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MEASURABLE CHROMATIC NUMBERS

BENJAMIN D. MILLER†

Abstract. We show that if add(null) = c, then the globally Baire and universally

measurable chromatic numbers of the graph of any Borel function on a Polish space are

equal and at most three. In particular, this holds for the graph of the unilateral shift

on [N]N, although its Borel chromatic number is ℵ0. We also show that if add(null) = c,

then the universally measurable chromatic number of every treeing of a measure amenable

equivalence relation is at most three. In particular, this holds for “the” minimum analytic

graph G0 with uncountable Borel (and Baire measurable) chromatic number. In contrast,

we show that for all κ ∈ {2, 3, . . . ,ℵ0, c}, there is a treeing of E0 with Borel and Baire

measurable chromatic number κ. Finally, we use a Glimm-Effros style dichotomy theorem

to show that every basis for a non-empty initial segment of the class of graphs of Borel

functions of Borel chromatic number at least three contains a copy of (R<N,⊇).

§1. Introduction. A directed graph on X is an irreflexive set G ⊆ X × X.
A coloring of G is a map c : X → Y such that c(x1) 6= c(x2), for all (x1, x2) ∈ G.
For a set Γ of subsets of X, the Γ-measurable chromatic number of G is given by

χΓ(G) = min{|c(X)| : c is a Γ-measurable coloring of G},

where c ranges over all functions from X to Polish spaces. When X is Polish
and µ is a measure on X (by which we shall always mean a measure defined
on the Borel subsets of X), we use χB(G), χBP (G), and χµ(G) to denote the
Borel, Baire, and µ-measurable chromatic numbers of G, respectively. The first
of these was studied extensively by Kechris-Solecki-Todorcevic [10]. Here we
examine various questions which arise from their work.

In §2, we study chromatic numbers of directed graphs of the form

Gf = {(x, f(x)) : x ∈ X and x 6= f(x)},

where X is Polish and f : X → X is Borel. Kechris-Solecki-Todorcevic [10]
have shown that χB(Gf ) ∈ {1, 2, 3,ℵ0}. We give a simple new proof of this
theorem, which yields also a characterization of the circumstances under which
χB(Gf ) = ℵ0. Using this characterization, we obtain the following:

Theorem A. Suppose that X is a Polish space, µ is a probability measure on
X, and f : X → X is Borel. Then χBP (Gf ) ≤ 3 and χµ(Gf ) ≤ 3.
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A set B ⊆ X is globally Baire if for every Polish space Y and every continuous
function π : Y → X, the set π−1(B) is Baire measurable. We denote the family
of such sets by GB. A set B ⊆ X is universally measurable if it is µ-measurable,
for every probability measure µ on X. We denote the family of such sets by UM .
Let c denote the cardinality of the continuum. We write add(meager) = c to
indicate that for every Polish space X, the union of strictly fewer than c-many
meager subsets of X is meager. We write add(null) = c to indicate that for
every probability measure µ on a Polish space X, the union of strictly fewer
than c-many µ-null subsets of X is µ-null. Martin-Solovay [13] have shown that
Martin’s Axiom implies add(meager) = add(null) = c, and [1] easily implies
that if add(null) = c, then add(meager) = c. Using Theorem A, we obtain:

Theorem B (add(null) = c). Suppose that X is Polish and f : X → X is
Borel. Then (χB(Gf ), χGB(Gf ), χUM (Gf )) ∈ {(1, 1, 1), (2, 2, 2), (3, 3, 3), (ℵ0, 3, 3)}.

A countable equivalence relation E on X is hyperfinite if there are finite Borel
equivalence relations F0 ⊆ F1 ⊆ · · · such that E =

⋃
n∈N Fn. We say that E is

µ-hyperfinite if there is a µ-conull Borel set C ⊆ X such that E|C is hyperfinite,
and E is measure amenable if it is µ-hyperfinite, for every probability measure
µ on X. The reader is directed to [6] for a thorough treatment of these notions.

A graph on X is an irreflexive symmetric subset of X×X. The symmetrization
of G is given by G±1 = G ∪ G−1, where G−1 = {(y, x) ∈ X ×X : (x, y) ∈ G}. A
(directed) graphing of E is a Borel (directed) graph G such that the connected
components of G±1 are exactly the equivalence classes of E. A (directed) forest
is a (directed) graph T such that T ±1 is acyclic, and a (directed) treeing of E is
a (directed) graphing of E which is a (directed) forest.

We say that a function f : X → X is aperiodic if x 6= fn(x), for all n ≥ 1 and
x ∈ X. The tail equivalence relation associated with f is given by

xEt(f)y ⇔ ∃m,n ∈ N (fm(x) = fn(y)).

Theorem 8.2 of [2] ensures that if f is an aperiodic countable-to-one Borel func-
tion on a Polish space, then Et(f) is necessarily hyperfinite, thus Gf is a directed
treeing of a hyperfinite equivalence relation.

In §3, we consider chromatic numbers of treeings of hyperfinite equivalence
relations. Let E0 denote the hyperfinite equivalence relation on 2N given by

xE0y ⇔ ∃n ∈ N ∀m ≥ n (x(m) = y(m)).

Kechris-Solecki-Todorcevic [10] have described a treeing G0 of E0 with uncount-
able Baire measurable chromatic number. In contrast, we show the following:

Theorem C. Suppose that T is a directed treeing of a µ-hyperfinite equiva-
lence relation on a Polish space. Then χµ(T ) ≤ 3.

As it should cause no confusion, we use the term Lebesgue measure to refer to
both the usual Lebesgue measure on R and the (1/2, 1/2) product measure on
2N. Kechris-Solecki-Todorcevic [10] have suggested that the Lebesgue measur-
able chromatic number of G0 is c. Using Theorem C, we show that this assertion
becomes correct when c is replaced with 3. In §6.C of [10], it is noted that an
analytic graph has countable Borel chromatic number if and only if it has count-
able globally Baire chromatic number, and it is suggested that the analogous fact
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holds for universally measurable chromatic number. Under add(null) = c, how-
ever, we see that G0 is a counterexample to this claim. In fact, Theorem 6.6 of
[10] then implies that under add(null) = c, every analytic forest with uncount-
able Borel chromatic number has a Borel subgraph with universally measurable
chromatic number three and uncountable globally Baire chromatic number.

We explore also the extent to which the Baire measurable analog of Theorem
C fails, and in the process obtain a characterization of the circumstances under
which a given countable Borel equivalence relation E admits a treeing with a
given Borel chromatic number. Recall that a transversal of E is a set which
intersects every E-class in exactly one point, E is smooth if it admits a Borel
transversal, and E is treeable if it admits a treeing.

Theorem D. Suppose that X is a Polish space and E is a non-smooth treeable
countable Borel equivalence relation on X. Then for each κ ∈ {2, 3, . . . ,ℵ0, c},
there is a treeing T of E such that χB(T ) = χGB(T ) = κ. Moreover, if κ ≥ 3
and add(null) = c, then there is such a treeing for which χUM (T ) = 3.

Theorem D gives an alternate solution to Problem 3.3 of [10], which asks if
there is a Borel forest with Borel chromatic number strictly between 3 and ℵ0.
This was originally answered by Laczkovich. His solution, which appears as
an appendix in [10], yields graphs with Lebesgue measurable chromatic number
strictly greater than three, however, so Theorem C implies that their induced
equivalence relations are not measure amenable.

Finally, we turn our attention to a basis problem. A homomorphism from a
directed graph G on X to a directed graph H on Y is a function π : X → Y such
that (π(x1), π(x2)) ∈ H, for all (x1, x2) ∈ G. We write G �B H to indicate the
existence of a Borel homomorphism from G to H. A �B-basis for a class A of
directed graphs is a class B ⊆ A such that ∀G ∈ A∃H ∈ B (H �B G).

Kechris-Solecki-Todorcevic [10] have shown that their graph G0 forms a one-
element �B-basis for the class of analytic graphs of uncountable Borel chromatic
number. One of the outstanding open questions of [10] is whether there is such a
�B-basis for the class of graphs of the form G±1

f , where f is a Borel function on a
Polish space and χB(Gf ) ≥ ℵ0. While this question remains open, we investigate
the analogous question for directed graphs in which ℵ0 is replaced with 3.

In §4, we use an idea of Eigen-Hajian-Weiss [3] to prove an anti-basis theorem
for a weakening of Borel homomorphism on the class of graphs of the form Gf
with Borel chromatic number at least three, which gives the following:

Theorem E. Suppose that B is a �B-basis for the class of directed graphs of
the form Gf for which χB(Gf ) ≥ 3. Then |B| ≥ c.

In §5, we prove a Glimm-Effros style dichotomy theorem which yields a basis
for a strengthening of the quasi-order described in §4. By combining this basis
theorem with the results of §4, we obtain the following:

Theorem F. Suppose that f is a Borel function on a Polish space, χB(Gf ) ≥
3, and B is a �B-basis for the class of directed graphs of the form Gg for which
χB(Gg) ≥ 3 and Gg �B Gf . Then there is an embedding of (R<N,⊇) into (B,�B).
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§2. Graphs induced by functions. We begin this section with a character-
ization of the circumstances under which Gf has finite Borel chromatic number:

Theorem 2.1. Suppose that X is a Polish space and f : X → X is a fixed-
point free Borel function. Then the following are equivalent:

1. The Borel chromatic number of Gf is at most three.
2. The Borel chromatic number of Gf is finite.
3. There is a Borel set B ⊆ X with the property that for all x ∈ X, there exist
m,n ∈ N such that fm(x) ∈ B and fn(x) /∈ B.

Proof. To see (2) ⇒ (3), fix a Borel coloring c : X → {1, . . . , n} of Gf , and
define i : X → {1, . . . , n} by

i(x) = min{1 ≤ m ≤ n : ∀j ∈ N∃k ≥ j (c(fk(x)) = m)}.
Then xEt(f)y ⇒ i(x) = i(y), so the set B = {x ∈ X : c(x) = i(x)} is as desired.

To see (3)⇒ (1), let 1B denote the characteristic function of B, set

j(x) = min{m ∈ N : 1B(x) 6= 1B(fm(x))},
and define c : X → {0, 1, 2} by

c(x) =
{

1B(x) if j(x) is odd,
2 if j(x) is even.

To see that c is a coloring of Gf , it is enough to check that c(x) 6= c(f(x)), for
all x ∈ X. If j(x) > 1, then j(f(x)) = j(x) − 1, so exactly one of c(x), c(f(x))
is 2, thus c(x) 6= c(f(x)). If j(x) = 1 and j(f(x)) is even, then c(x) = 1B(x) 6=
2 = c(f(x)). If j(x) = 1 and j(f(x)) is odd, then c(x) = 1B(x) 6= 1B(f(x)) =
c(f(x)). As (1)⇒ (2) is trivial, this completes the proof of the theorem. �

We say that a function f : X → X is periodic if for all x ∈ X, there exist
natural numbers m < n such that fm(x) = fn(x).

Proposition 2.2. Suppose that X is a Polish space and f : X → X is a
periodic Borel function. Then χB(Gf ) ≤ 3.

Proof. Set A = {x ∈ X : ∃n ≥ 1 (x = fn(x))} and fix a Borel transversal
B of Et(f)|A. For each x ∈ X, let i(x) be the least natural number such that
f i(x)(x) ∈ B, and define c : X → {0, 1, 2} by

c(x) =
{
i(x) (mod 2) if x 6∈ B,

2 if x ∈ B.

It is clear that c is a coloring of Gf . �

We can now give the optimal upper bounds on χBP (Gf ) and χµ(Gf ):

Theorem 2.3. Suppose that X is a Polish space, µ is a probability measure
on X, and f : X → X is Borel. Then χBP (Gf ) ≤ 3 and χµ(Gf ) ≤ 3.

Proof. A reduction of an equivalence relation E on X to an equivalence
relation F on Y is a map π : X → Y such that x1Ex2 ⇔ π(x1)Fπ(x2), for all
x1, x2 ∈ X. We write E ≤B F to indicate the existence of a Borel reduction of E
to F . We say that E is smooth if there is a Polish space X such that E ≤B ∆(X),
where ∆(X) = {(x, x) : x ∈ X}. The Lusin-Novikov uniformization theorem
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(see, for example, Theorem 18.10 of [7]) ensures that this definition agrees with
the one given earlier for countable Borel equivalence relations. Note also that if
E is smooth and F ≤B E, then F is smooth. The E-saturation of a set B ⊆ X
is given by [B]E = {x ∈ X : ∃y ∈ B (xEy)}, and we say that B is E-invariant
if it is equal to its E-saturation. In what follows, we will freely use the fact that
the tail equivalence relation induced by a Borel function is smooth if and only if
it admits a Borel transversal, which follows from Theorem 5.10 of [16].

By Corollary 8.2 of [2], there is an increasing sequence of smooth Borel equiv-
alence relations Fn whose union is Et(f). For each n ∈ N, define

An = {x ∈ X : ∃i ∈ N ∀j ≥ i (f i(x)Fnf j(x))}.

Lemma 2.4. The equivalence relation Et(f)|An is smooth.

Proof. Define i : An → N by i(x) = min{m ∈ N : ∀j ≥ m (f j(x)Fnfm(x))},
and observe that the map π(x) = f i(x)(x) is a reduction of Et(f)|An to Fn. �

By Proposition 2.2, we can assume that f is aperiodic.

Lemma 2.5. The Borel chromatic number of Gf |An is at most two.

Proof. By Lemma 2.4, there is a Borel transversal B of Et(f)|An. Define
j : An → N by

j(x) = min{m ∈ N : ∃k ∈ N∃y ∈ B (fm(x) = fk(y))}.
As “∃y ∈ B” can just as well be replaced with “∃!y ∈ B,” a straightforward
induction shows that j is Borel. Define k : An → N by

k(x) = m⇔ ∃y ∈ B (f j(x)(x) = fm(y)),

noting that graph(k) is analytic, thus k is Borel. As j(x) + k(x) is simply the
distance from x to B in the graph metric associated with G±1

f , it follows that
the function c(x) = j(x) + k(x) (mod 2) is a coloring of Gf |An. �

Lemma 2.5 allows us to assume that An = ∅, for all n ∈ N, which in turn
allows us to define functions in : X → N by

in(x) = max{m ∈ N : xFnf(x)Fn · · ·Fnfm(x)}.
Set B≤n = {x ∈ X : xFnf(x)}, B<n =

⋃
m<nB≤m, and Bn = B≤n \B<n. Note

that for all x ∈ X and n ∈ N, there exists i ∈ N such that f i(x) 6∈ B<n. For
each α ∈ 2≤N, define Cα =

⋃
α(n)=1Bn.

Lemma 2.6. There is a comeager Et(f)-invariant Borel set C ⊆ X such that
χB(Gf |C) ≤ 3.

Proof. For all x ∈ X and s ∈ 2<N, there exist t ⊇ s and i, j ∈ N such that
f i(x) ∈ Ct and f j(x) ∈ B<|t| \ Ct, thus

∀x ∈ X ∀∗α ∈ 2N ∃i, j ∈ N (f i(x) ∈ Cα and f j(x) 6∈ Cα),

where “∀∗α ∈ 2N φ(α)” indicates that the set {α ∈ 2N : φ(α)} is comeager. The
Kuratowski-Ulam Theorem ensures that for comeagerly many α ∈ 2N, the set

C = {x ∈ X : ∀n ∈ N ∃i, j ∈ N (f i+n(x) ∈ Cα and f j+n(x) 6∈ Cα)}
is comeager, and Theorem 2.1 then ensures that χB(Gf |C) ≤ 3. �
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Lemma 2.7. There is a µ-conull Et(f)-invariant Borel set C ⊆ X such that
χB(Gf |C) ≤ 3.

Proof. For all ε > 0 and n ∈ N, there exists m > n sufficiently large that

µ({x ∈ X : ∃i ∈ N (f i(x) ∈ B<m \B<n)}) ≥ 1− ε.
It follows that for all ε > 0 and s ∈ 2<N, there exists t ⊇ s such that

µ({x ∈ X : ∃i, j ∈ N (f i(x) ∈ Ct and f j(x) ∈ B<|t| \ Ct)}) ≥ 1− ε.

We can therefore recursively find α ∈ 2N such that the set

C = {x ∈ X : ∀n ∈ N ∃i, j ∈ N (f i+n(x) ∈ Cα and f j+n(x) 6∈ Cα)}
is µ-conull, and Theorem 2.1 then ensures that χB(Gf |C) ≤ 3. �

The desired result clearly follows from Lemmas 2.6 and 2.7. �

Next, we give the optimal upper bounds on the globally Baire and universally
measurable chromatic numbers of Gf , under appropriate hypotheses:

Theorem 2.8. Suppose that X is a Polish space and f : X → X is Borel.
1. If add(meager) = c, then χGB(Gf ) ≤ 3.
2. If add(null) = c, then χUM (Gf ) ≤ 3.

Proof. We prove (2) and leave the nearly identical proof of (1) to the reader.
Fix an enumeration 〈µα〉α<c of the probability measures on X. We will recur-
sively construct µα-conull, Et(f)-invariant Borel sets Bα ⊆ X, Borel colorings
cα : Bα → {0, 1, 2} of Gf |Bα, and pairwise disjoint Et(f)-invariant analytic sets
Aα ⊆ Bα, for α < c, such that each of the sets Cα =

⋃
β≤αAβ is µα-conull.

Granting that this has been accomplished strictly below α, Lemma 2.7 ensures
that there is a µα-conull, Et(f)-invariant Borel set Bα ⊆ X and a Borel coloring
cα : Bα → {0, 1, 2} of Gf |Bα. As add(null) = c, the set A =

⋃
β<αAβ is µα-

measurable, thus there is a Borel set B ⊇ A such that µα(B \A) = 0. It follows
that the set Aα = Bα ∩ [X \B]Et(f) is analytic and

µα(Aα) = µα([X \B]Et(f)) ≥ µα(X \B) = 1− µα(A),

thus µα(Cα) = µα(A) + µα(Aα) = 1.
Fix a coloring c : X → {0, 1, 2} of Gf with c|Aα = cα|Aα, for all α < c. To

see that c−1({i}) is µα-measurable, simply observe that c−1({i}) agrees with⋃
β≤α c

−1
β ({i})∩Aβ off of a µα-null set, and our assumption that add(null) = c

ensures that the latter set is universally measurable. �

We close this section by giving all possible values of the Borel, globally Baire,
and universally measurable chromatic numbers of Gf :

Theorem 2.9 (add(null) = c). Suppose that X is Polish and f : X → X is
Borel. Then (χB(Gf ), χGB(Gf ), χUM (Gf )) ∈ {(1, 1, 1), (2, 2, 2), (3, 3, 3), (ℵ0, 3, 3)}.

Proof. By Corollary 3.11 of [12], the Borel chromatic number of Gf is at
least three if and only if there is a continuous map π : 2N → X such that

∀(x, y) ∈ E0 (π(x)Et(f)π(y) and dG0(x, y) ≡ dGf (π(x), π(y)) (mod 2)),

where dG0 , dGf are the graph metrics associated with G0,G±1
f . Note that the

composition of a two coloring of Gf with such a map is a two coloring of G0.
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Proposition 6.2 of [10] ensures that χBP (G0) = c, and the upcoming Theorem
3.3 ensures that χµ(G0) = 3, where µ denotes Lebesgue measure. It follows
that χB(Gf ) ≥ 3 ⇔ χGB(Gf ) ≥ 3 ⇔ χUM (Gf ) ≥ 3, thus the desired result is
a consequence of Theorems 2.1 and 2.8, along with the fact that χB(Gf ) ≤ ℵ0,
which itself follows from Proposition 4.5 of [10]. �

Remark 2.10. The four possibilities in the conclusion of Theorem 2.9 are real-
ized by the directed graphs associated with the identity function, the odometer
on 2N, the shift on 2Z, and the shift on [N]N (see [10]).

§3. Treeings of hyperfinite equivalence relations. We begin this section
with the following extension of Theorem 2.3:

Theorem 3.1. Suppose that X is a Polish space, µ is a probability measure
on X, E is a µ-hyperfinite equivalence relation on X, and T is a treeing of E.
Then there is a µ-conull, E-invariant Borel set C ⊆ X such that χB(T |C) ≤ 3.

Proof. Let A denote the set of x ∈ X for which there is an infinite injective
T -path through [x]E . As A is analytic and E-invariant, it follows that there
are E-invariant Borel sets B ⊆ A and C ⊆ X \ A such that µ(B ∪ C) = 1. By
Theorem 2.1 of [14], the equivalence relation E|C is smooth and therefore admits
a Borel transversal, thus χB(T |C) ≤ 2.

By the proof of Lemma 3.19 of [6], after throwing away a µ-null, E-invariant
Borel set if necessary, there are E-invariant Borel sets B1, B2 which partition
B, a Borel function f : B1 → B1 such that T |B1 = G±1

f , and a Borel graph
L ⊆ T |B2 such that each equivalence class of E|B2 contains exactly one non-
trivial connected component of L, which is a tree of vertex degree two. By
Proposition 4.6 of [10], there is a Borel three coloring of L, and this easily gives
rise to a Borel three coloring of T |B2. Lemma 2.7 ensures the existence of an
E-invariant Borel set B′1 ⊆ B1 such that µ(B1 \B′1) = 0 and χB(T |B′1) ≤ 3, and
it follows that the set C = B′1 ∪B2 is as desired. �

As in §2, we obtain the following corollary:

Theorem 3.2 (add(null) = c). Suppose that T is a treeing of a measure am-
enable equivalence relation on a Polish space. Then χUM (T ) = min(3, χB(T )).

Next, let us recall the graph G0 from [10]. We say that a sequence 〈sn〉 ∈∏
n∈N 2n is dense if for all s ∈ 2<N, there exists n ∈ N such that s ⊆ sn. Given

such a sequence, recursively define Tn on 2n by setting T0 = ∅ and

Tn+1 = {(si, tj) : ((s, t) ∈ Tn and i = j) or (s = t = sn and i 6= j)}.
The instance of G0 associated with 〈sn〉 is the graph on 2N given by

G〈sn〉0 =
⋃
n∈N
{(sx, tx) : (s, t) ∈ Tn and x ∈ 2N}.

It is straightforward to check that every instance of G0 is a treeing of E0, and
Proposition 6.2 of [10] ensures that every instance of G0 has Baire measurable
chromatic number c. In particular, it follows that every instance of G0 is a
counterexample to the Baire category analog of Theorem 3.1. The proof given
above breaks down because the Baire category analog of Lemma 3.19 of [6] is also
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false. The reader is directed to [5] for a characterization of the circumstances
under which the Borel analog of Lemma 3.19 of [6] holds, and to [9] for another
application of the failure of the Baire category analog of Lemma 3.19 of [6].

In the special case of an instance of G0 and Lebesgue measure, the set A from
the proof of Theorem 3.1 is conull, and it is not difficult to see that there are
instances of G0 for which the corresponding set B1 is necessarily null, as well as
instances of G0 for which the corresponding set B2 is necessarily null.

An embedding of G ⊆ X × X into H ⊆ Y × Y is an injection π : X → Y
such that (x1, x2) ∈ G ⇔ (π(x1), π(x2)) ∈ H, for all x1, x2 ∈ X. This is a
stronger notion than that which appears in [10]. Theorem 15 of [11] implies
that every instance of G0 continuously embeds into every other instance of G0.
However, since any Borel isomorphism between instances of G0 is necessarily
Lebesgue measure-preserving, it follows from the previous paragraph that there
are instances of G0 which are not Borel isomorphic. Nevertheless, we will follow
Kechris-Solecki-Todorcevic [10] in using G0 to denote instances of G0.

Theorem 3.3. The Lebesgue measurable chromatic number of G0 is three, and
if add(null) = c, then so too is its universally measurable chromatic number.

Proof. By Theorems 3.1 and 3.2, it is enough to show that χµ(G0) 6= 2, where
µ denotes Lebesgue measure. Suppose, towards a contradiction, that there is a
µ-measurable set B ⊆ 2N such that every pair in G0 consists of a point of B and
a point of X \B. It is clear that dG0(s0x, s1x) is odd, for all s ∈ 2<N and x ∈ 2N,
thus the map six 7→ s(1− i)x sends B ∩Ns to (X \B)∩Ns. It then follows that
B is of density 1/2 within every basic clopen set, which contradicts the analog
of the Lebesgue density theorem in 2N, which itself can be seen as a corollary
of either (1) the proof of the usual Lebesgue density theorem (see, for example,
Theorem 3.20 of [17]), or (2) the analog of the Lebesgue density theorem for
Polish ultrametric spaces (see, for example, Lemma 2.5 of [15]). �

Next, we see that the Baire measurable analog of Theorem 3.1 fails in the
worst possible way. We begin by defining treeings Tκ of E0, for 3 ≤ κ ≤ ℵ0. We
write u ⊥ v to indicate the existence of i < j < κ such that 1i0 ⊆ u and 1j0 ⊆ v.
Fix sequences un, vn ∈ 2n+1 such that:

1. ∀n ∈ N (un(n) 6= vn(n)).
2. ∀n ≥ 1 (un ⊥ vn).
3. ∀u, v ∈ 2<N (u ⊥ v ⇒ ∃n ∈ N (u ⊆ un and v ⊆ vn)).

Recursively define Tn on 2n by setting T0 = ∅ and

Tn+1 = {(ui, vj) : ((u, v) ∈ Tn and i = j) or ({ui, vj} = {un, vn})},

and define Tκ on 2N by

Tκ =
⋃
n∈N
{(ux, vx) : (u, v) ∈ Tn and x ∈ 2N}.

Condition (1) ensures that Tκ is a treeing of E0.

Proposition 3.4. χB(Tκ) = χBP (Tκ) = κ.
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Proof. To see that χB(Tκ) ≤ κ, define c : 2N → κ by

c(x) =
{

i if i < κ and 1i0 ⊆ x,
1 if 1κ ⊆ x.

Conditions (1) and (2) ensure that c is a coloring of Tκ.
We say that a set B ⊆ 2N is Tκ-discrete if Tκ ∩ (B × B) = ∅. To see that

χBP (Tκ) ≥ κ, it is enough to show that if B ⊆ X is Tκ-discrete and Baire
measurable, then there is at most one i < κ such that B is non-meager in N1i0.
Suppose, towards a contradiction, that there exist i < j < κ such that B is
non-meager in both N1i0 and N1j0, and find u ⊇ 1i0 and v ⊇ 1j0 such that B
is comeager in both Nu and Nv. It follows from condition (3) that there exists
n ∈ N such that u ⊆ un and v ⊆ vn. Fix x ∈ 2N such that unx, vnx ∈ B, and
observe that (unx, vnx) ∈ Tκ, the desired contradiction. �

As noted earlier, this gives an alternate solution to Problem 3.3 of [10], which
asks if there is a Borel forest whose Borel chromatic number lies strictly between
3 and ℵ0. However, the following question remains open:

Question 3.5. Is there a locally finite Borel forest whose Borel chromatic num-
ber lies strictly between 3 and ℵ0?

A negative answer to this question would imply that every analytic subgraph
of G0 has Baire measurable chromatic number 1, 2, 3, ℵ0, or c. This is a simple
consequence of the following observation:

Proposition 3.6. Suppose that T is an analytic subgraph of G0 with countable
Baire measurable chromatic number. Then there is a comeager E0-invariant
Borel set C ⊆ 2N such that T |C is locally finite.

Proof. It is sufficient to show that the set A = {x ∈ 2N : |Tx| = ℵ0} is
meager. Suppose, towards a contradiction, that there exists s ∈ 2<N such
that A is comeager in Ns. We will show that no non-meager Borel subset of
Ns is T -discrete, which implies that χBP (T ) > ℵ0, the desired contradiction.
Towards this end, suppose that B ⊆ Ns is a non-meager Borel set, and fix
t ⊇ s with B comeager in Nt, as well as n ≥ |t| such that t ⊆ sn and the set
{x ∈ 2N : (sn0x, sn1x) ∈ T } is non-meager. Then there exists x ∈ 2N such that
sn0x, sn1x ∈ B and (sn0x, sn1x) ∈ T , thus B is not T -discrete. �

Next, we establish the analog of Theorem 3.3 for our new treeings:

Theorem 3.7. The Lebesgue measurable chromatic number of Tκ is three, and
if add(null) = c, then so too is its universally measurable chromatic number.

Proof. By Theorems 3.1 and 3.2, it is enough to show that χµ(Tκ) 6= 2,
where µ denotes Lebesgue measure. Let dn denote the graph metric of Tn.

Lemma 3.8. There are infinitely many n ∈ N such that dn(un|n, vn|n) is even.

Proof. The fact that T2 is a tree easily implies that there are distinct se-
quences u ∈ {00, 10} and v ∈ {10, 11} such that d2(u, v) is even. Suppose,
towards a contradiction, that there exists n ≥ 3 such that dm(um|m, vm|m) is
odd, for all m ≥ n. A simple induction then shows that if m ≥ n and u′, v′ ∈ 2m

extend u0n−2, v0n−2, then dm(u′, v′) is also even. In particular, for no m ∈ N
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can it be the case that u0n−2 ⊆ um and v0n−2 ⊆ vm, since dm+1(um, vm) = 1 is
odd, and this contradicts condition (3) in the definition of Tκ. �

Note that if dn(un|n, vn|n) is even, then dn+1(s0, s1) is odd, for all s ∈ 2n.
Lemma 3.8 therefore implies that there are infinitely many n ∈ N such that
dn+1((x|n)0, (x|n)1) is odd, for all x ∈ 2N. Suppose, towards a contradiction,
that there is a µ-measurable set B ⊆ 2N such that every pair in Tκ consists of
a point of B and a point of X \ B. Then µ(B) > 0, so there is a density point
x of B. Fix n ∈ N sufficiently large that µ(B ∩ Nx|m)/µ(Nx|m) > 1/2, for all
m ≥ n, as well as m ≥ n such that dm+1((x|m)0, (x|m)1) is odd. It then follows
that the map (x|m)iy 7→ (x|m)(1− i)y sends B ∩Nx|m to (X \B) ∩Nx|m, thus
B has density 1/2 within Nx|m, the desired contradiction. �

Next, we characterize the circumstances under which a treeable countable
Borel equivalence relation admits a treeing of a given Borel chromatic number.
Clearly every treeing of a smooth countable Borel equivalence relation has Borel
chromatic number at most two. This is the only obstacle:

Theorem 3.9. Suppose that X is a Polish space, E is a non-smooth treeable
countable Borel equivalence relation on X, and κ ∈ {2, 3, . . . ,ℵ0, c}. Then there
is a treeing T of E such that χB(T ) = χGB(T ) = κ. Moreover, if κ ≥ 3 and
add(null) = c, then there is such a treeing for which χUM (T ) = 3.

Proof. We begin with the following special case of the theorem:

Lemma 3.10. There is a treeing of E whose Borel chromatic number is two.

Proof. We can clearly assume that every equivalence class of E is infinite.
By Proposition 7.4 of [8], there is a fixed-point free Borel involution i : X → X
whose graph is contained in E. Fix a Borel linear ordering < of X, and put
B = {x ∈ X : x < i(x)}. By Proposition 3.3 of [6], there is a treeing TB of E|B.
For each e ∈ TB , let x0(e) < x1(e) be the two points connected by e, and set

T = graph(i) ∪ {(x0(e), i(x1(e))) : e ∈ TB}±1.

It is clear that T is a treeing of E, and since the characteristic function of B is
a coloring of T , the lemma follows. �

Now we handle the case κ ≥ 3. By Theorem 1.1 of [4], there is a con-
tinuous injective reduction π : 2N → X of E0 to E. Set B = π(2N) and
T = {(π(x), π(y)) : (x, y) ∈ Tκ}. By the Lusin-Novikov uniformization theo-
rem, there is a Borel function f : [B]E \B → B with graph(f) ⊆ E. Proposition
3.4 implies that T ′ = T ∪ G±1

f is a treeing of E|[B]E with Borel and globally
Baire measurable chromatic number κ. By Lemma 3.10, there is a treeing T ′′
of E|(X \ [B]E) with Borel chromatic number two. Then T ′ ∪ T ′′ is a treeing of
E with Borel and globally Baire measurable chromatic number κ. Moreover, if
κ ≥ 3 and add(null) = c, then Theorem 3.7 ensures that χUM (T ) = 3. �

Remark 3.11. If E|C is non-smooth for every comeager Borel set C ⊆ X, then
it is possible to ensure also that χBP (T ) = κ.

By adding a copy of the complete graph on λ vertices to the forest whose
existence is ensured by Theorem 3.9, we obtain the following:
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Theorem 3.12. Suppose that X is a Polish space and E is a non-smooth
countable Borel equivalence relation on X. Then for each κ ∈ {2, 3, . . . ,ℵ0, c}
and 2 ≤ λ ≤ min(ℵ0, κ), there is a graphing G of E such that χ(G) = λ and
χB(G) = χGB(G) = κ. Moreover, if κ ≥ 3 and add(null) = c, then there is such
a graphing for which χUM (G) = max(λ, 3).

§4. The inexistence of small bases. Given a Borel function f : X → X,
let E0(f) denote the equivalence relation on X given by

xE0(f)y ⇔ ∃n ∈ N (fn(x) = fn(y)).

We use f0 to denote the injection of X/E0(f) into X/E0(f) induced by f . If f
is injective, then E0(f) is trivial, in which case we use f and f0 interchangeably.
The distance between equivalence classes [x]E0(f) and [y]E0(f) is given by

df (x, y) =
{

min{|m− n| : fm(x) = fn(y)} if xEt(f)y,
∞ otherwise.

The distance set associated with a set B ⊆ X is given by

∆f (B) = {df (x, y) : x, y ∈ B and xEt(f)y}.
We say that B is evenly spaced if ∆f (B) ⊆ 2N, and we say that B is two spaced
if it is both evenly spaced and equal to its even saturation, which is given by
[B]even

f =
⋃
i,j∈N f

−2i(f2j(B)). We say that B is an f -complete section if it
intersects every Et(f)-class.

Proposition 4.1. Suppose that X is a Polish space and f : X → X is an
aperiodic Borel function. Then the following are equivalent:

1. The Borel chromatic number of Gf is at most two.
2. There is a two-spaced Borel f -complete section.
3. There is an evenly-spaced analytic f -complete section.

Proof. The proofs of (1)⇔ (2) and (2)⇒ (3) are straightforward.

Lemma 4.2. Every evenly-spaced analytic set is contained in a two-spaced
Borel set.

Proof. Suppose that A0 ⊆ X is an evenly-spaced analytic set. As the prop-
erty of being evenly spaced is coanalytic on analytic, it follows from the first
reflection theorem (see, for example, Theorem 35.10 of [7]) that given an evenly-
spaced analytic set An ⊆ X, there is an evenly-spaced Borel set Bn ⊇ An. Let
An+1 = [Bn]even

f . Then
⋃
n∈N Bn is the desired two-spaced Borel set. �

It is clear that (3)⇒ (2) is a consequence of Lemma 4.2. �

The f0-diameter of a set B ⊆ X is given by diamf (B) = sup ∆f (B). A partial
transversal of f0 is a set of f0-diameter zero, and a transversal of f0 is an f -
complete section of f0-diameter zero. We say that f0 is smooth if it admits a
Borel transversal, in which case Proposition 4.1 implies that if f is aperiodic,
then χB(Gf ) ≤ 2.

Proposition 4.3. Suppose that X is a Polish space, f : X → X is an ape-
riodic Borel function, and X can be covered by countably many analytic sets of
finite f0-diameter. Then f0 is smooth.
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Proof. We note first the following pair of lemmas:

Lemma 4.4. Every analytic set A ⊆ X is contained in an E0(f)-invariant
Borel set B ⊆ X such that ∆f (A) = ∆f (B) and [B]Et(f) is Borel.

Proof. Set ∆ = ∆f (A) and A0 = A. Given an analytic set An ⊆ X such that
∆f (An) ⊆ ∆, observe that the property of having one’s difference set contained
in ∆ is coanalytic on analytic, thus the first reflection theorem ensures that there
is a Borel set An+1 ⊇ f(An) such that ∆f (An+1) ⊆ ∆. Set B =

⋃
n∈N f

−n(An).
It is clear that ∆f (B) = ∆ and both B and the set [B]Et(f) =

⋃
m,n∈N f

−m(An)
are Borel. To see that B is E0(f)-invariant, suppose that x ∈ B and xE0(f)y,
fix n ∈ N sufficiently large that fn(x) = fn(y), fix m ≥ n sufficiently large that
x ∈ f−m(Am), and observe that y ∈ f−m(Am) ⊆ B. �

Lemma 4.5. For each k ∈ N, every analytic set of f0-diameter k is contained
in the union of k + 1 Borel partial transversals.

Proof. By induction on k. The case k = 0 follows from the definition of
partial transversal. Suppose now that we have established the lemma strictly
below k, and A ⊆ X is an analytic set of f0-diameter k. By Lemma 4.4, there
is an E0(f)-invariant Borel set B ⊇ A of f0-diameter k. Then the set C =⋃
n≥1 f

−n(B) has f0-diameter k − 1, and is therefore contained in the union of
k Borel partial transversals. As the set B \ C is a partial transversal of f0, it
follows that A is contained in the union of k+ 1 Borel partial transversals. �

As X can be covered with countably many analytic sets of finite f0-diameter,
it follows from Lemma 4.5 that X can be covered with countably many Borel
partial transversals, thus Lemma 4.4 ensures that X can be covered with Borel
partial transversals B0, B1, . . . ⊆ X whose Et(f)-saturations are Borel. Then
the set

⋃
n∈N Bn \

⋃
m<n[Bm]Et(f) is a transversal of f0, thus f0 is smooth. �

Suppose now that f : X → X and g : Y → Y are aperiodic Borel functions.
A lifting of a function π : X/E0(f) → Y/E0(g) is a map π̃ : X → Y such
that π̃(x) ∈ π([x]E0(f)), for all x ∈ X. We say that π is Borel if it admits a
Borel lifting. For ε > 0, an ε-Lipschitz homomorphism from f0 to g0 is a map
π : X/E0(f) → Y/E0(g) such that εdf (x1, x2) ≤ dg(x′1, x

′
2) ≤ (1/ε)df (x1, x2),

for all x1Et(f)x2 and x′i ∈ π([xi]E0(f)). We write f0 �L g0 to indicate the
existence of a Borel ε-Lipschitz homomorphism from f0 to g0, for some ε > 0.
We say that f0, g0 are orthogonal, or f0 ⊥ g0, if the only aperiodic Borel functions
h such that h0 �L f0 and h0 �L g0 are those for which h0 is smooth.

Given a set S ⊆ N and ε > 0, let [S]ε = {n ∈ N : ∃m ∈ S (εm ≤ n ≤ (1/ε)m)}.
We say that S, T ⊆ N are orthogonal, or S ⊥ T , if |[S]ε∩ [T ]ε| < ℵ0, for all ε > 0.

Proposition 4.6. Suppose that Xi is a Polish space, fi : Xi → Xi is an ape-
riodic Borel function, Ai ⊆ Xi is an analytic fi-complete section, and ∆f1(A1) ⊥
∆f2(A2). Then (f1)0 ⊥ (f2)0.
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Proof. Suppose that Y is a Polish space, g : Y → Y is an aperiodic Borel
function, ε > 0, and πi : Y → Xi is a Borel lifting of an ε-Lipschitz homomor-
phism from g0 to (fi)0. Set Aki = [fki (Ai)]E0(fi) and Bki = π−1

i (Aki ). Then

∆g(Bk11 ∩B
k2
2 ) ⊆ ∆g(Bk11 ) ∩∆g(Bk22 )

⊆ [∆f1(Ak11 )]ε ∩ [∆f2(Ak22 )]ε
= [∆f1(A1)]ε ∩ [∆f2(A2)]ε,

thus Bk11 ∩ B
k2
2 has finite g0-diameter. As each of these sets are analytic and

their union is Y , Proposition 4.3 implies that g0 is smooth, so (f1)0 ⊥ (f2)0. �

The odometer is the isometry of 2N given by

σ(x) =
{

0n1y if x = 1n0y,
0∞ if x = 1∞.

Although the function x 7→ x(0) is a two coloring of Gσ, we can obtain automor-
phisms whose graphs do not admit Borel two colorings by building towers over
the odometer. The maps we consider will be indexed by sequences α ∈ NN with
the property that α(n) >

∑
i<n α(i), for all n ∈ N. We use Ω to denote the set

of such sequences. For each α ∈ Ω, define Tα : 2N → N by

Tα(x) =
{
α(n)−

∑
i<n α(i) if 1n0 ⊆ x,

1 if x = 1∞.

Let Xα = {(x, i) ∈ 2N × N : i < Tα(x)}, and define σα : Xα → Xα by

σα(x, i) =
{

(σ(x), 0) if i = Tα(x)− 1,
(x, i+ 1) otherwise.

Proposition 4.7. Suppose that α ∈ Ω, n ∈ N, s ∈ 2n, and x ∈ 2N. Then

σ
P
i<n α(i)s(i)

α (0nx, 0) = (sx, 0).

Proof. By induction on n. The case n = 0 is a triviality, so suppose that we
have shown the proposition up to n and we are given s ∈ 2n+1. If s(n) = 0, then

σ
P
i<n+1 α(i)s(i)

α (0n+1x, 0) = σ
P
i<n α(i)s(i)

α (0n0x, 0) = (sx, 0),

by the induction hypothesis. If s(n) = 1, then

σ
P
i<n+1 α(i)s(i)

α (0n+1x, 0) = σ
P
i<n α(i)s(i)

α ◦ σα(n)−
P
i<n α(i)

α ◦

σ
P
i<n α(i)

α (0n0x, 0)

= σ
P
i<n α(i)s(i)

α ◦ σα(n)−
P
i<n α(i)

α (1n0x, 0)

= σ
P
i<n α(i)s(i)

α (0n1x, 0)
= (sx, 0),

by two applications of the induction hypothesis and the definition of σα. �

As Proposition 4.6 of [10] ensures that χB(Gσα) ∈ {2, 3}, the following fact
(along with Proposition 4.1) gives its exact value:

Proposition 4.8. Suppose that α ∈ Ω. Then the following are equivalent:
1. The automorphism σα admits a two-spaced Borel complete section.
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2. There exists n ∈ N such that α(m) is even, for all m ≥ n.

Proof. To see (2)⇒ (1), fix n ∈ N sufficiently large that α(m) is even, for all
m ≥ n. Proposition 4.7 then ensures that the set B = {(0nx, 0) : x ∈ 2N} is an
evenly-spaced Borel complete section, and it follows that [B]even

σα is a two-spaced
Borel complete section.

To see ¬(2) ⇒ ¬(1), suppose that A ⊆ Xα is a Borel complete section, and
fix i ∈ Z and s ∈ 2<N such that the set B = {x ∈ 2N : (x, 0) ∈ σiα(A)}
is comeager in Ns. The failure of (2) ensures the existence of n ≥ |s| such
that α(n) is odd. Fix x ∈ 2N such that s0n−|s|0x, s0n−|s|1x ∈ B. Then
(s0n−|s|0x, 0), (s0n−|s|1x, 0) ∈ σiα(A), and since Proposition 4.7 ensures that
dσα((s0n−|s|0x, 0), (s0n−|s|1x, 0)) = α(n), it follows that σiα(A) is not evenly
spaced, thus A is not evenly spaced. �

Proposition 4.8 implies that the automorphisms indexed by elements of the
set Ωodd = {α ∈ Ω : ∀n ∈ N (α(n) ≡ 1 (mod 2))} do not admit two-spaced Borel
complete sections, so their graphs have Borel chromatic number three.

The IP-set associated with a sequence α ∈ N≤N is the set IP(α) of natural
numbers of the form

∑
i∈S α(i), where S ⊆ dom(α) is finite. The distance set

associated with α is given by ∆(α) = {|i− j| : i, j ∈ IP(α)}.

Proposition 4.9. Suppose that α ∈ Ω. Then σα admits a Borel complete
section Bα ⊆ Xα such that ∆f (Bα) = ∆(α).

Proof. Let B = {(x, 0) ∈ Xα : x is not eventually constant}. Proposition 4.7
ensures that ∆σα(B) = ∆(α), so the set Bα = B ∪ {(0∞, 0)} is as desired. �

We say that sequences α, β ∈ Ω are orthogonal if ∆(α) ⊥ ∆(β).

Proposition 4.10. Suppose that α ∈ Ω. Then there is a pairwise orthogonal
family of c many subsequences of α.

Proof. Fix an injection φ : 2<N → N such that s ⊆ t ⇒ φ(s) ≤ φ(t), for all
s, t ∈ 2<N. Then |s| ≤ φ(s), for all s ∈ 2<N. Fix kn ∈ N such that α(kn) >
(n+ 1)(n2 + 1)α(kn−1), for all n ≥ 1. For each x ∈ 2N, set αx(n) = α(kφ(x|n)).

Lemma 4.11. Suppose that x(0) . . . x(n) 6= y(0) . . . y(n) and n ≥ 1/ε. Then

[∆(αx)]ε ∩ [∆(αy)]ε ⊆ [∆(αx|n)]ε ∩ [∆(αy|n)]ε.

Proof. Given δ ∈ [∆(αx)]ε ∩ [∆(αy)]ε, fix m ∈ N least for which there exist
ix ≥ jx in IP(αx(0) . . . αx(m)) and iy ≥ jy in IP(αy(0) . . . αy(m)) such that

ε(ix − jx), ε(iy − jy) ≤ δ ≤ (1/ε)(ix − jx), (1/ε)(iy − jy).

Suppose, towards a contradiction, that m ≥ n. By reversing the roles of x
and y if necessary, we can assume that iy /∈ IP(αy|m), jy ∈ IP(αy|m), and if
ix 6∈ IP(αx|m), then φ(x|m) < φ(y|m). Then ix, jy ≤ (m+ 1)α(kφ(y|m)−1), so

α(kφ(y|m)) ≤ (iy − jy) + jy

≤ (1/ε2)(ix − jx) + jy

≤m2(m+ 1)α(kφ(y|m)−1) + (m+ 1)α(kφ(y|m)−1)

= (m+ 1)(m2 + 1)α(kφ(y|m)−1)

≤ (φ(y|m) + 1)(φ(y|m)2 + 1)α(kφ(y|m)−1),
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which contradicts our choice of kφ(y|m). �

By Lemma 4.11, if x 6= y, ε > 0, and n ∈ N is sufficiently large, then

[∆(αx)]ε ∩ [∆(αy)]ε ⊆ [∆(αx|n)]ε ∩ [∆(αy|n)]ε.

As the latter set is finite, it follows that 〈αx〉x∈2N is pairwise orthogonal. �

An embedding of f0 into g0 is an injection π : X/E0(f) → Y/E0(g) with
π ◦ f0 = g0 ◦ π. We write f0 v g0 if there is a Borel embedding of f0 into g0.

Proposition 4.12. If α, β ∈ Ω and α is a subsequence of β, then σα v σβ.

Proof. Set X = {x ∈ 2N : x is not eventually constant}. It is clearly sufficient
to produce a Borel embedding of σα|(Xα ∩ (X ×N)) into σβ . Towards this end,
fix a strictly increasing sequence of natural numbers ki such that α(i) = β(ki),
and set `0 = k0 and `i+1 = ki+1 − ki − 1. Then ki = `0 + 1 + · · ·+ `i−1 + 1 + `i.
Define π : Xα → Xβ by

π(x, i) = σiβ(0`0x(0)0`1x(1) . . . , 0).

Lemma 4.13. ∀x ∈ X (π ◦ σTα(x)
α (x, 0) = σ

Tα(x)
β ◦ π(x, 0)).

Proof. Simply note that if x = 1n0y, then Proposition 4.7 ensures that

σ
Tα(x)
β ◦ π(x, 0) = σ

α(n)−
P
i<n α(i)

β (0`01 . . . 0`n−110`n0z, 0)

= σ
β(kn)−

P
i<n β(ki)

β (0`01 . . . 0`n−110`n0z, 0)

= (0`00 . . . 0`n−100`n1z, 0)
= π(0n1y, 0)

= π ◦ σTα(x)
α (x, 0),

for an appropriately chosen z ∈ 2N. �

Lemma 4.13 clearly implies that π|(Xα ∩ (X × N)) is as desired. �

A squashed basis for a class A of Borel functions on Polish spaces is a class
B ⊆ A such that ∀f ∈ A∃g ∈ B (g0 �L f0).

Theorem 4.14. Suppose that α ∈ Ωodd and B is a squashed basis for the class
of Borel functions f which do not admit two-spaced Borel complete sections and
for which f0 �L (σα)0. Then there is a pairwise orthogonal subset of B of
cardinality c.

Proof. By Proposition 4.10, there is a pairwise orthogonal sequence 〈αx〉x∈2N

of subsequences of α. By Proposition 4.8, none of the functions σαx admit two-
spaced Borel complete sections, and by Proposition 4.12, each of the functions
σαx Borel embeds into σα. By Proposition 4.9, there are Borel σαx -complete
sections Bx such that ∆σαx

(Bx) = ∆(αx). Then ∆σαx
(Bx) ⊥ ∆σαy

(By), for all
x 6= y, so the sequence 〈σαx〉x∈2N is pairwise orthogonal, by Proposition 4.6. For
each x ∈ 2N, fix fx ∈ B such that (fx)0 �L σαx , and observe that the sequence
〈(fx)0〉x∈2N is pairwise orthogonal. �
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§5. A basis theorem. In order to considerably strengthen Theorem 4.14,
we give next a Glimm-Effros style characterization of the circumstances under
which an aperiodic Borel function admits a two-spaced Borel complete section:

Theorem 5.1. Suppose that X is a Polish space and f : X → X is an aperi-
odic Borel function. Then exactly one of the following holds:

1. The function f admits a two-spaced Borel complete section.
2. There exists α ∈ Ωodd such that σα v f0.

Proof. Proposition 4.8 easily implies that (1) and (2) are mutually exclusive,
so it only remains to show ¬(1)⇒ (2). We will prove that if (1) fails, then there
is a sequence α ∈ Ωodd and a continuous injection π∞ : 2N → X such that:
(a) ∀n ∈ N ∀x ∈ 2N (fα(n) ◦ π∞(0n0x)E0(f)π∞(0n1x)).
(b) ∀x, y ∈ 2N ((x, y) 6∈ E0 ⇒ (π∞(x), π∞(y)) 6∈ Et(f)).

The map (x, i) 7→ f i ◦ π∞(x) then induces the desired embedding, off of the set
of points (x, i) for which x is eventually constant.

Define x <f0 y ⇔ ∃i, j ∈ N (j < i and f i(x) = f j(y)), and for each n ∈ N,
let <0 denote the reverse lexicographic order on 2n given by s <0 t ⇔ (s 6=
t and s(i) < t(i)), where i < n is largest such that s(i) 6= t(i). Set

Fn = {π ∈ X2n : ∀s, t ∈ 2n (s <0 t⇒ π(s) <f0 π(t))}.
For each π ∈ Fn+1, we use π0, π1 to denote the elements of Fn given by πi(s) =
π(si). For each A ⊆ Fn and s ∈ 2n, define A(s) = {π(s) : π ∈ A}. Fix a
compatible Polish metric d on X. For k0 6≡ k1 (mod 2), a (k0, k1)-extension of
A ⊆ Fn is a set A′ ⊆ Fn+1 such that:
• ∀π ∈ A′ (π0, π1 ∈ A and fk0 ◦ π0(0n) = fk1 ◦ π1(0n)).
• ∀i, j ≤ n∀s, t ∈ 2n (f i(A′(s0)) ∩ f j(A′(t1)) = ∅).
• ∀i ≤ n ∀s ∈ 2n+1 (diam(f i(A′(s))) ≤ 1/n).
We use If to denote the σ-ideal generated by the evenly-spaced Borel sets,

and we use In to denote the σ-ideal of sets A ⊆ Fn such that A(0n) ∈ If .

Lemma 5.2. Suppose that A ⊆ Fn is an In-positive analytic set and k ∈ N.
Then there exist k0, k1 ∈ N such that k0 − k1 > max(k, n) and A admits an
In+1-positive analytic (k0, k1)-extension.

Proof. Fix ` ∈ N such that the set A` = {π ∈ A : π(1n) <f0 f
` ◦ π(0n)} is

not in In, define S ⊆ N× N by

S = {(k0, k1) ∈ N× N : k0 6≡ k1 (mod 2) and k0 − k1 > max(k, `+ n)},
and for each (k0, k1) ∈ S, define A(k0,k1) ⊆ Fn+1 by

A(k0,k1) = {π ∈ Fn+1 : π0, π1 ∈ A` and fk0 ◦ π0(0n) = fk1 ◦ π1(0n)}.
Sublemma 5.3. There exists (k0, k1) ∈ S such that A(k0,k1) 6∈ In+1.

Proof. Suppose, towards a contradiction, that A(k0,k1) ∈ In+1, for all pairs
(k0, k1) ∈ S. Fix a Borel set B ∈ If with

⋃
(k0,k1)∈S A(k0,k1)(0n+1) ⊆ B, and set

A′ = {π ∈ A` : π(0n) /∈ B}. Then ∆f (A′(0n)) ⊆ {0, . . . ,max(k, `+n)} ∪ 2N, so
Lemma 4.4 ensures that there is an E0(f)-invariant Borel set B′ ⊇ A′(0n) with
∆f (B′) ⊆ {0, . . . ,max(k, `+n)}∪ 2N. Then the set A = B′ \

⋃
i∈N f

−(2i+1)(B′)
is evenly spaced, so [A]Et(f) ∈ If , thus A′ ∈ In, the desired contradiction. �
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Fix a pair (k0, k1) ∈ S such that A(k0,k1) /∈ In+1, and note that if π ∈ A(k0,k1),
then df (π0(1n), π1(0n)) > n, so f i ◦ π(s0) 6= f j ◦ π(t1), for all i, j ≤ n and s, t ∈
2n. Fix a countable open basis U0, U1, . . . for X consisting of sets of diameter
≤ 1/n, and let F denote the family of all functions φ : {0, . . . , n} × 2n+1 → N
such that Uφ(i,s0) ∩ Uφ(j,t1) = ∅, for all i, j ≤ n and s, t ∈ 2n. Then for all
π ∈ A(k0,k1), there exists φ ∈ F such that π is in the set Aφ = {π ∈ A(k0,k1) :
∀i ≤ n∀s ∈ 2n+1 (f i ◦ π(s) ∈ Uφ(i,s))}. Fix φ ∈ F such that Aφ 6∈ In+1, and
observe that Aφ is as desired. �

A Souslin scheme is a sequence 〈Ct〉t∈N<N of closed subsets of X such that
diam(Ct) ≤ 1/|t|, for all t ∈ N<N. Associated with such a scheme are the sets
At =

⋃
x⊇t

⋂
n∈N Cx|n, for t ∈ N<N. It is well known that the analytic sets are

those of the form A∅, for some Souslin scheme (see, for example, §14 of [7]).
We will next construct analytic sets An ⊆ Fn which serve as approximations

to the desired embedding. We will simultaneously find natural numbers kn0 > kn1 ,
Souslin schemes 〈Cst 〉t∈N<N for An(s), and finite sequences of natural numbers
tsn ( tsn+1 ( · · · , for n ∈ N and s ∈ 2n, such that:

• kn0 − kn1 >
∑
i<n k

i
0 − ki1.

• An+1 is an In+1-positive (kn0 , k
n
1 )-extension of An.

• ∀s ∈ 2n ∀i ≤ n (An(s) ⊆ As|i
t
s|i
n

).

We begin by setting A0 = F0, which is not in I0 by Lemma 4.2. We fix also a
Souslin scheme 〈C∅t 〉t∈N<N for A0(∅), and we set t∅0 = ∅.

Suppose that we have found Ai, 〈Cst 〉t∈N<N , and tsi ( · · · ( tsn, for i ≤ n and
s ∈ 2i, as well as ki0, k

i
1 ∈ N, for i < n. By Lemma 5.2, there exist kn0 , k

n
1 ∈ N

such that kn0 −kn1 >
∑
i<n k

i
0−ki1, as well as an In+1-positive (kn0 , k

n
1 )-extension

A of An. Fix tsn+1 ) tsn, for i ≤ n and s ∈ 2i, such that the set

An+1 = {π ∈ A : ∀s ∈ 2n+1 ∀i ≤ n (π(s) ∈ As|i
t
s|i
n+1

)}

is not in In+1. For each s ∈ 2n+1, fix Souslin schemes 〈Cst 〉t∈N<N for An+1(s),
and set tsn+1 = ∅. This completes the recursive construction.

Observe now that for each x ∈ 2N, the closed sets

C
x|0
t
x|0
0

, C
x|0
t
x|0
1

∩ Cx|1
t
x|1
1

, . . . , C
x|0
t
x|0
n

∩ Cx|1
t
x|1
n

∩ · · · ∩ Cx|n
t
x|n
n

, . . .

are decreasing and of vanishing diameter, thus the map

π∞(x) = the unique element of
⋂
n∈N

⋂
i≤n

C
x|i
t
x|i
n

is a continuous injection. Noting that diam(Ai(x|i))→ 0 as i→∞ and

{π∞(x)} =
⋂
i∈N

⋂
n≥i

C
x|i
t
x|i
n

⊆
⋂
i∈N
Ai(x|i),

it follows that

π∞(x) = the unique element of
⋂
i∈N
Ai(x|i).

Define α ∈ Ωodd by α(n) = kn0 − kn1 . To see (a), it is enough to show:
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Lemma 5.4. If n ∈ N and x ∈ 2N, then fk
n
0 ◦ π∞(0n0x) = fk

n
1 ◦ π∞(0n1x).

Proof. Fix i ≥ kn1 − n and π ∈ An+1+i such that π(0n0(x|i)) = π∞(0n0x),
and observe that

fk
n
0 ◦ π∞(0n0x) = fk

n
0 ◦ π(0n0(x|i))

= fk
n
1 ◦ π(0n1(x|i))

∈ fk
n
1 (An+1+i(0n1(x|i))).

Then fk
n
1 ◦π∞(0n1x) ∈ fkn1 (An+1+i(0n1(x|i))) and the diameter of the latter set

is at most 1/(n+ i), so d(fk
n
0 ◦ π∞(0n0x), fk

n
1 ◦ π∞(0n1x)) < 1/(n+ i). Letting

i→∞, it follows that fk
n
0 ◦ π∞(0n0x) = fk

n
1 ◦ π∞(0n1x). �

To see (b), it is enough to show that

∀x, y ∈ 2N (x(n) 6= y(n)⇒ ∀i, j ≤ n (f i ◦ π∞(x) 6= f j ◦ π∞(y))),

which follows from the fact that if x(n) 6= y(n), then f i(An+1(x(0) . . . x(n))) ∩
f j(An+1(y(0) . . . y(n))) = ∅. �

This leads to the following fact regarding pairwise orthogonality:

Theorem 5.5. Suppose that X is a Polish space and f : X → X is an ape-
riodic Borel function which does not admit a two-spaced Borel complete section.
Then there is a sequence 〈Bx〉x∈2N of Et(f)-invariant Borel subsets of X such
that none of the restrictions f |Bx admit two-spaced Borel complete sections and
the sequence 〈(f |Bx)0〉x∈2N is pairwise orthogonal.

Proof. By Theorem 5.1, there exists α ∈ Ωodd such that σα v f0. By
the proof of Theorem 4.14, there is a sequence 〈αx〉x∈2N of subsequences of α
such that the corresponding sequence 〈σαx〉x∈2N is pairwise orthogonal. For each
x ∈ 2N, fix a Borel lifting πx : Xαx → X of an embedding of σαx into f0. Then
the image of each Et(σαx)-class under πx is countable, so the Lusin-Novikov
uniformization theorem ensures that the set Bx = [πx(Xαx)]Et(f) is Borel, and
it easily follows that the sequence 〈Bx〉x∈2N is as desired. �

We can give now the promised strengthening of Theorem 4.14:

Theorem 5.6. Suppose that X is a Polish space, f : X → X is an aperiodic
Borel function which does not admit a two-spaced Borel complete section, and
B is a squashed basis for the class of Borel functions g which do not admit
two-spaced Borel complete sections and for which g0 �L f0. Then there is an
embedding of (R<N,⊇) into (B,�L).

Proof. Put f∅ = f . Given fs : Xs → Xs, for some s ∈ R<N, Theorem 5.5
ensures that there is a pairwise orthogonal sequence 〈fsr : Xsr → Xsr〉r∈R of
Borel functions in B which embed into fs. The map s 7→ fs is as desired. �

It is clear that the proof of Theorem 5.6 adapts to give the following:

Theorem 5.7. Suppose that f is a Borel function on a Polish space, χB(Gf ) ≥
3, and B is a �B-basis for the class of directed graphs of the form Gg for which
χB(Gg) ≥ 3 and Gg �B Gf . Then there is an embedding of (R<N,⊇) into (B,�B).
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