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1 Elekes-Szabó and general position conditions

1.1 Coarse pseudofinite dimension

Fix a non-principal ultrafilter U on N.
For a set A, an internal subset of AU is an element X of P(A)U ,
i.e. X =

∏
i→U Xi where Xi ⊆ A.

Let X ⊆ AU be internal.

The non-standard cardinality of X is |X| = limi→U |Xi| ∈ NU ∪ {∞};
X is pseudofinite iff |X| <∞.

For a given “gauge” N = limi→U Ni ∈ NU \ N,
the Hrushovski-Wagner coarse pseudofinite dimension of X with respect to N is

δ(X) = δN (X) = st(logN |X|) ∈ R≥0 ∪ {±∞}.

Note δ(X × Y ) = δ(X) + δ(Y ), and δ(X ∪ Y ) = max(δ(X), δ(Y )).

Say X is broad if 0 < δ(X) <∞, i.e. N
1
n < |X| < Nn for some n ∈ N.

1.2 1-dimensional Elekes-Szabó

Say an algebraic surface V ⊆ C3 is coherent if there are pseudofinite X1, X2, X3 ⊆ CU with
(for a suitable gauge) δ(Xi) = 1 and δ(V (CU ) ∩ (X1 ×X2 ×X3)) = 2.

The graph {x+ y = z} of addition is coherent,
witnessed by an arithmetic progression Xi := [−N,N ] =

∏
i→U{−Ni, . . . , Ni}.

Similarly for multiplication, and for the group operation of an elliptic curve.

Coherence is preserved under a finite-to-finite algebraic correspondence on a co-ordinate,
e.g. {x2 + y3 = z5} is coherent.

To rule out degenerate cases: call an algebraic surface V ⊆ C3 a “ternary correspondence”
if it projects dominantly to any pair of co-ordinates.

Theorem (Elekes-Szabó ’12). A ternary correspondence V ⊆ C3 is coherent if and only if it is
in co-ordinatewise finite-to-finite correspondence with the graph of addition in a 1-dimensional
algebraic group.

1.3 Example: Orchard problem

Problem: Find large finite subsets of R2 with many collinear triples.
One precise formulation: Find X ⊆ (R2)U with δ(X) = 1 and
δ({(x1, x2, x3) ∈ X3 : x1, x2, x3 are distinct and collinear}) ≥ 2.

Solutions: Take X a length N arithmetic progression in a plane cubic curve.

(Image adapted from Green-Tao)

Theorem (Elekes-Szabó ’13). There are no solutions with X on an irreducible plane curve of
degree > 3.

1.4 Higher-dimensional Elekes-Szabó

Elekes-Szabó can be seen as a matter of modularity of the geometry of acl.
It goes through in higher dimension, but we need a minimality condition to ensure exchange.

Definition. A be a broad pseudofinite subset X of an irreducible algebraic variety V is in
coarse general position (cgp) in V if δ(X ∩W ) = 0 for any proper subvariety W ( V .

If W1,W2,W3 are varieties, a subvariety V ⊆
∏

iWi is cgp-coherent if there are cgp Xi ⊆Wi

with δ(Xi) = 1 and δ(V ∩
∏

iXi) = 2.

As before, V is a “ternary correspondence” if it projects dominantly and with generically
finite fibres to any pair Wi ×Wj of co-ordinates. (In particular, dim(V ) = 2 dim(Wi).)

Theorem (Elekes-Szabo ’12, B-Breuillard ’18). A ternary correspondence V ⊆
∏

iWi is cgp-
coherent if and only if it is in co-ordinatewise finite-to-finite correspondence with the graph of
addition in a commutative algebraic group.

1.5 Coherence without cgp

What happens if we relax the cgp hypothesis?
Some general position condition is necessary to rule out degenerate situations.
The following example shows that ”Xi is Zariski-dense in Wi” is insufficient.

Example. Suppose W1 = W2 = W3 =: W ,
where W is an arbitrary variety containing a commutative algebraic group G as a subvariety.
Let V ⊆W 3 be a ternary correspondence (with everywhere finite fibres),
such that V ∩G3 is the graph of addition.
Let X1 = X2 be the union of an arithmetic progression in G of length N ,
and a Zariski-dense subset of W of size log(N),
and let X3 be the image {z : (x, y, z) ∈ V, (x, y) ∈ X1 ×X2}.
Then δ(Xi) = 1 for i = 1, 2, 3, and δ(V ∩

∏
Xi) = 2.

This example suggests the following definition.

Definition. A broad pseudofinite subset X of an irreducible algebraic variety V is in weak
general position (wgp) in V if δ(X ∩W ) < δ(X) for any proper subvariety W ( V .

If W1,W2,W3 are varieties, a subvariety V ⊆
∏

iWi is wgp-coherent if there are wgp Xi ⊆Wi

with δ(Xi) = 1 and δ(V ∩
∏

iXi) = 2.

1.6 Examples of wgp-coherence

Example.

A :=

1 [−N,N ] [−N2, N2]
0 1 [−N,N ]
0 0 1


witnesses that the graph of the group operation in the Heisenberg group is wgp-coherent.

Example (BB’18). The graph of ∗ : C2 × C2 → C2

(a1, b1) ∗ (a2, b2) = (a1 + a2 + b21b
2
2, b1 + b2)

is wgp-coherent (witnessed by [−N4, N4]× [−N,N ]),
but is not in co-ordinatewise correspondence with the graph of a group operation.

Working hypothesis: Iterated abelian groups are the only source of wgp-coherence.

1.7 Test case: higher orchard

S ⊆ C3 an algebraic surface, e.g. cubic.
V := {(x, y, z) : x, y, z ∈ S and x, y, z are distinct collinear}.
For what S is V wgp-coherent?
Expectation: S has to be the union of three planes.

2 ES in a group

Question 1. For which connected algebraic groups (G; ·) is the graph Γ· ⊆ G3 wgp-coherent?

I.e. when do there exist wgp X1, X2, X3 ⊆ G with δ(Xi) = 1
and δ({(x1, x2, x3) ∈

∏
iXi : x1 · x2 = x3}) = 2?

For cgp-coherence, by the ES result above the answer is: iff G is abelian.

Theorem 1 (B-Dobrowolski-Zou). The graph of multiplication in a connected algebraic group
G is wgp-coherent iff G is nilpotent.

As we see below, the forward direction is not really new. But the converse is.

2.1 Balog-Szemerédi-Gowers-Tao and reduction to approximate sub-
groups

Coherence implies large ”energy”,

δ({(x1, x2, x′1, x′2) ∈ X1 ×X2 ×X1 ×X2 : x1 · x2 = x′1 · x′2}) = 3.

Tao’s version of Balog-Szemerédi-Gowers obtains from this an approximate subgroup,
some coset of which has large intersection with X1.

Definition. An internal subset X ⊆ G is a coarse approximate subgroup
if X is broad,
and e ∈ X = X−1,
and XX ⊆ KX for some internal K with δ(K) = 0.

Then BSGT essentially1 reduces Question 1 to:

Question 2. Which connected algebraic groups G admit a wgp coarse approximate subgroup?

2.2 Wgp coarse approximate subgroup ⇒ nilpotent

For this we can either directly use the result of Breuillard-Green-Tao that approximate sub-
groups of GLn(C) are nilpotently controlled, or we can parallel the proof of that result as
follows.

Suppose X ⊆ G is a wgp coarse approximate subgroup.

• Replace X with a
∧

-internal subgroup H ≤ G with X ⊆ H and δ(H) = δ(X).

(H :=
⋂

n∈NX
blog2(log|K| N)c−n)

• BGT(+Hrushovski(+Jordan)): A simple complex linear algebraic group has no broad∧
-internal Zariski-dense subgroup.

• It follows that we may assume G is solvable.

• If G is not nilpotent, an argument of Breuillard-Green then cooks out a broad
∧

-internal
subfield of CU , contradicting sum-product theorems.
The wgp hypothesis is used to obtain broadness of quotients of H and hence of this field.

2.3 Nilprogressions

It remains to show that any nilpotent complex algebraic group admits a wgp coarse approximate
subgroup. We will find one as a nilprogression of pseudofinite length.

Definition 2. Given elements a1, . . . , ar of a group H and m ∈ N,
the nilprogression generated by a of length m is the set P (a,m) ⊆ H of words in ai and a−1i

in which for each i, the number of occurences of ai or a−1i is at most m.

For H nilpotent, |P (a,m)| < O(mO(1)), and P (a,m) is a OH,r(1)-approximate subgroup.

Now fix G a non-trivial connected nilpotent complex algebraic group.

Given r ∈ N, set
Pr := P (a,N) ⊆ G(CU ),

where a ∈ Gr(C) is algebraically generic
(i.e. trd(a/C0) = dimGr = r dimG where G is defined over C0).

Then Pr is a coarse approximate subgroup.

The difficulty is to show:

Lemma 1. For large enough r ∈ N, Pr is wgp in G.

Remark 3. One might think to instead try to take r ∈ NU \ N.
For commutative G this works, and one can even get cgp this way.

But e.g. for the Heisenberg group, |Pr| ≈ N2(r
2)+r while |Pr ∩ Z(G)| ≈ N2(r

2),

so wgp fails (since st

(
(r
2)

(r
2)+r

)
= 1).

2.4 Reducing to commutative G

We first reduce Lemma 1 to the case that G is commutative.

Rough idea for G of nilpotency class 2:

• Work in the Lie algebra g with a generic nilbox

Br :=
∑
i

[−N,N ] · bi +
∑
i<j

[−N2, N2] · [bi, bj ]

where exp(bi) = ai.

(Then exp(Br) ≈ Pr; e.g. an2a
n
1 = an1a

n
2 [a2, a1]n

2

.)

• Then Br/g
′ and g′ ∩Br are generalised arithmetic progressions,∑

i[−N,N ] · bi/g′ and
∑

i<j [−N2, N2] · [bi, bj ].

• If W ( G is a proper subvariety,
either W/G′ ⊆ G/G′ is proper or the fibres W ∩ cG′ are generically proper.
In either case we can apply the abelian case to bound |W ∩ exp(Br)|.

Generally, we inductively quotient by the last non-trivial term gn in the descending central
series. Complications:

• Sometimes short Lie monomials in generics are already in gn (e.g. free k-Engel Lie alge-
bras).

• The monomials themselves might not have generic image in Gn; but by Zilber indecom-
posability, if we take r large enough, we get enough independent generics in Gn by taking
suitable disjoint Lie polynomials in the bi.

2.5 G commutative

We want to see that Pr = [−N,N ]r · a =
∑r

i=1[−N,N ]ai is wgp in G for large enough r.

2.5.1 Case 1: G = Gd
a

[−N,N ]d is wgp in Gd
a,

since for W ( G a proper subvariety, W ∩ [−N,N ]d < O(NdimW ).
Hence Pd = [−N,N ]d · a is also wgp.

Similarly, Pr is wgp for r ≥ d.

2.5.2 Case 2: G is semiabelian

Fact 1 (Mordell-Lang). If Γ ≤ G is a finitely generated subgroup,
and W ⊆ G is an irreducible subvariety,
and W ∩ Γ is Zariski-dense in W ,
then W is a coset of an algebraic subgroup of G.

Take Γ := 〈a〉.
By the genericity and rigidity,
no γ ∈ Γ \ {0} is in a proper algebraic subgroup of G.

So if W ⊆ G is infinite and W ∩ Γ is Zariski-dense in W ,
then W = G.

So if W ( G is a proper subvariety, Γ ∩W (C) is finite.

Moreover, for an algebraic family Wb of proper subvarieties,
|Γ ∩Wb(C)| is bounded uniformly in b (Scanlon).

Hence Pr = [−N,N ]r · a is in (very) general position, certainly wgp.

2.5.3 Case 3: G arbitrary

A connected commutative algebraic group G can be written as G = G0 ⊕ V0,
where G0 = G[∞]Zar is almost semiabelian, i.e. connected with Zariski-dense torsion,
and V0 is a vector group V0 ∼= Gn

a .

We obtain the following “generic Mordell-Lang” result for G in terms of this decomposition.
Let Γ := 〈a〉.

Theorem 4 (BDZ). If W ⊆ G is an infinite irreducible subvariety and W ∩Γ is Zariski-dense
in W ,
then W = G0 +W0 for some irreducible subvariety W0 ⊆ V0.

Moreover, this holds uniformly in the sense that it also holds for ΓU .

Combined with the Gn
a case, this suffices to show that Pr is wgp for r ≥ dim(V0),

completing the proof of Theorem 1.

Remark: Mordell-Lang for arbitrary f.g. subgroups of arbitrary commutative algebraic groups is
an open problem (without a clear conjectural statement).

2.6 Sketch proof of Theorem 4

Basic idea: adapt Hrushovski’s DCF proof of char 0 function field Mordell-Lang to our setting
of a generic f.g. subgroup of a fixed commutative algebraic group G.

(For G semiabelian this is not new; c.f. Hrushovski-Pillay “Effective bounds for the number of
transcendental points on subvarieties of semi-abelian varieties”.)

• We can assume we are working in K � DCF0,
and G is defined over the constant field C ≤ K,
and Γ is generic over C.

• Consider the logarithmic derivative

0→ G(C)→ G(K)
lD−→ LG(K)→ 0.

• Set H := lD−1(〈lD(Γ)〉C), a finite Morley rank subgroup of G(K).

• Given W ( G, WMA by quotienting that W is stabilised by no non-trivial almost semi-
abelian subgroup.

• Let π : G→ S be the maximal semiabelian quotient.

• One sees (roughly2) that (lD−1S ◦Lπ ◦ lD)(W ∩H) is almost internal to C;
but the socle of π(H),
the maximal connected definable subgroup which is almost internal to C,
is S(C). So Lπ(lD(W ∩H)) is a point.

• Suppose for contradiction S 6= {0}.
Then by the genericity, also lD(W ∩H) is point.
So after translating, W ∩H ⊆ G(C),
so W has a Zariski-dense set of constant points,
so W is over C,
contradicting the genericity.

1I’m lying here slightly. In fact, only part of the wgp condition on X1 passes to the coarse approximate
subgroup obtained from BSGT: it is Zariski dense and the image in any non-trivial group quotient is broad.
Luckily, this suffices to prove nilpotence.

2Actually we should pass to an appropriate (still Z-dense) subset of W ∩H
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