ÜBUNGSBLATT 2

Aufgabe 1. (6 Punkte)

Sei $M := \{3n + 1 \mid n \in \mathbb{N}_0\}.$

Zeigen Sie, dass die Menge M multiplikativ abgeschlossen ist, das heißt:

- $1 \in M$, und
- für alle $a, b \in M$ ist auch $a \cdot b \in M$.

Wir nennen eine Zahl $m \in M$ unzerlegbar, wenn aus $m = a \cdot b$ mit $a, b \in M$ immer folgt: a = 1 oder b = 1.

Finden Sie nun eine Zahl $k \in M$, für die es zwei echt unterschiedliche Darstellungen $k = m_1 \cdot m_2$ und $k = m'_1 \cdot m'_2$ mit unzerlegbaren $m_1, m_2, m'_1, m'_2 \in M$ gibt! (Dabei nennen wir die beiden Darstellungen von k echt unterschiedlich, wenn $m_i \neq m'_j$ für alle $i, j \in \{1, 2\}$ gilt.)

(Achtung: Bei der Lösung der Aufgabe ist natürlich insbesondere nachzurechnen, dass die Zahlen m_1 , m_2 , m'_1 und m'_2 in den gefundenen Produktdarstellungen der Zahl k unzerlegbar sind.)

Aufgabe 2. (4 Punkte)

Sei $n \in \mathbb{N}$ ungerade (und beliebig). Zeigen Sie, dass es dann zu n zwei Zahlen $a,b \in \mathbb{N}_0$ gibt mit

$$n^2 = 8a + 1$$

und

$$n^4 = 16b + 1$$
.

Geben Sie explizit an, wie a und b zu vorgegebenem n aussehen müssen!

Aufgabe 3. (2 Punkte) – eine (kleine) Rechenaufgabe

• Berechnen Sie die Anzahl der positiven Teiler der folgenden Zahlen: 5, 27, 1024, 30031, 44200.