ÜBUNGSBLATT 6

Aufgabe 1. (4 Punkte)

Gegeben sei die Gerade $L := \{(x, y) \in \mathbb{R}^2 \mid 6x + 3y - 9 = 0\}$ im \mathbb{R}^2 .

Zeigen Sie, dass die Abbildung $f: \mathbb{R}^2 \to \mathbb{R}$, f((x,y)) := x, ein Koordinatensystem für die Gerade L bildet, das nicht kompatibel ist mit dem euklidischen Abstand!

Berechnen Sie die drei Abstände der Punkte (4, -5), (-1, 5) und (1, 1) auf der Geraden L, die durch das obige Koordinatensystem gegeben sind!

Aufgabe 2. (4 Punkte)

Gegeben sei eine beliebige 2×2 -Matrix A. Zeigen Sie, dass mit der üblichen Familie \mathcal{L} von Geraden für den \mathbb{R}^2 ($L_{a,b,c} := \{(x,y) \in \mathbb{R}^2 \mid ax+by+c=0\}$ mit $a,b,c \in \mathbb{R}$ und $a^2+b^2 \neq 0$) die zur Matrix A gehörige Abbildung $f_A : \mathbb{R}^2 \to \mathbb{R}^2$ jede Gerade durch den Nullpunkt auf eine Gerade durch den Nullpunkt oder den Punkt (0,0) abbildet!

Aufgabe 3. (4 Punkte)

Es seien $P := \binom{1}{1}$, $Q := \binom{2}{1}$, $R := \binom{3}{4}$ gegeben. Berechnen Sie die Winkelmaße für die drei Winkel in dem so entstehenden Dreieck!

Gegeben seien zwei Punkte $R, S \in \mathbb{R}^2$ sowie $a, b \in \mathbb{R}$. Zeigen Sie, dass dann gilt:

$$\langle aR + bS, aR + bS \rangle = a^2 \langle R, R \rangle + 2ab \langle R, S \rangle + b^2 \langle S, S \rangle.$$