ÜBUNGSBLATT 6

Aufgabe 1. (4 Punkte)

• Sei $n \in \mathbb{N}$ und seien $a_1, \ldots, a_n \in \mathbb{Z}$. Wir betrachten die Menge

$$I := I(a_1, \dots, a_n) := \{ z \in \mathbb{Z} \mid \text{es gibt } x_1, \dots, x_n \in \mathbb{Z} \text{ mit } z = x_1 \cdot a_1 + \dots + x_n \cdot a_n \}.$$

Zeigen Sie, dass Folgendes gilt:

- Sind $z, z' \in I$, so ist auch $z z' \in I$.
- Ist $z \in I$ und $x \in \mathbb{Z}$, so ist auch $x \cdot z \in I$.
- Sei $a \in \mathbb{Z}$ und $b \in \mathbb{N}$ und zwei Darstellungen $a = q_1 \cdot b + r_1$ und $a = q_2 \cdot b + r_2$ mit $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ gegeben. Zeigen Sie, dass dann $b \mid r_1 r_2$ gilt! (Die "Reste" unterscheiden sich also um ein Vielfaches von b.)

Aufgabe 2. (4 Punkte)

Geben Sie zu den folgenden Gleichungen jeweils eine ganzzahlige Lösung an (d. h. eine Lösung mit $x,y\in\mathbb{Z}$) bzw. eine Begründung, warum es keine ganzzahlige Lösung geben kann!

$$27x - 3y = 9$$

$$221x - 247y = 91$$

$$15x - 46y = 1$$

$$15x + 25y = 7$$

$$13x - 17y = 35$$

$$509x + 30031y = 1018$$

$$30031x - 509y = 1$$

$$256x + 128y = 32$$

Aufgabe 3. (4 Punkte)

• Seien $a, b \in \mathbb{Z}$ mit |a| > 1 und |b| > 1. Zeigen Sie, dass dann

$$|a \cdot b| = ggT(a, b) \cdot kgV(a, b)$$

ist!

• Seien $a, b \in \mathbb{N}$, so dass $a = q \cdot b + r$ mit $q, r \in \mathbb{Z}$ und $0 \le r < b$ ist. Zeigen Sie, dass dann die gemeinsamen Teiler von a und b genau die gemeinsamen Teiler von b und r sind! (Insbesondere ist dann ggT(a, b) = ggT(b, r).)