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SOs3(R)
Theorem (Nesin-Pillay 1991)

» X C SO3(R)" is definable in the pure group
(SO3(R); ) iff it is definable in the field (R; +, -).

» More generally, same for any simple centreless
compact linear algebraic group G < GLj(R).

Example

{(A, B) € SO3(R) : det(A — B) > 0} is definable in
(SO3(R); ).

Sketch of proof:
» Define a copy of SO3(R) in (G; *);
» Reconstruct the field from the projective plane of
involutions of SO3(R).
» See that this yields a bi-interpretation of (G; x) with
(R; +, )
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(SOY°; +) is interpretable in (R; +, -, ©) = RCVF.

Problem

Which (R; +, -, ©)-definable subsets of (SO3°)" are
(SO «)-definable?

Same question for G® for G C GL,(R) compact?



(SO2°; %)
» Lie algebra g(R) = so03(R) =

0 -z y
z 0 x) } ~R3 = {(x,y,2)}.
-y X 0

» Infinitesimal Lie algebra: g, := st™'(0) = m3 < RS.
» Matrix exponentiation yields a homeomorphism
exp,, : gm — SO3.
> expy,(X) xexp,(Y) = exp,(X + Y) + € where
v(l[ell) = v(lIXIT) + v YD
» If X and Y are collinear then
exp,, (X) x exp,(Y) = exp, (X + Y).
» For x € SO and h € SO3(R), group conjugation
x — x":= hx x « h~1 agrees with the matrix action of
SO3(R) on m3:

exp, (X)" = exp,(hX).



Main theorem
Theorem
G C GLy(R) a simple compact linear algebraic group.
(i) X C (G is (G®; x)-definable iff it is
(R; +,-, O)-definable.
(i) Moreover, the interpretation of (G°; x) in (R; +, -, O)
can be completed to a bi-interpretation.

Example

{(A, B) € SO : v(det(A — B)) > o} is definable in
(SO; «).

Ouitline of proof:

(I) Find an (SOY°; +)-definable ordered interval J;
(1) apply o-minimal trichotomy to get a field K in J;
(1) Find a copy of SO in G;

(IV) use adjoint representation to see the pair
G% < G(R) in K, yielding a bi-interpretation.



(I): Finding an ordered interval

» Let S:=SO3(R) and S := SOY°.

» Let b e S\ {e}.

» Cs(b) = {he S: b = b} = SO(R);

» Cgu(b) := Cg(b) N S = SOP = m.

» bShS = £(S?) where £(h, i) = bl « b,

» bSb° = exp,,(B) where B C m® is the closed ball of
radius ||6?|.

» bSb® N Cquo(b) is the interval [b~2, b?].

» By definable choice for the (R; +, -)-definable map &,
X := b5" b5 N Cgu(b) contains some interval
(h, b?].

» Translating, get (S%; x)-definable interval

[e,p) C Csu(b), hence J := (p~ ', p) as an ordered
interval.

» Explicitly: p := b?h~1, then (e,p) = "' X N b2X 1,



(I): Trichotomy

> To(JS™) spans R3, so for appropriate hy, hp, € S
and after shrinking J,

¢ S — 8 (x0, X1, X2) = Xo % X|T % XJ2

is a bijection with a neighbourhood of e € S%.

» (J; %, <) and ¢ are definable both in (S%; %) and in
(R; +, )

» Pulling back the S% group structure via ¢ puts
“non-linear” structure on J at e.

» By the Peterzil-Starchenko o-minimal trichotomy, a
real closed field (K;+,-) onanintervale ¢ K C J is
definable in this structure on J.

» So (K; +,-) is definable both in (S%; ) and in
(R; +, )



(I1): Finding an SOY° in G

vV vy VvYyy

v

go := L(G)

ho < go Cartan subalgebra (i.e. maximal abelian).
g=go®r Cand b := by or C.

X € g an ady-eigenvector for a root a € h* \ {0};

i.e. [H,X] = a(H)X for H € b.
SetU:=X—-X,V:=iX+iX.

Since G is compact, U, V € g, and [U, V] € by, and
s:= (U, V,[U,V]) =so0s. Lets’ :=ho +5.

» Let S, S < Gwith L(S) =5,L(S) =4
» So S=S0(3) or S = Spin(3) and S = SOY.
» Considering root space decomposition, calculate:

s' = Cg,(Cq,(s")), and s = [¢, s']. Deduce:
S'= Ca(Ca(S)) and S = (S, S')q;
S0 = Croo(Cguo(S%9)) and S% = (50, 500),.

» So Sis (R; +,-)-definable, S is (G%; x)-definable.
» (Trichotomy argument to find K works when

S = Spin(3).)



(IV): Bi-interpretation
» (K;+,) is definable both in (G%°; x) and in (R; +, ).
» Otero-Peterzil-Pillay: exists (R; +, -)-definable
isomorphism ¢ : (R; +,-) = (K; +, ).
» ¢ induces g : G(R) = G(K).
Claim
01 go: G(R)? = G(K) is (G%; )-definable.

Proof of Main Theorem.

» O is definable in (R; +, -, G°),
» 5o (R; +,-,0) is interpreted on K in (G%; ) via 0,
since G(K)% is (G; x)-definable by the claim.
» (G, x) is interpreted in (R; +, -, O) tautologically.
» The composed interpretations are 6 and 6 [ g0,
which are definable in (R; +, -, G%) resp. (G%; x).
O



Proof of claim
Claim
gl go: G(R)® = G(K) is (G%; «)-definable.

Proof.

» Quotienting by the discrete centre, we may assume
G is centreless. Let ¢ be a chart for G in J as above.
(Exists by simplicity of G.)

Differentiation in K yields via ¢ an adjoint embedding
Ad: G(R) — GLy(K).

Adis (R; +, -)-definable.

Ad [ g is (G%; x)-definable.

n:=Adofg' : G(K) — GL4(K) is (K; +, -)-definable
by purity, hence (G®; x)-definable.

S0 0glgo=n""0oAd g0 is (G*; x)-definable.
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