � YÞLW

such that lðwÞ minimizes the lengths l
�
dðx; yÞ

�
, where x; y run through all chambers in

X ;Y , see Scharlau-Dress [12]. Since the action is 2-transitive on the J-residues, the same
w gives the minimal distance for elements in Z. Thus W ¼WJ WWJwWJ ; in particular, W
acts 2-transitively on W=WJ . By Proposition 4.1, D is of type Ak or Ao. r
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5. The case when X is noncompact

In this section we assume that G is a 2-transitive e¤ective Lie transformation group
acting on X, and that X is noncompact. We show that in this case X GRn is a real vector
space, and that G splits as a semidirect product G ¼ GxyRn. In view of Lemma 2.7 and
Proposition 2.8, it su‰ces to prove that G� cannot be simple if X is noncompact. We need
some more facts about transformation groups. For a group H acting on a set X, we denote
the fixed point set by

XH ¼ fx A X jH � x ¼ fxgg:

Recall the Malcev-Iwasawa Theorem, cp. Salzmann et al., 93.10.

5.1. Malcev-Iwasawa Theorem. Let G be a connected locally compact group.

(1) There exists a maximal compact subgroup K eG. If LeG is a compact subgroup,
then gLg�1 eK for a suitable g A G.

(2) There exist closed subgroups A1; . . . ;AmeG isomorphic to ðR;þÞ, such that G is

directly spanned as G ¼ A1A2 � � �AmK (i.e. every g A G can in a unique way be written as a

product g ¼ a1 � � � amk, with ai A Ai and k A K). In particular, G is homeomorphic to K � Rm,
and G=KGRm is contractible.

We also need the following result.

5.2. Lemma. Let K be a compact connected Lie group. Then K is abelian if and only

if p3ðKÞ ¼ 0.

Proof. It is a well-known result that p3ðHÞGZ holds for every almost simple com-
pact Lie group H, see Onishchik [32], §17, Theorem 2, p. 257. A compact connected Lie
group is topologically a product of compact almost simple Lie groups and a torus; it is
abelian if and only if no nontrivial simple factors exist. r

5.3. Corollary. Let G be an almost simple Lie group. If G is not locally isomorphic to

SL2R, then p3ðGÞ3 0.

Proof. Since we consider only the third homotopy group, we may assume that G is
centerless. Let KeG be a maximal compact subgroup. A direct inspection of Table V in
Helgason [20], Ch. X, p. 518 or Onishchik-Vinberg [33], Table 9, p. 312 shows that K is not
abelian, provided that G3PSL2R. Since we have a homotopy equivalence KFG by the
Malcev-Iwasawa Theorem 5.1, the claim follows. r

For a proof of Whitehead’s Theorem below see Spanier [38], Ch. 7, Sec. 6, Cor-
ollary 24.

5.4. Theorem. Let f : X ! Y be a continuous map. If X and Y have the homo-

topy type of CW-complexes (e.g. if X and Y are manifolds, see Bredon [6], V, 1.6) and if

the induced map pð f Þ� : p�ðX Þ ! p�ðYÞ is an isomorphism, then f is a homotopy equiva-

lence.
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Combining these two results, we obtain the next lemma.

5.5. Lemma. Let Z ¼ H=Hz be a homogeneous space of a Lie group H. Assume that

H and Hz are connected. Let KeH be a maximal compact subgroup, such that Kz is a max-

imal compact subgroup of Hz. Then there is a homotopy equivalence K=Kz FH=Hz.

Proof. The spaces H=K and Hz=Kz are contractible by the Malcev-Iwasawa Theo-
rem 5.1. A fibration of CW-complexes with contractible fibres (with a contractible base,
resp.) induces a homotopy equivalence between the base and the total space (the fibre and
the total space, resp.) by Whitehead’s Theorem 5.4. Consider the fibrations

K=Kz???y f
gf

Hz=Kz ���! H=Kz ���!g H=Hz???y
H=K

��������!

The maps f and g are homotopy equivalences, and so is their composite gf . r

The following theorem can be proved under much weaker assumptions; however, the
present version, which is taken from Bredon’s book [6] su‰ces for our purposes.

5.6. Theorem. Let X be a connected noncompact n-manifold, and let K be a com-

pact Lie group acting smoothly or locally smoothly on X. Assume that K has an ðn� 1Þ-
dimensional orbit. Then there are only the following two possibilities.

(a) X=KGR and every K-orbit is principal. In this case, X decomposes as

X GK=Kx � R, with trivial K-action on R.

(b) X=KG ½0;yÞ, and there exists precisely one nonprincipal orbit K � z ¼ ZGK=Kz.
Let Kx eKz be the stabilizer of a point x A XnZ. Then Kz=KxGSm is a sphere, and X is

equivariantly homeomorphic to the ðmþ 1Þ-vector bundle associated to the orthogonal sphere

bundle Kz=Kx ! K=Kx ! K=Kz.

Proof. For the concept of a locally smooth action see Bredon’s book [6], Ch. IV. A
smooth action of a compact Lie group is locally smooth by loc.cit., VI, 2.4; by IV, 3.1,
principal orbits exist. Our claim is thus a slight reformulation of loc.cit., IV, 8.1. r

5.7. Corollary. If nf 2 and if K has a fixed point, then X is equivariantly homeo-

morphic to euclidean space Rn, and K acts transitively on Sn�1.

Proof. In this case, Z ¼ fzg. A vector bundle over Z is the same as a real vector
space Rn. r

The proof of the next lemma was kindly pointed out by R. Löwen.
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5.8. Lemma. Let M be a connected manifold of dimension n ¼ dimðMÞf 3. If

DLM is a closed discrete subset, then the inclusion MnD ,!M induces an isomorphism

of fundamental groups.

Proof. Assume first that D ¼ fx0g is a singleton. Let f : ðRn; 0Þ ! ðM; x0Þ
be a coordinate chart and put Be ¼

�
fðxÞ

�� jxje e
�
. Then M ¼ B2 W ðMnB1Þ, and

MnB1 FMnfx0g. Moreover, B2X ðMnB1Þ ¼ B2nB1FSn�1 is 1-connected, and we can
apply the Seifert-Van Kampen Theorem to the diagram

B2nB1 1

apply p1ð�Þ

B2 MnB1 1 p1ðMnB1Þ

M p1ðMÞ

to conclude that p1ðMnfx0gÞ ! p1ðMÞ is an isomorphism (see for example Bredon [7],
Ch. III, Cor. 9.5). An easy induction shows that p1ðMnDÞ ! p1ðMÞ is an isomorphism,
provided that D is finite.

Assume now that DLM is an arbitrary closed discrete set not containing the base
point. We show first that p1ðMnDÞ ! p1ðMÞ is surjective. So let b : ½0; 1� !M be a
path representing an element ½b�p1ðMÞ of p1ðMÞ, and let U be a relatively compact open

neighborhood of the image of b. Then U XD is finite, and by our previous discussion,
p1ðUnDÞ ! p1ðUÞ is an isomorphism. Let a : ½0; 1� ! UnD be a path representing an ele-
ment ½a�p1ðUnDÞ in p1ðUnDÞ whose image ½a�p1ðUÞ in p1ðUÞ represents the same element

½b�p1ðUÞ as b. Then a and b represent the same element in p1ðMÞ, i.e. ½a�p1ðMÞ ¼ ½b�p1ðMÞ.

Next we prove that the map is injective. Let g be a path representing an element of
p1ðMnDÞ, and assume that its image ½g�p1ðMÞ is homotopic to the constant path. Fix such a

homotopy F : ½0; 1� � ½0; 1� !M, and let V be a relatively compact open neighborhood of
the image of F. Then g represents the identity element in p1ðVÞ. By our previous discussion,
½g�p1ðVnDÞ is also the identity element, and thus ½g�p1ðMnDÞ is the identity element. r

5.9. Definition. Let G be a connected Lie transformation group acting transitively
on a manifold X. Assume that the following holds: for every x A X , the fixed point set
X Gx ¼ fy A X jGx � y ¼ fygg of Gx is discrete (and necessarily closed), and Gx acts transi-
tively on its complement XnX Gx . Then we call G almost 2-transitive on X.

5.10. Proposition. Let G be a connected Lie group acting almost 2-transitively on

a noncompact 1-connected n-manifold X, with nf 3. Then G acts 2-transitively on X, and
X GRn is contractible.

Proof. By assumption, p0ðGÞ ¼ 1 ¼ p1ðX Þ. From the exact sequence

p1ðX Þ ! p0ðGxÞ ! p0ðGÞ
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we see that Gx is connected, and XnX Gx is 1-connected by Lemma 5.8. Let y A XnXGx , so
Gx=Gx;y GXnXGx . The exact sequence

p1ðXnXGxÞ ! p0ðGx;yÞ ! p0ðGxÞ

shows that Gx;y is connected. We choose a maximal compact subgroup KeG such that
Kx eGx and Kx;y eGx;y are maximal compact subgroups. Note that each of these groups
is connected.

Let F2 denote the field with two elements. Then HkðX ; F2Þ ¼ 0 ¼ HkðXnXGx ; F2Þ
for all kf n, because X and XnXGx are noncompact manifolds, see Bredon [7], Ch. VI,
Cor. 7.12, e.g. Moreover, dim

�
HnðX ;XnX Gx ; F2Þ

�
¼ jXGx j (by excision), and the exact

sequence

! HnðX ; F2Þ ! HnðX ;XnX Gx ; F2Þ ! Hn�1ðXnXGx ; F2Þ !

shows that dim
�
Hn�1ðXnXGx ; F2Þ

�
f jX Gx j. But XnX Gx FKx=Kx;y is homotopy equi-

valent to a compact connected manifold of dimension strictly less than n by Lemma 5.5.
Thus dimðKx=Kx;yÞ ¼ n� 1, and Hn�1ðKx=Kx;y; F2ÞG F2. In particular, jXGx j ¼ 1, and
thus Gx acts transitively on Xnfxg, i.e. G is 2-transitive. The orbit Kx � yGKx=Kx;y has
codimension 1 in X. By Corollary 5.7, X GRn. r

5.11. Proposition. Let G be a 2-transitive Lie group acting on a noncompact con-

nected manifold X of dimension dimðX Þ ¼ nf 3. Then X is 1-connected, and thus by Pro-

position 5.10, X GRn is contractible.

Proof. Replacing G by the universal cover of its connected component, we may
assume that G is 1-connected. Thus we have an isomorphism p1ðXÞG p0ðGxÞ. Let
H ¼ ðGxÞ�. The exact sequence

! p1ðGÞ ! p1ðG=HÞ ! p0ðHÞ !

shows that Z ¼ G=H is 1-connected, and Z ¼ G=H !p G=Gx ¼ X is the universal covering
of X. Let F ¼ p�1ðxÞ. We claim that H acts transitively on ZnF . Let z A ZnF . Then
pðH � zÞ ¼ H � pðzÞ ¼ Xnfxg, because H is open in Gx and because Xnfxg is connected.
Thus the H-orbits in ZnF are n-dimensional and hence open. But ZnF is connected, so
H � z ¼ ZnF . Thus G acts almost 2-transitively on G=H. By Proposition 5.10, the action is
in fact 2-transitive and thus H ¼ Gx. r

Finally, we consider the low-dimensional cases.

5.12. Lemma. Let G be a 2-transitive Lie group acting on a noncompact connected

manifold X of dimension dimðXÞ ¼ ne 2. Then X GRn is contractible.

Proof. The only noncompact connected 1-manifold is R.

If dimðXÞ ¼ 2, then H ¼ G� acts 2-transitively by Lemma 2.6. Assume that X is a
noncompact surface. If H is not simple, then X GR2 by Lemma 2.7. Assume that H is
simple. Since H acts 2-transitively, dimðHÞf 4, and in particular H3PSL2R. Let K be a
maximal compact subgroup of H. Since H3PSL2R, the group K is not abelian, and thus
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p3ðHÞ ¼ p3ðKÞ3 0 by Corollary 5.3. Since X is a noncompact surface, the only homotopy
group of X which is possibly nontrivial is the fundamental group. The exact sequence

! p4ðXÞ ! p3ðHxÞ ! p3ðHÞ ! p3ðXÞ !

shows that p3ðHxÞ3 0, hence Hx contains a connected nonabelian compact subgroup
Le ðHxÞ� by Lemma 5.2. Choose y A XnX L. Then L � yGS1 is a circle, and X GR2

by Corollary 5.7. (We will see below that this case is impossible.) r

5.13. Corollary. If G is an e¤ective 2-transitive Lie group acting on X and if X is

noncompact, then G� is not simple.

Proof. By Proposition 5.11 and Lemma 5.12, the space X is contractible. Assume
that H ¼ G� is simple. Since X is contractible, the stabilizer Hx is connected, and Hx ,! H

is a homotopy equivalence by Whitehead’s Theorem 5.4. Thus Hx contains a maximal
compact subgroup K of G. But the maximal compact subgroups in a noncompact simple
Lie group are maximal subgroups, see Helgason [20], Ch. VI, Ex. A3(iv), p. 276 and p. 567,
hence Hx ¼ K, so X ¼ H=K is a Riemannian symmetric space, and H preserves the metric;
in particular, H has infinitely many orbits on X � X , contradicting Theorem 2.4. r

Combining this result with our previous analysis, we obtain the following final result
for the noncompact case.

5.14. Theorem. Let G be a locally compact and s-compact group acting e¤ectively

and 2-transitively on a locally compact, noncompact, not totally disconnected space X. Then
G is a Lie group and has a normal vector subgroup Rn tG acting regularly on X GRn.
Moreover, G ¼ GxyRn is a semidirect product of Rn and a point stabilizer Gx.

If n ¼ 1, then G ¼ AGL1R ¼ GL1RyR.

If nf 2, then the connected stabilizer ðGxÞ� is a reductive linear Lie group acting

transitively on the nonzero vectors of Rn. All possibilities for ðGxÞ� (and thus for

G� ¼ ðGxÞ�yRn) are determined in Theorem 6.17. None of these actions is 3-transitive. If
G acts sharply 2-transitive (i.e. if the two-point stabilizers are trivial ), then n ¼ 1; 2; 4, and
Gx ¼ ðGxÞ� is one of the groups given in Corollary 7.4.

If X is a complex manifold and if G preserves the complex structure, then G� is one of
the groups given in Theorem 6.17 (d). r

In particular, we obtain Knop’s result [26] for characteristic 0:

5.15. Corollary. If G is a complex connected Lie group which acts complex analyti-

cally and 2-transitively on a complex manifold X, then either

(a) X GCPn and G ¼ PSLnþ1C, or

(b) X GCn and Gx ¼ SLnC or Gx ¼ GLnC, or

(c) X GC2n and GxG Sp2nC or GxG Sp2nC � C�.
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In case (b) or (c), GGGxyCn.

Note however that in the case X GCn, there exist several real, noncomplex 2-
transitive groups by Theorem 6.17.

6. Transitive groups acting on Rm \0

In this section we classify all closed linear Lie groups acting transitively on the non-
zero vectors of a finite dimensional real vector space. The main ingredients in our proof are
the classification of compact connected linear Lie groups acting transitively on spheres, and
the representation theory of compact Lie groups.

6.1. Theorem. Let mf 2, and let Ke SOðmÞ be a closed connected subgroup. If K
acts transitively on the sphere Sm�1 ¼

�
x A Rm

�� jxj ¼ 1
�
, then K is (up to automorphisms of

SOðmÞ) one of the following groups.

K Rm m

SOðnÞ Rn n

SUðnÞ Cn 2n
UðnÞ Cn 2n
SpðnÞ Hn 4n
SpðnÞ �Uð1Þ Hn 4n
SpðnÞ � Spð1Þ Hn 4n
G2 PuðOÞ 7
Spinð7Þ O 8
Spinð9Þ OlO 16

Besides the standard inclusions between the classical groups

(e.g. SpðkÞe SUð2kÞeUð2kÞe SOð4kÞ etc.),

the inclusions in the special dimensions 7, 8, and 16 are as follows (note that SUð4ÞG Spinð6Þ
and Spð2ÞG Spinð5Þ).

7 8 16

SOð7Þ SOð8Þ SOð16Þ����
����

����
G2 Spinð7Þ Uð4Þ Spinð9Þ Uð8Þ����

����
����

SUð4Þ Uð1Þ � Spð2Þ Uð1Þ � Spð4Þ SUð8Þ����
����

Spð2Þ Spð4Þ
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All exceptional phenomena in dimensions 7, 8, 16 are related to the Cayley plane PG2O; see
Salzmann et al. [36], Ch. I.

Proof. We could use the classification of compact Lie groups acting transitively on
spheres, due to Montgomery-Samelson [31] and Borel [2], [3]; see also Poncet [34], Besse [1],
7.13, Onishchik [32], §18, Theorem 3 (i), Salzmann et al. [36], 96.20–23, and Kramer [28],
Ch. 6. However, we actually need only the classification of transitive subgroups of SOðnÞ,
which is much easier and follows directly from Onishchik’s classification of factorizations
of SOðnÞ, see [32], p. 227 and [15], II, §4.5, p. 144. r

6.2. Corollary. Suppose that mf 3. Then the commutator group K 0 ¼ ½K;K � acts
also transitively on Sm�1.

Proof. This follows either by direct inspection of the list, or by a simple homotopy-
theoretic argument, see Onishchik [32], §5, Prop. 9, or Grundhöfer-Knarr-Kramer [18],
Lem. 1.3. r

6.3. Proposition. Let V be a finite dimensional real vector space of dimension mf 3,
and let HeGLðVÞ be a closed connected group. Suppose that H acts transitively on the

nonzero vectors of V. Then H is reductive, and consequently H 0 ¼ ½H;H� is a semisimple

subgroup of SLðVÞ. If KeH is a maximal compact subgroup and if j�j is a K-invariant

norm on V, then K and ½K ;K � act transitively on the sphere Sm�1 ¼
�
x A V

�� jxj ¼ 1
�
. Con-

sequently, K is one of the groups given in Theorem 6.1.

Proof. Clearly, H acts irreducibly on Rm, and thus H is reductive, see Salz-
mann et al. [36], 95.2, 95.6. Let KeH be a maximal compact subgroup, let j�j be
a K-invariant norm, and let v be a vector with jvj ¼ 1. There is a homotopy equi-
valence K=Kv FH=Hv GRmnf0g by Lemma 5.5. Thus K=Kv FSm�1, and in partic-
ular dimðK=KvÞ ¼ m� 1. By domain invariance, K � x ¼ Sm�1, and by Corollary 6.2,
the commutator group ½K;K � is also transitive on Sm�1. r

6.4. Corollary. There exists a simple subgroup H1 eH such that K XH1 acts tran-

sitively on Sm�1.

Proof. By Proposition 6.3, ½K;K�e ½H;H� acts transitively on Sm. Theorem 6.1
shows in each case that K has a simple factor which acts transitively on Sm�1. We can
choose a simple factor H1 e ½H;H� containing this simple factor of K. r

Now we determine all possibilities for the semisimple group ½H;H�. The following
facts will be useful.

6.5. Theorem. Let He SLmR be a closed semisimple subgroup. After conjugation

with some element in SLmR, the Cartan decomposition of slmR ¼ soðmÞl p is also a Cartan

decomposition of h,

h ¼
�
hX soðmÞ

�
l ðhXpÞ:

Proof. See Onishchik-Vinberg [33], Ch. 5, Theorem 4, p. 261. r
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6.6. Lemma. Let g ¼ kl p be a Cartan decomposition of a simple noncompact Lie

algebra. Then

½p; p� ¼ k:

In particular, if le g is a subalgebra containing p, then l ¼ g.

Proof. Let h ¼ ½p; p�e k. Using the Jacobi identity, it is clear that ½k; h�e h. Since
½p; h�e p, we conclude that hþ p is an ideal in g, hence hþ p ¼ g ¼ kþ p. This is a direct
sum decomposition with he k, therefore h ¼ k. r

We use the following facts from representation theory. We rely on Tits [43] and
[44], on the Reference Chapter in Onishchik-Vinberg [33], and on Chapter 9 in Salzmann
et al. [36].

6.7. Remarks on representation theory. Associated to a real semisimple Lie group G

is its weight lattice; every weight p is a linear combination with integral coe‰cients of
the so-called fundamental weights pi. The dominant weights (i.e. the weights where all
coe‰cients are nonnegative) correspond bijectively to the equivalence classes of (finite
dimensional) complex irreducible representations of G. We denote the complex irreducible
module associated to the dominant weight p by RðpÞ. The Galois group of C=R acts on the
weight lattice via p 7! p; if p ¼ p then RðpÞ admits a real or a quaternionic structure (i.e. a
complex semilinear endomorphism f with f2 ¼ id resp. f2 ¼ �id). There is a correspond-
ing map b from the invariant weights into the Brauer group BrðRÞ ¼ fR;Hg. There are
three types of real irreducible representations of G:

(1) If p3 p, then p is of complex type and RRðpÞ ¼ RðpÞ is a real irreducible G-
module.

(2) If p ¼ p and bp ¼ R, then p is of real type. There exists a unique real irreducible
G-module RRðpÞ, and RðpÞG RRðpÞnC.

(3) If p ¼ p and bp ¼ H, then p is of quaternionic type. In this case, RRðpÞ ¼ RðpÞ is
a real irreducible module, and RðpÞ admits a quaternionic structure.

The Reference Chapter in Onishchik-Vinberg [33] contains tables which we will fre-
quently use to explain how exterior powers

Vk
V , symmetric powers SkV , and tensor prod-

ucts Vnk of complex irreducible modules V can be decomposed.

We fix some notation. We denote the ring of n� n-matrices with entries in F by FðnÞ.
The notation for Lie groups and algebras is as in Onishchik-Vinberg [33]. In particular, we
denote the quaternion unitary group UnH by SpðnÞ. Let

SðnÞ ¼ fX A RðnÞ jX T ¼ Xg and S0ðnÞ ¼ fX A SðnÞ j trðX Þ ¼ 0g:

The Cartan decomposition of slmR is slmR ¼ soðmÞlS0ðmÞ.

6.8. Lemma. Let He SOðnÞ be a subgroup. Then there is a standard action of H on

S0ðnÞ which is given by X 7! hXhT . The following actions of subgroups of SOðnÞ on S0ðnÞ are
R-irreducible for nf 2:
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H n

SOðnÞ n

G2 7
Spinð7Þ 8

Proof. For the orthogonal groups, this follows from the fact that every quadratic
form can be diagonalized by conjugation with an element of SOðnÞ. If 03U eS0ðnÞ is an
SOðnÞ-invariant subspace, then U intersects the space A consisting of diagonal traceless
matrices nontrivially. Moreover, the SOðnÞ-stabilizer of A induces the symmetric group
SymðnÞ on the diagonal matrices. Thus U contains A, whence U ¼ S0ðnÞ. (The action of
SOðnÞ is in fact a polar action; it is the isotropy representation of the Riemannian sym-
metric space SLnR=SOðnÞ. The principal orbits are isoparametric submanifolds; the orbit
types form the building DðSLnRÞ, i.e. the real projective geometry of rank n� 1.)

For the groups G2 and Spinð7Þ we use representation theory. The complex module
corresponding to the action of G2 on the set PuðOÞGR7 of pure octonions is Rðp1Þ,
and

Sð7ÞnCGS2Rðp1Þ ¼ Rð2p1ÞlC:

The Galois group of C=R acts trivially on the weights, and all representations of G2 are of
real type, see Tits [43], p. 42. Thus S0ð7ÞG RRð2p1Þ is a real irreducible G2-module.

The reasoning for Spinð7Þ is similar. The complex module for the 8-dimensional
representation is Rðp3Þ, and S2Rðp3Þ ¼ Rð2p3ÞlC, see Onishchik-Vinberg [33], p. 301.
This module is of real type, see Tits [43], p. 31, hence RRð2p3ÞnCGRð2p3Þ. Thus
S0ð8ÞG RRð2p3Þ is a real irreducible Spinð7Þ-module. r

Now we determine all closed noncompact semisimple subgroups of SLmR which
contain one of the compact groups in Theorem 6.1.

6.9. Proposition. Let He SLmR be a closed noncompact semisimple subgroup, for
mf 3. If SOðmÞ < H, then H ¼ SLmR. If m ¼ 7 and if G2 < H, then H ¼ SL7R. If m ¼ 8
and if Spinð7Þ < H, then H ¼ SL8R.

Proof. Let h denote the Lie algebra of H. We may assume that
he slmR ¼ soðnÞlS0ðnÞ is embedded as in Theorem 6.5. Let K ¼ SOðmÞXH. Then
hXS0ðmÞ is a nonzero K-module. Since we assume that K ¼ SOðmÞ (resp. that G2eK

or that Spinð7ÞeK), it follows from Lemma 6.8 that hXS0ðmÞ ¼ S0ðmÞ, and thus
h ¼ slmR by Lemma 6.6. r

The case of Spinð9Þ acting on OlO is di¤erent. Consider the a‰ne Cayley plane
AG2O, and let HeGL16R denote the stabilizer of the origin in its collineation group.
Then HG ðSpin9;1RÞ

�, and HXF4 G Spinð9Þ, see Salzmann et al. [36], Sec. 15, in partic-
ular 15.6, and p. 628.

6.10. Proposition. Let He SL16R be a closed noncompact semisimple subgroup with

Spinð9Þ < H. Then H is one of the groups ðSpin9;1RÞ
�
or SL16R.
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Proof. The idea is to decompose the Spinð9Þ-module S0ð16Þ into irreducible sub-
modules. We denote the Lie algebra of Spinð9Þe SOð16Þ by spinð9Þe soð16Þ. Let
V ¼ OlO denote the ‘natural’ Spinð9Þ-module. Then Sð16ÞGS2V .

The Galois group of C=R acts trivially on all weights of Spinð9Þ, and all fundamental
representations of Spinð9Þ are of real type, see Tits [43], p. 31. We label the fundamental
weights of Spinð9Þ in the standard way (as in Onishchik-Vinberg [33], p. 293 or in Tits
[43], p. 30). The complex module Rðp4Þ associated to the weight p4 is the Spin-module,
Rðp4ÞGV nC. By Onishchik-Vinberg [33], p. 301, we have a decomposition

S2Rðp4ÞGRð2p4ÞlRðp1ÞlC:

Therefore we obtain a decomposition into real irreducible modules

S2V G RRð2p4Þl RRðp1ÞlR and S0ð16ÞG RRð2p4Þl RRðp1Þ:

The dimensions of the modules RRðp1ÞGR9, and RRð2p4Þ are 9 and 126, respectively, see
Onishchik-Vinberg [33], p. 301.

Now suppose that He SL16R is embedded as in Theorem 6.5. Since Spinð9ÞeH,
the Lie algebra h of H is a Spinð9Þ-module. Consider the nonzero Spinð9Þ-module
M ¼ hXS0ð16Þ. If M ¼ S0ð16Þ, then h ¼ sl16R by Lemma 6.6. Since we know that
so9;1Re sl16R, the case M ¼ RRðp1Þ is possible, and ½M;M� ¼ spinð9Þ in this case,
so h ¼ so9;1R is uniquely determined. Finally, suppose that M ¼ RRð2p4Þ. Then
dim

�
spinð9Þ þM

�
¼ 162; no such semisimple Lie algebra (with spinð9Þ as maximal com-

pact subalgebra) exists. r

Now we consider semisimple groups which contain SUðnÞ. Let

HðnÞ ¼ fX A CðnÞ jX T ¼ Xg

denote the set of hermitian matrices, and let H0ðnÞ ¼ fX A HðnÞ j trðX Þ ¼ 0g. Note that
suðnÞ ¼ iH0ðnÞ and uðnÞ ¼ iHðnÞ.

Let Y ¼ 1

�1

� 	
and I ¼ 1

�1

� 	
. We identify C with the subalgebra of Rð2Þ

spanned by 1;I; this subalgebra has a vector space complement CY which is spanned by Y
and IY. Every matrix X A RðnÞnRð2ÞGRð2nÞ decomposes uniquely as

X ¼ X1 n 1þ X2 nIþ ðX3 n 1þ X4 nIÞY:

We call X1 n 1þ X2 nI the complex part of X and X3 nYþ X4nIY the anti-

complex part of X. There is a natural injection CðnÞ ,! Rð2nÞ which is given by
Aþ Bi 7! An 1þ BnI, for A;B A RðnÞ, and Aþ Bi A HðnÞ if and only if A A SðnÞ and
B A soðnÞ. More generally, we have

ðX1 n 1þ X2 nIþ X3 nYþ X4nIYÞT ¼ X T
1 n 1� X T

2 nIþ X T
3 nYþ X T

4 nIY:

Using this identity, it is not hard to show that S0ð2nÞ ¼ H0ðnÞlSðnÞnCY. The corre-
sponding decomposition into SUðnÞ-modules is
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S0ð2nÞG suðnÞlS2V ;

where V GCn is the natural module (the symmetric power of V being taken over C!).
Clearly, suðnÞ is an irreducible real SUðnÞ-module for all nf 2. By Onishchik-Vinberg
[33], p. 300, the complex module S2Rðp1ÞGRð2p1Þ is irreducible for all nf 2; and 2p1 is
of complex type, RRð2p1Þ ¼ Rð2p1Þ, provided that nf 3. Thus S2V is a real irreducible
SUðnÞ-module for nf 3.

6.11. Proposition. Let He SL2nR be a closed semisimple noncompact subgroup with

SUðnÞ < H, for nf 3. Then H is one of the groups SLnC, Sp2nR, or SL2nR.

Proof. We assume that he sl2nR is embedded as in Theorem 6.5. Thus hXS0ð2nÞ
is a nonzero SUðnÞ-module. We showed above that S0ð2nÞ ¼ H0ðnÞlSðnÞnCY is a
decomposition into real irreducible SUðnÞ-modules. The real dimensions of these two mod-
ules are n2 � 1 and n2 þ n, respectively, so they are not isomorphic. Moreover, the follow-
ing subalgebras exist:

slnC ¼ suðnÞlH0ðnÞ and sp2nR ¼ uðnÞlSðnÞnCY:

Since

½H0ðnÞ;H0ðnÞ� ¼ suðnÞ; ½SðnÞnCY;SðnÞnCY� ¼ uðnÞ and

½S0ð2nÞ;S0ð2nÞ� ¼ soð2nÞ

by Lemma 6.6, the algebras slnC, sp2nR, and sl2nR are the only possibilities for h. r

Now we consider the case where spðnÞe h, for nf 2. Let V ¼ C2n ¼ Hn denote the
natural SpðnÞ-module. The complex SUð2nÞ-module corresponding to suð2nÞ is

suðnÞnCG sl2nC ¼ fX A Cð2nÞ j trðXÞ ¼ 0g:

Thus we have to consider the complex SpðnÞ-module V nV . By Onishchik-Vinberg [33],
p. 302, V nV ¼ Rðp1ÞnRðp1ÞGRðp2ÞlRð2p1ÞlC. The Galois group of C=R acts
trivially on the fundamental weights, and pk is of real type if and only if k is even, see Tits
[43], p. 34. Thus p2 and 2p1 are of real type. Moreover, Rð2p1Þ ¼ sp2nC, and we obtain a
decomposition into real irreducible SpðnÞ-modules

suð2nÞG spðnÞl RRðp2Þ:

The dimension of RRðp2Þ is ð2nþ 1Þðn� 1Þ, and dim
�
spðnÞ

�
¼ ð2nþ 1Þn; in particular, the

modules are not isomorphic. The complex spðnÞ-module Sð2nÞnCGS2Rðp1Þ decom-
poses as

S2Rðp1ÞGRð2p1Þ;

see Onishchik-Vinberg [33], p. 302. Thus the decomposition into real irreducible modules is

S2V G spðnÞl spðnÞ
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and

S0ð4nÞG spðnÞl spðnÞl spðnÞl RRðp2Þ:

6.12. Proposition. Let He SL4nR be a closed noncompact semisimple subgroup with

SpðnÞ < H, for nf 2. Then H is one of the groups SLnH, SLnH � Spð1Þ, SL2nC, Sp2nC,
SL4nR, or Sp4nR.

Proof. We assume that he sl4nR is embedded as in Theorem 6.5. Thus hXS0ð4nÞ is
a nonzero SpðnÞ-module. Note that the subalgebras slnH, sp2nC, sl2nC and sp4nR exist in
sl4nR. We have

slnHXS0ð4nÞG RRðp2Þ;

sp2nCXS0ð4nÞG spðnÞ;

sl2nCXS0ð4nÞG spðnÞl RRðp2Þ;

sp4nRXS0ð4nÞG spðnÞl spðnÞ;

sl4nRXS0ð4NÞGS0ð4nÞ:

Let a A Spð1Þ ¼ CenSOð4nÞSpðnÞ be a pure element, aþ a ¼ 0. Then a defines a real sym-
plectic structure oa on R4n ¼ Hn by oaðu; vÞ ¼ ReðuTavÞ. Thus we see that all copies of
spðnÞeS0ð4nÞ are conjugate under the group Spð1Þ. In view of Lemma 6.6, we immedi-
ately obtain the following results.

If hXS0ð4nÞ ¼ RRð2p1Þ, then slnHe h and thus h ¼ slnH or h ¼ slnHl spð1Þ.

If hXS0ð4nÞG spðnÞ, then h is conjugate to the algebra sp2nC.

If hXS0ð4nÞG spðnÞl RRð2p1Þ, then h is conjugate to sl2nC.

If hXS0ð4nÞG spðnÞl spðnÞ, then h is conjugate to h ¼ sp4nR.

If hXS0ð4nÞ ¼ S0ð4nÞ, then h ¼ sl4nR.

Thus, if hXS0ð4nÞ contains spðnÞl RRðp2Þ or spðnÞl spðnÞ, then suð2nÞe h, and
we showed in Proposition 6.11 that in this case either h ¼ sp4nR or h ¼ sl2nC.

There are no other cases to be considered. r

Finally, we discuss the low dimensional cases.

6.13. Proposition. Let He SL4R be a closed semisimple noncompact Lie group con-

taining SUð2Þ. Then H is one of the groups SL2C, Sp4R, or SL4R.

Proof. As we noted before Proposition 6.11, we have a decomposition
S0ð4ÞG suð2ÞlS2V , where V ¼ C2 ¼ Rðp1Þ is the natural module (the symmetric power
is taken over C). Moreover, S2Rðp1ÞGRð2p1Þ, and b2p1 ¼ R. Thus RRð2p1Þ ¼ suð2Þ,
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and S0ð4ÞG suð2Þl suð2Þl suð2Þ. Similarly as in Proposition 6.12, the centralizer
Spð1Þ ¼ CenSOð4ÞSUð2Þ acts transitively on the copies of suð2Þ in S0ð4Þ. Thus we have only
the cases

hXS0ð4ÞG suð2Þ and hG sl2C;

hXS0ð4ÞG suð2Þl suð2Þ and hG sp4R;

hXS0ð4ÞGS0ð4Þ and h ¼ sl4R: r

We summarize these results as follows.

6.14. Theorem. Let GeGLmR be a closed subgroup, for mf 3. Suppose that G

acts transitively on the projective space RPm�1. Let L ¼ ½G;G� denote the commutator group

of G. Then GeNorGLmRðLÞ, and there is a split short exact sequence

1! L! NorGLmRðLÞ !
 

N ! 1:

The following list gives all possibilities for L and the factor group N ¼ NorGLmRðLÞ=L. We

put R> ¼ fr A R j r > 0g.

L m N

SOð2nÞ 2n R>

SOð2nþ 1Þ 2nþ 1 R�

SUðnÞ 2n ðnf 3Þ C�

SpðnÞ 4n SOð3Þ � R>

SpðnÞ � Spð1Þ 4n R>

G2 7 R�

Spinð7Þ 8 R>

Spinð9Þ 16 R>

SL2nR 2n R>

SL2nþ1R 2nþ 1 R�

Sp2nR 2n R>

SLnC 2n C�zZ=2
Sp2nC 4n C�zZ=2
SLnH 4n SOð3Þ � R>

SLnH � Spð1Þ 4n R>

Spin9;1R 16 R>

Proof. The possibilities for the group L were determined in Propositions 6.9–6.12.
In each case, it is not di‰cult to determine the normalizer and to construct a splitting of the
exact sequence. r

The proof of the next lemma is straight-forward; it can be used to derive a list of all
connected transitive groups.

6.15. Lemma. Let SeH� be a closed noncompact connected 1-dimensional sub-

group. Up to conjugation, S is of the form
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S ¼ Sa ¼ fetð1þiaÞ j t A Rg ¼ fxeia lnðxÞ j x A R>g

for some real number a A R. The group is central in H� if and only if a ¼ 0, and S0 ¼ R>.

Proof. Let seRl suð2Þ denote the Lie algebra of S. After conjugation with a
suitable element g A H�, we may assume that seRl soð2ÞGRliR. Let ðx;iyÞ A s be a
generator. Then expðtx;ityÞ ¼ etxeity. Since we assumed that S is not compact, x3 0 and
we may put ðx; yÞ ¼ ð1; aÞ. r

In the 2-dimensional case, there are the following possibilities.

6.16. Lemma. Let He SL2R be a connected group acting transitively on the nonzero

vectors. Then H ¼ SL2R, or H is conjugate to C�e SL2R.

Proof. We have 3 ¼ dimðSL2RÞf dimðHÞf 2, and H is reductive. Thus H is
abelian if H3 SL2R. In the abelian case, H acts regularly and is thus homeomorphic
to C�; in particular, it contains a torus SOð2Þ. The connected centralizer of SOð2Þ is
C� ¼ CenSL2RSOð2Þ. r

Combining the results of this section, we obtain the following final result.

6.17. Theorem. Let HeGLmR be closed connected subgroup which acts transitively

on Rmnf0g. Up to conjugation, H is one of the groups listed in (a), (b), (c) below.

(a) ½H;H� is compact and mf 3.

½H;H� m H

SOðnÞ n SOðnÞ � R>

SUðnÞ 2n SUðnÞ � Sa, SUðnÞ � C� ðþÞ
SpðnÞ 4n SpðnÞ � Sa, SpðnÞ � C� ðþÞ
SpðnÞ � Spð1Þ 4n SpðnÞ �H�
G2 7 G2 � R>

Spinð7Þ 8 Spinð7Þ � R>

Spinð9Þ 16 Spinð9Þ � R>

Here, a can be any real number.

(b) ½H;H� is noncompact and mf 3.

½H;H� m H

SLnR n SLnR, SLnR � R>

SLnC 2n SLnC, SLnC �Uð1Þ, SLnC � Sa, GLnC ðþÞ
SLnH 4n SLnH, SLnH �Uð1Þ, SLnH � Sa, SLnH � C� ðþÞ
SLnH � Spð1Þ 4n SLnH � Spð1Þ, SLnH �H�
Sp2nR 2n Sp2nR, Sp2nR � R>

Sp2nC 4n Sp2nC, Sp2nC �Uð1Þ, Sp2nC � Sa, Sp2nC � C� ðþÞ
Spin9;1R 16 Spin9;1R, Spin9;1R � R>

Again, a can be any real number.
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(c) For m ¼ 1; 2 there are only the following possibilities.

m H

1 R�

2 C� ðþÞ
SL2R, SL2R � R>

(d) If H preserves a complex structure on Rm, then H is one of the groups in (a), (b), (c)
marked with ðþÞ.

Proof. For mf 3, the possibilities for the semisimple group L ¼ ½H;H� are deter-
mined in Theorem 6.14. A direct inspection (combined with Lemma 6.15) yields the list.
For m ¼ 2 we use Lemma 6.16, and the case m ¼ 1 is trivial. Finally, (d) follows by direct
inspection of the actions. r

Using the results in this section, it is not di‰cult to obtain a list of linear groups act-
ing transitively on the point set FPk of a projective space over F ¼ C;H, see Völklein [47],
Satz 2. Also, the possibilities for closed, but not necessarily connected groups can be
determined using 6.14. We leave this to the reader.

7. Locally compact Moufang sets

A Moufang set is a tripel ðG;U ;XÞ, where G is a 2-transitive permutation group
acting on X, and U tGx is a normal subgroup of a stabilizer Gx acting regularly on
Xnfxg. Moufang sets were introduced by Tits in [46]; they are also known as split doubly
transitive groups. Note that the special case Gx ¼ U is the same as a sharply 2-transitive
group. See also Kramer [29], Section 1.8.

In this section, we determine all Moufang sets, where G is an e¤ective 2-transitive Lie
group and U is closed in Gx. We call such a Moufang set a locally compact and connected

Moufang set. According to the classification of 2-transitive Lie groups, we distinguish three
cases: the case where G� is simple and of rank 1, the case where G� is simple and of higher
rank, and the a‰ne case where X ¼ Rn.

Recall from Section 3 the Iwasawa decomposition of a simple Lie group

H ¼ KAU

and the corresponding minimal parabolic

B ¼ K0AU ;

where K0 ¼ CenKðAÞ is the reductive anisotropic kernel.

7.1. Proposition. Let G be a 2-transitive Lie group, with G� ¼ H simple and of rank

1, as in Theorem 3.3 (a). As above, let U denote the unipotent radical of a minimal parabolic

BLH. Then ðG;U ;H=BÞ is a locally compact connected Moufang set.
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Proof. This is clear from the Iwasawa decomposition. Let X ¼ G=Gx ¼ H=B, and
let y A Xnfxg. Then Hx;y ¼ By ¼ K0A. The group U is normal in B ¼ Hx, and intersects
the two-point stabilizer K0A trivially. Thus it acts regularly on Xnfxg. r

If G� is a simple 2-transitive Lie group of rank at least 2, then there is no way of
making X ¼ G=Gx into a Moufang set. The following proof was pointed out by Hendrik
Van Maldeghem, replacing a more topological (and more complicated) argument of mine.
Let X be the point set of a desarguesian projective space of rank at least 2, or the point
space of a projective Moufang plane. Let G be a group of automorphisms of the projective
space, containing all elations. Then ðG;X Þ cannot be made into a Moufang set. To see this,
let p A X and assume that U tGp is a normal subgroup acting regularly on Xnfpg. Let
u A U , and let t be an elation with center p. Then utu�1 is also an elation with center p, and
so is the commutator ½u; t�. If we choose u; t in such a way that u does not fix the axis of
t (which is possible, since the rank of the projective space is at least 2), then ½u; t� A U is
a nontrivial elation with center p. Since U is normal, U contains all elations with center
p. These elations form an abelian normal subgroup of Gp which is, however, not regular
on X.

7.2. Proposition. None of the groups in Theorem 3.3 (b) can be made into a Moufang

set. r

Finally, we consider the question of uniqueness in the case where H ¼ G� is simple
and of rank 1. The question is thus if Gx admits a regular normal subgroup V di¤erent from
U. Since Xnfxg is connected, we have V tB ¼ Hx ¼ K0AU . So V XK0A ¼ 1 (by regu-
larity of V ) and K0AV ¼ B (by transitivity). Let u denote the Lie algebra of U, and v the
Lie algebra of V. We have to prove that v ¼ u. We decompose the Lie algebra b of B into
irreducible K0A-modules. As a K0A-module, k0 l a decomposes as ½k0; k0�lCenðk0Þl a.
Direct inspection shows that no K0A-submodule of u is isomorphic to a K0A-submodule of
k0 l a. This proves uniqueness of u.

7.3. Lemma. Each of the groups in Theorem 3.3 (a) is in a unique way a locally

compact and connected Moufang set, i.e. the data ðG;X Þ determine the closed regular normal

subgroup U tGx uniquely. r

It remains to consider the case where X is noncompact. Then G is a semidirect prod-
uct G ¼ GxyRm, and U tGx is a normal subgroup acting regularly on the nonzero vec-
tors in Rm. It follows that the chosen maximal compact subgroup KLU acts regularly
on the sphere Sm�1. Direct inspection of the list in Theorem 6.1 shows that this happens
only for m ¼ 1; 2; 4, and ½U ;U � is one of the groups 1; SOð2Þ; Spð3Þ. We obtain the fol-
lowing result, which is originally due to Kalscheuer [25] and was re-proved by Tits [40] and
Grundhöfer [16].

7.4. Theorem. Let U eGLmR be a closed subgroup which acts regularly (i.e.
sharply transitively) on Rmnf0g. Then m ¼ 1; 2; 4, and U is one of the groups R�, C�,
H� ¼ Spð1Þ � S0, or Spð1Þ � Sa, for a3 0.

Proof. The result follows by direct inspection of the tables in Theorem 6.17. r
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Since U tH is a normal subgroup, it remains to determine the normalizer
NorGLmRðUÞ. The following table shows the corresponding quotients NorGLmRðUÞ=U .

U m NorGLmRðUÞ=U

R� 1 1
C� 2 Z=2
H� 4 SOð3Þ � R>

Spð1Þ � Sa 4 R> ða3 0Þ

Using this, it is not di‰cult to determine the locally compact and connected Moufang sets
for noncompact X. Also, it is easy to see that the pair ðG;XÞ determines U for m ¼ 1; 2.
This is not true for m ¼ 4: if H ¼ Spð1Þ � C� is the group consisting of all maps x 7! hxc,
for h A Spð1Þ and c A C�, then Spð1Þ � Sa ¼ U tH is a regular normal subgroup for any
choice of a A R.
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