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One of the most important ideas in the study of operator algebras has 
been the notion of finiteness. There have been a number of proposed 
definitions of finiteness; the weakest of these (for unital algebras) is 
Murray-von Neumann finiteness (XX* = 1 implies x*x = l), and the 
strongest is the existence of a separating family of tracial states. Classical 
results of Murray and von Neumann show that these notions coincide for 
W*-algebras, but the relationship is unclear even for AW*-algebras, and 
thus more generally. 

A primary goal of the study of finiteness in operator algebras is the 
gathering of information about the order structure and comparability within 
the algebra (cf. [ 6, 15 1). Related to this, is the K-theory of C*-algebras. The 
Grothendieck group (K,) of a stably fmite C*-algebra admits a natural 
ordering which has become very important, particularly in the study of AF 
algebras by means of dimension groups 19, 101. 

The groundwork for a theory unifying and clarifying many aspects of 
finiteness in C*-algebras was laid by Cuntz in 141. He defined (for simple 
C*-algebras) a partially ordered abelian group K,* similar to K,, and 
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showed that its states could be identified with “dimension functions” (similar 
to those on W*- or A W*-algebras) on the algebra. 

Our aim in this paper is to develop the general theory of K,* and 
dimension functions to a considerably greater extent than 141, to clarify the 
relation between dimension functions and traces, and to apply the theory to 
obtain new results about the internal structure of C*-algebras and their K, 
and K,* groups. 

One new concept (actually only new terminology) considered, is that of 
quasitrace; this is a complex-valued function on a C*-algebra having all the 
usual properties of a tracial state, but with linearity assumed only on 
commutative C*-subalgebras. 

The principal results of this article are: 

1. Any lower semicontinuous subadditive rank function (I. 1.2) on a C*- 
algebra extends to matrix rings, and thus to a lower semicontinuous 
dimension function(Theorem 11.3.1); without “subadditive,” the result fails. 

2. If A is any C*-algebra and D is a lower semicontinuous dimension 
function, then there is a *-homomorphism @ from A to a finite A W*-algebra 
M, and a lower semicontinuous dimension function d on M, such that 
D=fi. @. 

3. If A is a C*-algebra, there is a natural bijection between the lower 
semicontinuous dimension functions and the 2-quasitraces on A (a 2- 
quasitrace is a quasitrace which extends to M,A, the ring of 2 x 2 matrices 
with entries from A) (11.2.2). 

4. For unital A, the set of 2-quasitraces on A has the structure of a 
simplex (11.4.4). 

5. If Q denotes the class of C*-algebras generated by type I and W* 
algebras, and closed under the formation of ideals, quotients, direct limits, 
extensions, and matrix rings, then every quasitrace on a member of Q is a 
trace (hence every stably finite unital C*-algebra in Q possesses a trace) 
(11.4.9, 11.4.11). 

6. For simple AF algebras (a larger class of C*-algebras is considered), 
the module isomorphism classes of closed right ideals are described, as are 
the corresponding K,* groups (111.2.11, 111.2.12, 111.3.4). 

7. If A is a stably finite C*-algebra which is “rich in projections,” then 
the state space of K,,(A) is the simplex QT(A) (4 above) (111.1.3). 

The paper is divided, like Gaul, into three parts. Part I is a study of 
dimension functions, Part II deals with quasitraces, and Part III discusses 
the structure of K,* with applications to K,. Each is divided into several 
sections. 
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I. DIMENSION FUNCTIONS 

Roughly speaking, a rank or dimension function on a ring, is a real-valued 
function whose values measure the size of the “support projections” of the 
elements. 

The study of such functions goes back at least to Murray and von 
Neumann, who used them (defined only on projections) in their classification 
of factors. They have since become an important tool in the study of von 
Neumann regular rings [ 121. Cuntz [4] gave definitions appropriate for their 
study on general C*-algebras. 

Section 1 develops some of the elementary properties of rank and 
dimension functions; Section 2 examines dimension functions on 
commutative C*-algebras; and Section 3 discusses the possibility of 
extending subadditive rank functions to enveloping regular rings. Section 4 
concerns the problem of extending them to related A IV*-algebras. 

Some of the methods used in Sections 2, 3, and 4 require knowledge of 
basic facts about regular rings, which may be unfamiliar to the reader. A 
good general reference is [12]; for the relationship with AW*-algebras [ 1; 
Chap. 81 is the usual source. 

Caveat lector! There is an unfortunate nonuniformity of terminology in 
the literature concerning rank and dimension functions (e.g., [ 14]), so the 
reader is warned to observe the proper definitions. We shall follow 141, but 
our definitions will be carefully stated, so as to avoid confusion. 

1.1. General Theory 

DEFINITION 1.1.1(a). A pre-C*-algebra A is called a local C*-algebra if 
every positive element of A is contained in a (complete) C*-subalgebra of A ; 
that is, A admits a functional calculus on its positive elements. The ordering 
on A is that induced from its completion. 

An algebraic direct limit of C*-algebras is an important example. 

1.1.1(b). If A is a ring let M,A denote the ring of n x n matrices over 
A, and rp,: M,A --, M,, , A the upper left corner embeddings. Define M,A to 
be the (algebraic) inductive limit of (M,A, cp,). We shall think of M,A as a 
subring of M,A. 

I. 1.1(c). If E > 0, let f, be the continuous function from IR to iR which 
is zero on (-co,e/2], linear on [s/2,&], and one on [a, co). 

DEFINITION 1.1.2. Let A be a local C*-algebra. A rank (dimension) 
function on A is a mapping D: A -+ 10, 11 (D: M,A + (0, co)) such that: 

(i) sup(D(a) 1 a E A} = 1 (normalization). 
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(ii) If a 1 b (i.e., ub=ab*=a*b=a*b*=O), then D(u+b)= 
D(u) + D(b). 

(iii) For all a, D(u) = D(uu*) = D(u*u) = D(u*). 
(iv) If 0 < a Q b, then D(u) Q D(b). 

(v) If u 5 b (i.e., there exist x,, y, with {x,by,} converging to a in 
norm [4]), then D(u) < D(b). 

A rank function which satisfies (vi) below is subadditive: 

(vi) For all a, b, D(u + 6) <D(u) + D(b). 

A rank function satisfying (vi’), is called weakly subudditive: 

(vi’) For all positive commuting a, b in A, D(u + b) < D(u) + D(b). 

There are many equivalent formulations of these definitions; the next few 
propositions explore some variations and consequences. 

PROPOSmON 1.1.3. Let D be u function on a local C*-algebra A 
sutisfiing (iii), (iv), and (v). Then D satisfies: 

(vii) For all a in A, L in C-(O), D(k) = D(u); 

(viii) For a, b in A, D(ub) < min{D(u), D(b)}. 

Proof That (vii) holds follows easily from (v). To prove (viii), observe 
that D(ub) = D(ubb*u*) < D(ll b II* uu *) = D(uu *) = D(u); similarly for 
D(ab) ,< D(b). 1 

PROPOSITION 1.1.4. Let D be a function on a C*-algebra A such that 
both (viii) and (ix) below hold: 

(ix) For all Positive a in A, D(u) = D(u’). Then D satisfies (iii) and 
(iv). 

Proof. There exists u in A such that a = u(u*u)“~]~~; 1.4.51; thus 
D(u) < D( (a *u)‘14) = D(u *a) Q D(u). Further, D(u *a) = D((u *a)(~ “a)) = 
D(u*(uu*)u) < D(uu*), etc., yielding (iii). 

If 0 <u Q b, by [18; 1.4.51, there exists w in A with a = wb114w*; hence 
D(u) < D(b1’4) = D(b). 1 

PROPOSITION 1.1.5. Let D be a function on u local F-ulgebru A such 
that (iii), (iv), (vii), and (x) below hold: 

(x) D(u) = sup{D(f,(u)) 16 > 0} for all Positive a in A. Then D is 
lower semicontinuous. 

Proof: Let {x,} converge to x; we may assume that all of x, and x are 
positive by (iii). Then f&(x,) converges to fs(x) for all 6 greater than zero. 



DIMENSION FUNCTIONS 301 

Fix E > 0, and choose 6 > 0 so that Ddf&)) > D(x) - E. Set y, = 
fs&JfsW Since .fi12(4 is a unit for C*dfsW and ~f~~~(x,N +f8,2(x)y 
applying [2; Lemma 4.11 (with a =f&(xJ and z =f&c)), we obtain that for 
n sufficiently large, y,* yn >&(x)* for some ?, > 0. Further, y, y,* <fs,2(x,,)‘. 
So, for n sufficiently large, 

D(x) - 6 < D(f,(x)) = D(f,W2) < D(Y,* Y,) = WY, Y,*> 

< ~(fs,*W2> G W”). I 

PROPOSITION 1.1.6. Let D be a function on a C*-algebra A satisfying (i), 
(ii), (viii), (ix), (x). Then D is a lower semicontinuous rank function. 

Proof. Lower semicontinuity follows from 1.1.5, and it along with (viii) 
jointly imply (v). I 

We now consider subadditivity in rank functions. 

PROPOSITION 1.1.7. Let D be a rank function on a local C*-algebra, A. 
If D extends to a rank function on M,A, then D is subadditive. In particular, 
dimension functions are subadditive. 

Proof. [4; 3.11. We observe that 

IL 
f,,“b”“*) fl,ny*)]. [; ;I. [M$) ;]I 

converges to [ “ib “, ] ; thus 

and so 

D [‘ib i]SD [i i]=D(a)+D(b). I 

A partial converse will be proved subsequently (11.3.1). 

EXAMPLE 1.1.8. Even a lower semicontinuous rank function on a 
commutative C*-algebra need not be weakly subadditive. 

On C( [ 0, 1 I), define a function D via 

D(f) = inf{x ] f(x) = 0) if f(x) = 0 for some x; 

= 1 if f(x) # 0 for all x in [0, l]. 
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Properties (i), (iii), and (iv) are obvious. If fg = 0, and f does not vanish on 
[0,x,,) butf(x,) = 0, then g is identically zero on [0,x,]; thus Ddf+ g) = 
x0 = w-) = wf) + D(g), since D(g) = 0. So D satisfies (ii). 

Suppose {f,} is a sequence of elements of C([O, 11) converging to f, and 
that D(f,) = x, . Set x0 = lim inf x, . Passing to a subsequence, we may 
assume x, converges to x0. Thus I&(x,)} converges to f(x,), so that 
f(x,) = 0. Hence D(f) < x0, so D is lower semicontinuous; by 1.1.6, D is a 
rank function. 

However, if f is a nonnegative function vanishing only at 4, and g is non- 
negative, vanishing only at f , then D(f) = a, D(g) = i and D(g +f) = 1. 
So D is not weakly subadditive. 

More generally, if p is a probability measure on a connected locally 
connected compact Hausdorff space X, and x0 is a point of X, let D(f) be 
the measure of the connected component of coz f = {x If(x) # 0) containing 
x0. Then D is a lower semicontinuous rank function on C(X) which is not 
generally weakly subadditive. 1 

If, however, A has sufficiently many projections, we can show that every 
lower semicontinuous rank function is subadditive. The specific condition 
needed here (and also in Part III) is the following. 

DEFINITION Il.9 [ 191. A local C*-algebra A has property (HP) if 
every singly generated closed hereditary *-subalgebra of A has an approx- 
imate identity consisting of an increasing sequence of projections. 

This can be restated in terms of closed right ideals which contain a dense 
singly generated submodule. All AF, all W*-algebras have property (HP). 

This definition is slightly different from that of [ 191; however, if A is a 
C*-algebra, the definitions are equivalent. 

PROPOSITION 1.1.10. Let A be a C*-algebra such that every singly 
generated hereditary C*-subalgebra has an approximate identity consisting 
of projections (not assumed to be increasing). Then every hereditary *- 
subalgebra of A has an approximate identity of projections, and every coun- 
tably generated hereditary C*-subalgebra of A has an approximate identity 
consisting of an increasing sequence of projections. 

Proof If B is an hereditary *-subalgebra of A and b belongs to B, then 
(f,,,(b*b) Af,,,(b*b))- c b*Ab c B, and u,fJb*b) AfJb*b) is dense in 
b*Ab. Let P(b, n) be a set of projections forming an approximate identity for 
(f,,,(b*b) AfJb*b))-. Then P = Ub,n P(b, n) is a set of projections in B 
which constitutes an approximate identity for B. If B is countably generated, 
then we may choose the set P to be countable, say, P = { pl, pz ,...}. 

Set a1 = pl. Suppose a finite set of projections (qij 1 i Q j < k) have been 
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chosen. Since ( p, qkk p,} converges to qkk, for suffkiently large n there is a 
. . projection qk,k+ i <p, with jIqkk - qk,k+l )I < 2-k, and a partial isometry uk 

so that @uk = qkkv uku$ = qk,k+ , , and I(qkk - ukll < 2-k. For 1 < i < k, set 
qi,k+ 1 = ukqiku,*, and define qk+,,k+l =p,,. We hereby obtain a set of 
projections {qii ( i <j} with the properties 

1(qij-q9i,j+,ll<2-jfor i&j and qij~qi+l,j for i <j. 

Let qk = limjqkj. Then qk <qk+,, and I(qk -qkkll < 2-k+‘. Since the set 
{qkk} is cofinal in {p,}, {qk} is an increasing approximate identity for B. 1 

If A is a C*-algebra without 1, then 2 will denote its unitification. 

LEMMA 1.1.11. Let A be a C*-algebra, and suppose x, Y belong to A. 

x*y + y*x <x*x + y*y 

(x + y)* (x + Y> < 2(x*x + Y”Y). 

If z, w lie in A, with w positive, then 

w<2(z*wz+(l-z)* w(l-z)). 

(The last computation is done in 2 formally, but both sides belong to A even 
if it has no identity.) 

ProoJ Clearly: 

0 < (x -y)* (x -y) =x*x + y*y - (x*y + y*x); 

(x+Y)* (x+y)= x*x + y*y + (x*y +y*x). 

Finally, w=(z*+(l-z)*) w(z+(l-z))=z*wz+(l-z)*w(l-z)+ 
z*w(l -z) + (1 -z)* wz. Apply the first inequality with x = w”*z, 

obtain z*w(l-z)+(l-z)*wz<z*wz+(l-z)* 

PROPOSITION 1.1.12. Let D be a lower semicontinuous rank function on 
a local C*-algebra A that satisfies (HP). Then D is subadditive. 

ProoJ: Let a, b belong to A. Suppose D(a + b) > D(a) + D(b). Since 
D(a*a) + D(b*b) = D(a) + D(b) < D(a + b) = D((a + b)* (a + b)) 
<D(2(a *a + b*b)) = D( a *a + b*b), we may assume that a, b are both 
positive. Choose an approximate identity {p,} of increasing projections for 
@Aa)-. Since a, =pnapn + a, for n sufficiently large, D(a, + b) > 
D(a) + D(b). By I. 1.11, 

a,, + b < 2(p,(a, + b)p, + (1 -a,)@, + b)(l -P,)); 
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thus, as P,, 1 (1 -PA 

D(P,(% + b) Pn + (1 -PJ(a, + b)(l -P,)) 

= D(p,(a, + b) P,) + D((1 - ~,)(a + b)(l -P,)). 

Clearly, D(p,(a,, +b)p,) < D(P,) < IQ); further, (1 -p,)@, +b)(l -P,) = 
(1 -P,)W -P,) (as a,, 1 (1 -P,)); hence, 

D((l -P,)&, + b)(l -PA) =W(l -P,)) < D(b), 

a contradiction. 1 

It is also possibly true that a rank function on a simple C*-algebra must 
be subadditive. Here is a partial result in this direction. 

PROPOSITION 1.1.13. Let D be a rank function on u simple C*-algebra 
A. Then there is a (full) hereditary C*-subalgebra of A on which D is subud- 
ditive. 

Proposition I. 1.13 folows immediately from I. 1.7 and the next lemma. 

LEMMA 1.1.14. Let A be a simple F-algebra which is not l- 
dimensional. Then there are nonzero (hence full) hereditary C*-algebras 
B c C of A such that C N M,B. 

Proof. The hypothesis ensures that A contains two nonzero orthogonal 
positive elements a and b. By [3, 1.81, there exists nonzero y in A with 
z = y*y in (aAa)- and w = yy* in (bAb)-. Thus z is orthogonal to w. Set 
B = (zAz)- and C= ((z + w) A(z + w))-. 1 

Finally, we examine the behaviour of subadditive rank functions under 
quotients. 

LEMMA 1.1.15. Let D be a function on a local C*-algebra A such that 
(vi) and (vii) hold. If a, b are elements of A with D(b) = 0, then 
D(u + 6) = D(u). 

Proof. We observe that D(a + b)< D(a) + D(b)= D(a), and D(a)= 
D((a + b) - b) Q D(u + b) + D(-b) = D(a + b). 1 

If D is a subadditive rank function on A, then ker D = {a E A 1 D(a) = 0) 
is a two-sided *-ideal of A. By Lemma 1.1.15, D induces a well-defined 
function 5 on A = A/ker D. Clearly, d satisfies (i), (iii), (vi), (vii), (viii), 
and (ix), but it is not clear that (ii) holds. If D can be extended to MzA, 
however, it is orthogonally additive. 

PROPOSITION 1.1.16. Let A be a local C*-algebra, and suppose that D is 
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a rank function on A that extends to a function on M,A satisfying (ii), (iii), 
(vi), and (vii). Then D satisfies (ii). 

Proof. Let 1~: A + A denote the quotient map, and select orthogonal x, Y 
in A. Choose a, b in A with n(a) =x, n(b) =y. Then ab, ab* ,... are all in 
kerD. Set a= [z z] EM,A; then 

and 

* 
uu* = aa 

ba* 

in addition, 

lies in ker D. Thus, 

ll*l4= 
a*a+b*b 0 

0 I 0 ’ 

ab* 1 [ au* 0 1 [ 0 ab* 
bb* = 0 bb” + ba* 0 ’ 1 

0 ab* 
ab* 0 I 

D(x +y) = D(a + b) = D((a + b)* (a t b)) = D(a*a t b*b) = D(u*u) 

=D(uu*)=D [ ““,* b;* ] = D(aa*) + D(bb*) = D(a) + D(b) 

= D(x) t D(y). I 

Even if D is a dimension function, it is not clear that fi possesses any 
analogue of property (v); indeed, this does not make sense (although sense 
could be made of it) unless A is a local C*-algebra, that is, unless ker D is 
closed. It seems that a is not of much interest unless ker D is closed (but see 
the proof of [14; 2.4]), so we shall restrict our attention (for the moment) to 
lower semicontinuous D. 

THEOREM I. 1.17. Let D be a lower semicontinuous dimension function 
on a F-algebra A. Then ker D is closed, and D is a lower semicontinuous 
dimension function on A = Alker D. 

Proof By 1.1.6, it suffices to show that fi satisfies (x). Select positive r.I 
in A. If a is positive in A with n(a) = 8, then n(f,(a)) = f,@) for all E, and 
L?(i) = D(a) = supr D( f,(a)) = sup, Ddf,(a)). fl 

COROLLARY I. 1.18. Let D be a lower semicontinuous dimension function 
on a F-algebra A, and suppose that J is a closed two-sided ideal of A 
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contained in ker D. Then D induces a lower semicontinuous dimension 
function on A/J. 

Remarks 1.1.19(a). A dimension function on A can be thought of as a 
coherent family of subadditive rank functions defined on matrix algebras 
over A. It is not known whether every subadditive rank function D on A 
extends to a dimension function; this is true when A is commutative (1.2.2) 
or if D is lower semicontinuous (11.3.1). 

(b) The normalization condition (i) can be relaxed to simply require 
that {D(a) 1 a E A} be bounded. This is automatic if A is complete (i.e., if A 
is a C*-algebra, not just a local C*-algebra)-for, let {a,} be positive 
elements of A such that D(a,) > n, jlan\l < 2-“; then C a, would not admit a 
(finite) value under D. If A is not complete, however, a function satisfying 
(ii)-(v) need not be bounded. A theory of unbounded dimension functions 
and quasitraces may be developed, but is beyond the scope of this article. If 
A is unital, (i) and (iv) imply D(1) = 1. 

(c) A convex combination of rank, subadditive rank, or dimension 
functions is a function of the same kind; if A has a unit, then each type of 
function is preserved under pointwise limits. Hence if A is unital, the set of 
rank functions (subadditive rank functions, weakly subadditive rank 
functions, dimension functions) is a compact convex set in the topology of 
pointwise convergence. 

(d) It is plausible that every weakly subadditive rank function is 
subadditive. A proof should be possible along the lines of I. 1.5 and I. 1.12. If 
this were true, the hypotheses of 11.2.2 etc., could be weakened to eliminate 
the irritating assumption of extendability to matrix algebras. 

(e) It should be pointed out that, by 114; 2.41, every stably finite 
unital C*-algebra possesses a lower semicontinuous dimension function, so 
the results of these sections apply to a large class of C*-algebras. 

1.2. Dimension Functions on Commutative P-Algebras 

In this section, we characterize subadditive rank functions on commutative 
C*-algebras, and show that all such extend to dimension functions. The 
completion of commutative C*-algebras in the rank metric is also described. 

Let X be a locally compact Hausdorff space, and let ST be the set of 
finitely additive probability measures on X with u-compact support, defined 
on the algebra of subsets of X generated by the u-compact open sets. 

PROPOSITION 1.2.1. There is a natural one to one correspondence 
between jT and the set of subadditive rank functions on C,(x). A subadditive 
rank function is lower semicontinuous if and only ifits associated measure is 
countably additive. 
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Proof. Most of the proof is routine and is left to the reader; we outline 
the correspondence. If ,u E fl, define D,(J) =p(coz f), where 
coz f = {x E X ( f(x) # 0). Conversely, if D is a subadditive rank function 
and U is a u-compact open subset of X, let f be an element of C,(X) with 
U= coz$ Set p(U) = D(f). If g is any function with U = coz g, then 
D(g) = D(f) by property (v), so ,D is well-defined. 

COROLLARY 1.2.2. Each subadditive rank function on C,(X) extends 
uniquely to a dimension function. 

Proof. The extension is given as follows. If D is a subadditive rank 
function, let p be the corresponding measure. Then for f in M,(C,(X)) 2: 
C&C M, 0, set 

D(f)= ‘? k.p{x]rankf(x)=k}. 
ky1 

It is routine (although tedious) to verify that D is a dimension function, and 
the only one extending the subadditve rank function. 1 

From Theorem 1.2.1, we obtain the “known” result that the lower semi- 
continuous dimension functions on C,(X) are exactly those induced by traces 
(states) on C,(X) [3,4]. The function D, t-+,u thus gives an atline bijection 
between the sets of lower semicontinuous dimension functions and traces of 
C,(X); this is continuous when both are equipped with the topology of 
pointwise convergence. The inverse function is not, however, continuous, 
except in trivial cases. This situation will be studied in the non-commutative 
case, in parts II and III. 

EXAMPLE 1.2.3. Using 1.2.1, it is easy to give an example of a dimension 
function which is not lower semicontinuous. Let X be the one-point compac- 
tification of N, and w an ultrafilter on X. For f in C(X), set D(f) = 1 if 
coz f E w, D(f) = 0 otherwise. These are precisely the extremal dimension 
functions on C(X); they are lower semicontinuous if and only if the 
corresponding ultrafilter is principal. 

The spirit of Example 1.2.3 pervades the proof of the following. 

THEOREM 1.2.4. If X is compact, then the set of lower semicontinuous 
dimension functions is dense in DF(C(X)), the space of dimension functions 
on C(X). 

Proof. Each finitely additive measure in ST extends to a finitely additive 
probability measure on all subsets of X, these correspond naturally to the 
countably additive probability measures on P-L the Stone-Tech 
compactification of X with the discrete topology. There is thus an affine map 
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0 (given by restriction) from M,@XJ, the state space of Cdax,), onto 
DI;(C(X)). Weak -* convergence in this state space implies setwise 
convergence of the corresponding measures on X (if UE X, consider 
convergence on the extension of xv to BX,), which is equivalent to pointwise 
convergence in DI;(C(X)); thus 0 is continuous. By the Krein-Milman 
theorem, it suffices to show that the lower semicontinuous extremal 
dimension functions are dense in the space of extreme points of DF(C(X)). 
The extremal dimension functions correspond to the (0, 1 }-valued measures, 
which are the images of the point masses in Midax,). The lower semi- 
continuous ones are the point masses from points in X, the set of which is 
dense in /lx,. m 

We conjecture that this result holds for all C*-algebras. 
We now examine the completion of C,(X) with respect to a lower semi- 

continuous dimension function. Let ,u be a countably additive measure in ST, 
and D, the corresponding dimension function. Define a (pseudo-)metric on 
C,,(X), via d,,(f, g) = D,(f-g); then d, is readily checked to be a pseudo- 
metric, and addition and multiplication are uniformly continuous with 
respect to d,,. Thus the completion R has a natural structure as a 
commutative*-algebra over C, and there is a *-homomorphism from C,(X) 
to R, with kernel ker D. 

A ring R with involution *, * is said to be *-regular, if for all r in R, there 
exists p = pz = p* in R such that rR =pR; equivalently, R is (von 
Neumann) regular and XT* = 0 implies x = 0. For any ring with involution 
(R, *) that contains at least the rationals, and satisfies 

c X(X? = 0 

we may define a subset of R, 

implies all xi = 0, (A) 

R, = {r E R ] there exist si in R, n in ZV, so that rr* + c xix7 = n . 1 }. 

Then R, is a subring with involution, called the bounded subring of R. For 
details, see [ 1; Sect. 541 or [23]. 

Let p be a countably additive measure on X, and define 

M(Xp)Jf:x-t@Vlf~~If is measurable and is finite a.e. } 
, {fiX+CU{~co}]fismeasurableandzeroa.e.} * 

As will be seen below, M(X,,L) is a *-regular ring, and its bounded subring 
is L “(X, p). The kernel of the map C,,(X) --t M(X, ,L) is precisely ker D, . 

PROPOSITION 1.2.5. The completion of C,(X) with respect to d,, is 
naturally isomorphic to M(X,p). Further, M(X,p) is a *-regular ring 
satisfying (A) above, and L*(X,,u) is its bounded subring. 
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Proof: Define B = {(f;:) ] fi E C,(X), (fi) Cauchy re d,} G nN C,(X) 
(the latter term is the full Cartesian product), and define N = {(A) E B / 
lim O,(h) = O}. If (f;:) belongs to B, then the sequence converges in 
measure; we thus define a measurable function f(x) = lim fi(x) (observe that 
for almost all x, the sequence {h(x)} is ultimately stationary). Then f 
belongs to M(X,,U), and modulo N, is independent of the approximating 
sequence. Now D, extends in the obvious way to M(&,u), as does d, to a 
metric. It is routinely verified that (fi) +-+f is a *-algebra homomorphism 
with kernel N, and the quotient map, R = B/N -+ M(X,p), is an isometry 
with respect to d,. However, every finite a.e. measurable function can be 
approximated in measure by functions in C,(X), so the map is onto. 

Given an element f in M(X, p), define g via 

L?(x) = 0 if f(x) = 0 

= W(x) if f(x)# 0. 

Then g lies in M(X,p), and fs;f=f, gfg = g. Hence M(X, ,u) is regular, and 
since Cf;:fl = 0 implies all fi are zero (routine), M(X,p) is *-regular. 

To be bounded with respect to the *-order in M(X,p) requires the 
existence of gi in M(X,,U) and n in N so that fl* + z gi gl = n. Then 
Pu(X I If(xl’ > nl = 09 so f lies in Lo3(X, p). Conversely, if ] f ] is essentially 
bounded, with essential supremum less than n, then fl* + (dm)’ = n 
in M(X,,B); thus f lies in the bounded subring. 1 

1.3. Completions and Extensions of Subadditive Rank Functions 

In this section, it is shown that a subadditive lower semicontinuous rank 
function on a local C*-algebra is induced by a *-homomorphism into a *- 
regular ring which is complete at a (regular ring) rank function. One 
eventual consequence is that each such function extends uniquely to sub- 
additive rank functions on the rings of matrices, and thus to a dimension 
function on A. 

LEMMA 1.3.1. Let R be any ring, with elements xi, yi (i = 1, 2). Let 
N: R + [0, l] satisfy 

and 

N(rs) < min (N(r), N(s)} 

N(r + s) <N(r) + N(s) all r, s in R. 

Assume that for i = 1,2, the following hold: 

xi Yi = Yixi, xi yixi = Xi) Yixi Yi = Yi. 

Then N( y, - y2) < 9N(x, -x2). 
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ProoJ: Set xi y, = ei ; then ef = e,. Since 

y1 -Y, = de, - e2> + (e, - e2b2 - Y,(x~ - x~)Y,, 

we obtain 

NY, - Y2) < WeI - e2) + Nx, -x2). 

Butel-e2=~,(x,-x2)-(x,-x2)~2+~,x2--x,~2, so 

(1) 

Finally 

We, - e,) < 2N(x, - x2) + N(Y,~, -x1 y2). (2) 

Yl~,--x,Y,=-Y,-4Y,+Y,~:Y2=-Y,~~:-4~Y, 

=-Y,(X,(X, -x2) + 61 -X2)X2)Yzi 

thus 

WY,X2 --Xl Y2)<2% -x2>. (3) 

Combining (l), (2), and (3), the esired estimate results. 1 

It follows that in a *-regular ring, if ’ denotes “relative inverse,” and N is 
a (regular ring) pseudo-rank function, then N(r’ -s’) < 19N(r - s). K. R. 
Goodearl has reduced 19 to 5. 

Let A be a local C*-algebra, D a subadditive lower semicontinuous rank 
function on A; then D induces a pseudo-metric d(x, y) = D(x - y) on A; the 
completion R of A has a natural structure as a complex *-algebra as in 
Section 2, and D extends to a function fi on R. The kernel of the natural *- 
homomorphism p: A + R, is ker D, a closed *-ideal. 

THEOREM 1.3.2. The following properties hold for R and 0: 

(i) R is *-regular, * satisfies (A); 
(ii) D is a regular ring rank function [ 121 on R; 

(iii) R is self-injective on either side. 

Proof: Define B = {(a,) E &A ] (a,) is d-Cauchy}, and N = ((ai) E B ) 
lim D(a,) = 0). Then R = B/N, and D((ai)) = lim D(ai) is well-defined. It 
follows easily that b satisfies 

and 
D(r + s) Q E(r) + D(s) 

@rs) < b(r), D(s) for all r, s in R. 

The proof proceeds in a series of lemmas. 
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LEMMA 1.3.3. If Cy rirF = 0, then each ri = 0. 

Proof. Let E > 0. Choose ai in A, with o@(u,) - ri) ( e/2n. Then 
D(C ajar) < fi(,TJ rirf) + E = E. Since for each i, a,a* < C a,~,*, D(u,) = 
o(UiU)) < E; thus fi(ri) < 2~. As E is arbitrary, D(ri) = 0, and thus 
ri=O. I 

LEMMA 1.3.4. Let r and s be orthogonal positive elements of R. Then 
there are sequences (c,), (d,) of elements of A’ such that p(c,) + r. 
p(d,) -+ s, and d, I c,. In particular, fi(r + s) = D(r) + D(s). 

Proof Find a, in A+ such that ~(a,) -+ r. Then there is a sequence of 
real positive numbers E,, for which p(c,) --f r, where c, = u, f,,(u,). Choose 
b, in A ’ so that p(b,) --t s. Since p(f&u))s -+ 0, by passing to subsequences 
we may assume that p( f&(u,) b,) + 0. Define 

4, = b, -f,,,zh) b,, - b,f,,&,) +f,,,&J bnL&n)~ 

Then d, is positive, p(d,) converges to s, and d, 1 c, (formally, d, = 
(1 -f,,12@,>) in 4. I 

LEMMA 1.3.5. R has an identity. 

Proof: Choose a, > 0 in A, with D(u,) > 1 - 1/2n; then there is an 
E, > 0, with D(f,,(u,)) > 1 - l/n. Set 4, =f,,(u,)~ G =f,,,&,). *hen 
b,c,=b,. As (c,-ci)Ib,, D(c,-ci)< l/n. Setx=c,-c,. Then 

D(x) = D((c, - c,)x) = D(x - c,x -x + c,x) < D(x - c,x) + D(x - c,x) 

=D((x-c,x)(x-xc,)) + D((x-c,x)(x-xc,)) 

= D(x* - c,x* - x*c, + c,x’c,) + D(x* - c,x* - x2c, + c,x*c,) 

< l/n + l/m; 

the last inequality follows since (x2 - cix2 - x2ci + cix2ci) I bi, for i = n, m. 
Thus {p(c,)} is a Cauchy sequence whose limit is a projection p in R, with 
D(p) = 1. For y in R, (y -py)(y -py)* =yy* -pyy* -yy*p +pyy*p; this 
is orthogonal to p, so o( y -py) = 0 and thus y = py. Similarly yp = y, and p 
is thus an identity of R. 4 

LEMMA 1.3.6. The ring R is *-regular. 

Proof. In view of Lemmas 1.3.3 and 1.3.5, we need only show that the 
equation bxb = b can be solved for any element b of R. If b*byb*b = b*b for 
some y, then (b - byb*b)* (b - byb*b) = b*b - b*by*b*b - b*byb*b + 
b*by*b*byb*b=O; thus b= byb*b, and so x= yb* would be a solution of 

%70/45/3-2 
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bxb = b. It therefore suffices to show that czc = c has a solution for every 
b*b = c in R. 

To this end, select a sequence of elements of A +, (a,), so that p(a,) + c. 
Each a, sits inside a commutative C*-subalgebra of A, and the closure in R 
is a *-regular ring by 1.25. Thus each p(u,) has a relative inverse p&J (see 
the function g defined in the course of the proof of 1.2.5) in R. By 
Lemma 1.3.1, the sequence @(a,)‘) is a Cauchy sequence in R, and its limit z 
satisfies czc = c. I 

LEMMA 1.3.7. Let E be u function on satisfying (ii), (iii), (vi), and (viii), 
that is uniformly continuous with respect to D. Then E extends to a regular 
ring pseudo-rank function on R; if E = D, the appropriate extension is fi, 
and this is a regular ring rank function. 

Proof. Obviously E extends to R by defining ~!?((a,)) = lim E(a,) if (aJ is 
a Cauchy sequence with respect to D. Since E(ab) ( E(a), E(b) for all a, b in 
A, it follows that E is also submultiplicative. It remains to show that if e, f 
are idempotents such that 0 = ef =fe (these are called “orthogonal” in the 
theory of regular rings; to avoid confusion with the notion of orthogonal 
used in this paper, we shall refrain from using “orthogonal” in the sense of 
regular rings), then E(e + f) = j?(e) + E( f ). 

BY *-regularity, there exist projections p, q in R so that Rp = Re, and 
qR =fl. As eR =pR and Rq z Rf (as R-modules) and R is von Neumann 
regular, it follows that there exist elements x, y, z, w in R such that 

ex=x=xp, py=y=ye, fz=z=zq, qw=w=wf, 

and 

xy = e, yx =p; wz=q, zw =f. 

As e = xpy and p = yex, E(e) = E(p); similarly, E(f) = E(q). Also, 

e + f = (x + z)(p + q)(y + w) and p + q = (y + w)(e +f)(x + z); 

thus, ,?(e + f) = ,?(p + q). As ef = 0, p I q; by the second sentence of 1.3.4, 
E(p + q) = E(p) + E(q). Combining all of the equalities deduced above, we 
obtain E(e + f) = ,!?( p + q) = E(p) + E(q) = g(e) + E(J). Thus E is a 
pseudo-rank function. 

If E = D, E= fi; then 6(p) = 0 implies p = 0 and thus D is a rank 
function. I 

Since R is complete at the D-rank metric, it follows from [ 12; 19.71 that R 
is right and left self-injective. This completes the proof of 1.3.2. I 
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COROLLARY 1.3.8. Let D be a lower semicontinuous subadditive rank 
function on a local C* algebra A, and suppose that E satisfies the hypothesis 
of 1.3.7. Then for every n, E extends uniquely to a function on M,A also 
called E, satisfying (ii), (iii), (iv), (vi), (vii), (viii) such that sup{E(a) ) 
a E M,A } = n; further, the completion of M,A in the (extended) D-metric is 
M,R. 

Proof. Since R, the D-completion, is *-regular satisfying (A), M,,R is - - 
also *-regular. Now E, D (on R) extend uniquely to regular ring pseudo-rank 
functions on S = M,R [ 12; 16.101; the restriction to M,,A is the desired 
extension. Property (ii) is proved by observing that for elements a, b in M,A 
which are orthogonal, then in the *-regular ring S, their projections obtained 
via Sa = Sp, Sb = Sq, are orthogonal; as Sa + Sb = Sp @ Sq = S(p_+ q), 
and as it is easily verified that S(a + b) = Sa + Sb, we obtain that E(a) + 
E(b) = E(p) + E(q) = .&p + q) = .&a + b). 

In a *-regular ring, aS = aa*S N a*S, and (iii) follows. 
If 0 <c < d in S (i.e., c = C c,c, *, d = d*, and d - c = C xix:), then the 

right annihilator of d is contained in that of c; it follows thatjf SC = Sp, 
Sd = Sq (p,q projections), then p <q, so that SC c Sd; thus E(c) <E(d). 
Hence (iv) holds. 

Properties (vi), (vii), (viii) follows from the corresponding properties of 
regular ring rank functions [ 12; Chap. 161. 

Let D,, E, be extensions of D, E to M,A that satisfy (ii), (iii), (vi), and 
(viii). For a = (aij) in M,,A, let Xi’ be the matrix whose only nonzero entry 
is aij in the ij position; then DI(Xii) = D(aij), and Dl(a) < C Dl(Xij) = 
C D(aii) < n’D(a). Thus D, is uniformly continuous with respect to D, so 
by 1.3.6, D, yields a regular ring rank function on M,A; by the uniqueness 
of the extension to matrix rings [ 12; 16.101, D, = D, and one similarly 
proves that E, is uniformly continuous with respect to E and thus to D, so 
E, induces a pseudo-rank function, and the uniqueness result implies 
E, = E. m 

Property (v) and lower semicontinuity of the extensions to matrix rings 
also hold (11.3.1), but more work is required. 

1.4. Mapping to A W*-Algebras 

In this section, we show that a lower semicontinuous subadditive rank 
function on a local C*-algebra is induced by a homomorphism into a finite 
A W*-algebra. This is obtained via an ultraproduct construction similar to 
that of [ 141, and is closely related to the regular ring considered in 1.3. 

THEOREM 1.4.1. Let A be a local C*-algebra, D a lower semicontinuous 
subadditive rank function on A. Then there is a finite A W*-algebra M, a 
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faithful lower semicontinuous subadditive rank function d on M, and a 
homomorphism o: A --t A4 such that D = 0’ o o. 

Let F’(A) be the local C*-algebra of bounded sequences of elements of A, 
and w a non-principal ultrafilter on N. Define Dw on F’(A) via D”((a,)) = 
lim, D(a,). Let J be the (closed) *-ideal of l”(A) consisting of sequences 
converging to 0 in norm along o, and set A, = l”O(A)/J. Then A, is a C*- 
algebra (any quotient of F’(A) by a closed *-ideal containing c,(A) is 
automatically complete). Let K be the quotient map from l”(A) onto A,, 
and define D, on A, by D,(x) = inf(Dw((a,)) 1 n((a,)) =x}, (the infimum 
being taken over all sequences representing x). 

LEMMA 1.4.2. Let x be an element of A,. Then there is a sequence (a,) 
in Y’(A) with n((a,)) =x and D,(x) = D”((a,)). 

Proof For each positive integer k, there is a sequence (a,,) in Z”O(A) 
with n((a,,)) =x and D,(x) > D”((a,,)) - l/k. For each k > 1, the set Sk = 
In I Ilakn - a,,,[( < l/k, ID(a,,) -D,(x)] < 2/k} belongs to cu. Set 3, = N, 
~~=s)-b.. n Sk for k > 1; then s, belongs to o for all k, and 
S, zSs, 2 ... . If n E s,/s,+,, set a,, = akn, and (a,) is the desired 
sequence. I 

LEMMA 1.4.3. If x, y lie in A, then D,(x + y) < D,(x) + D,(y), and 
D,W < mWLW9 D,Wl. 

Proof Let (a,) and (b,) represent x and y as in 1.4.2. Then 

D,(x + y) < lim D(a, + b,) C l@(D(a.) + D(b,)) 0 

= lim D(a,) + lim D(b,) 
w 0 

= D,(x) + D,(Y); 

submultiplicativity is proved in a similar fashion. 1 

LEMMA 1.4.4. If x is a positive element of A,, then D,(x) = D,(x*). 

Proof By 1.4.3, D-(x*) (D,(x); conversely, let (a,) represent x2 as in 
1.4.2. Then n((a,*a,)“*) = x, so D,(x) Q lim, D((a,*a,)“*) = lim, D((a,)) = 
&(x2). 1 

LEMMA 1.45 The function D is lower semicontinuous. 

Proof (Similar to 1.4.2). Let {xk} converge in norm to x in A,; represent 
each xk by (akn) in I”(A), and x by (a,), as in 1.4.2. By passing to a subse- 
quence of (xJ, it suffices to show for any r > 0, that if DW(xJ Q r for all k, 
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then D,(x) < r. For each integer k, there is an integer m(k) such that the set 
s k, 

sk = in E N 1 bm(k)n - ani\ < l/k, D(am(k)n) < r + l/k\ 

belongs to o. Set 9, = N, Sk= S, n ... nS,, and define b, =amckj,, if n 
belongs to Sk/Sk, 1. Then x((b,)) =x, and lim, D(b,) < T. I 

There remains the difficult step of showing that D, is orthogonally 
additive. 

LEMMA 1.4.6. Zf x, y are orthogonal elements of A, then 

D,(x + Y) = D,(x) + D,( ~14 

ProoJ We may assume that x, y > 0, since Jx + y ( = 1x1 + 1 y 1. We may 
extend D to M,A by 1.3.8, and this induces a function 0:’ on M,A, which 
extends D, . Because the completion of M,A at D is M, R (where R is the D- 
completion of A), we may apply the results of 1.4.2-1.4.5 to 0:’ (observe in 
particular, that the proof of 1.4.5 adjusted for 02’ does not require lower 
semicontinuity of the extended D on M,A). Thus 0:’ satisfies (iii), (vi), 
(vii), (viii), and is lower semicontinuous. 

Let 

h= (;z +t4,Au; 

then h*h = ( x:y i) and h*h = (f i), so D,(x + y) = DE’( fj i). Let 

(u,)= (:; ;q 
” ” 

be a sequence in (M,A) + representing (t i) as in 1.4.2. Then n((r,)) =x, 
.rr((t,)) = y, and lim, llslll = 0. 

Fix E > 0; then for any 6 > 0, 

belongs to o. For such an n in this set, a =f,(u,)“* satisfies for sufficiently 
small 6, 

Ilaw - 41 < (l/3) Ilwll for all w in C*(z), 

where 



316 BLACKADARANDHANDELMAN 

this follows since 

f&J 0 
0 f&n> 

is a unit for C*(z). By [2; 4.11, zu’z < (1/3)z2; thus 

D(z) = D(z2) < D(za2z) = D(az2a) < D(f.2”) = D(f,(u,)) < D(u,). 

As 

* M-n) 

K 
0 = M-4 0 

0 fi,kJ 1) ( 0 f,,(Y) 1 ’ 

we obtain 

D,(x) +R(Y)=sljP (~,v2,(x)) +~Jf2,(uN) 

= sup (l~Wi,(r,)) + l$Wf2,(4J)) 
c 

< lim D(u,) = 
0 

as D,(x + y) Q D,(x) + D,(y), orthogonal additivity is established. u 

So D, is a lower semicontinuous subadditive rank function on A,. There 
is a natural map 6: A + l*(A), the diagonal map, and the composition 0 = ~8 
yields a *-homomorphism from A to A,. It follows from the lower semicon- 
tinuity of D that D = D,B. g 

LEMMA 1.4.7. The C*-algebra A, is K,-injective. 

ProoJ Follows immediately from [14; 2.1, 2.21. 1 

Thus if M = A,/ker D,, then M is a finite A W*-algebra by [ 14; 2.31, and 
D, induces a faithful lower semicontinuous subadditive rank function 0” on 
M by 1.3.8, I. 1.16 and its preceding comments. This completes the proof of 
Theorem 1.4.1. I 

COROLLARY 1.4.8. Let D be a lower semicontinuous subadditive rank 
function on a local V-algebra A. Then D extends uniquely to a lower 
semicontinuous subadditive rank function on the norm completion of 2. 

Further consequences will be obtained in Section 11.3. 
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We now explain the relationship between the construction in this section 
and that of 1.3; we also outline an alternate proof of 1.4.1 and other results to 
be proved later. 

We may assume A is a unital C*-algebra. 
Suppose T is a *-regular ring; then the bounded subring (see 1.2) T, 

admits a C*-like pseudo-norm (if T is at least an algebra over the rational 
numbers), 

I(t]l* = inf(q E Q 1 tt* <q}, 

and the Jacobson radical of T, is the set of elements of pseudo-norm zero (if 
T is at least an algebra over iR). Details may be found in [23 ]. 

If R is the ring constructed in 1.3, form the complete direct product IZR of 
countably many copies of R. Then Zi’R is *-regular, and the natural 
homom_orphism pm: n.4 -+ nR_ maps l*(A) into (LtR),,. 

Set Y = {(r,) E Z?R 1 lim, D(r,) = O}, and Y = @“)-I y. From the density 
of p(A) in R, it follows that the natural map HA/Y -+ l7R/F is an 
isomorphism. Set S = (Z7R/fl), = (LtA/Y),; there is a natural map 
a: P(A) + S. 

LEMMA 1.4.9. The mapping a is surjective. 

Proof. Let x = x* be an element of S; we may assume 0 < x < 1. Lift x 
to a = (a,) in IIA, with a = a *; then a, 1 -a belong to (17A)+ + Y. There 
exist commutative C*-subalgebras C, of A, with a, in C,. We may thus 
write a, = b, - c,, where b,,, c, are positive orthogonal elements of C, . Pre- 
and post-multiplying by c = (c,) E IZA, yields c( 1 - a)c = -c3. The left side 
is positive modulo Y, as c is as well and the quotient ring Z7R/F has its 
induced involution positive definite,’ we conclude c3 belongs to Y, and thus c 
belongs to Y. Set b = (b,) E rrA ; then b - (1 - a) E Y, and b 2 0. Apply a 
similar process to 1 - b; write 1 - b, = d, - e, with d,, e, > 0, &en = 0. As 
above, (e,) belongs to Y, and if d = (d,), then a - d E Y and 0 < d < 1. 1 

Standard techniques in regular rings reveal that the function on IIR 
defined by @‘((r,)) = lim, D(r,) is a regular ring pseudo-rank function. The 
kernel is exactly r, and it is an automatic consequence of the properties of 
regular rings that fiw induces a regular ring rank function 0, on l7R/Y 112; 
Sect. 161, and thus to S by restriction. 

The kernel of the map from P(A) to A, is the set of elements of P(A) 
which are sent into the radical J0 of S by a. Hence a induces a surjective 
homomorphism /3: AMw --f B = S/J,. , 

Furthermore, if D is defined on B via d(b) = inf(o,(s) / z(s) = b}, then 

’ Since Z7R has all its matrix rings *-regular, the same holds for all quotients of l7R; this 
translates to condition (A), the positive definiteness of the induced involution, on all quotients. 
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A 

P 

I 
Rb 

TABLE 1. Each iota (r) is an inclusion, S is an embedding, and every I[ is a quotient map. 

D, = l?$, and kerpD,. 
respects 6. 

Thus p induces an isomorphism y: M+ B that 

Table 1 summarizes the constructions made earlier. 
The second, third lines can be used to give an alternate proof of 1.4.1, as 

well as of 11.3.1; namely, complete A to obtain R, form (17R),, use 1.4.9 to 
obtain the ontoness of a; in fact the same proof shows that the natural map 
from I”(A) to any quotient of (17R), by a *-ideal containing cO(Rb) is onto. 
In particular, any such quotient that is semiprimitive (older terminology: 
semisimple) is automatically a C*-algebra, and K,-injective. Using standard 
results about ultrafilters on regular rings and corresponding rank functions, 
we can obtain y as the kernel of the pseudo-rank function induced on IIR by 
D and o. Then B will inherit a rank function from its regular ring, which 
coincides with the original rank function on A. Further, we observe that 
every normal element of B is contained inside a subalgebra of B of the form 
Loo(X); since the regular ring rank function is countably additive on 
projections of the A W*-algebra B, it can be shown to be lower semicon- 
tinuous on commutative subalgebras; hence it is lower semicontinuous. The 
same can be applied to matrix rings to show that the extended functions (on 
M,,B, and by restriction on M,,A) are also lower semicontinuous. 

II. QUASITRACES 

Quasitraces have been studied for a long time (cf. [ 17; Chap. IV]), except 
by name. Here we develop the basic properties of quasitraces and show the 
correspondence between 2-quasitraces and lower semicontinuous dimension 
functions; some results on dimension functions follow. 

Section II.1 concerns quasitraces on A W*-algebras, and II.2 deals with 
general quasitraces. In 11.3, we obtain results on dimension functions. Finally 
in 11.4, we show that the set of 2-quasitraces on a unital C*-algebra 
constitutes a simplex, and consider the relationships between traces an 
quasitraces. 
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II. 1. Quasitraces on A W*-Algebras 

DEFINITION II. 1.1. A quasitrace on a pre-C*-algebra A is a function 
r: A -+ G such that: 

(i) 0 < $X*X) = r(xx*) for all x in A; 

(ii) r is linear on commutative *-subalgebras of A; 

(iii) If x = a + ib with a, b self-adjoint, then 

r(x) = t(a) + is(b). 

If r extends to a quasitrace on M,A, then r is called a 2-quasitrace. 

A linear quasitrace is a trace. 
Whether every (2-) quasitrace on a C*-algebra is linear, is a well-known 

open question (asked by Kaplansky). By Corollary 11.2.4 below, this is 
equivalent to the problem of whether the canonical quasitrace on a II, A W*- 
factor is linear. 

We first require a result about A W*-algebras which may already be 
known; if M is an A W*-algebra, a a normal element, and S a Bore1 subset of 
u(a), we write Es(a) for the corresponding spectral projection. 

If p, q are projections, then we write p 5 q if there is a partial isometry (in 
the relevant C*-algebra) x such that xx* = p and x*x < q. 

We are indebted to L. Zsido for the proof of the following lemma. 

LEMMA II. 1.2. Let M be an A W*-algebra, containing elements a, b such 
that 0 <a < b, and suppose I, ,u are real numbers with 0 <L < p. Set 
P = E,,,,,,(a>y 9 = Eo,,,(b). Then 

ProoJ We observe that ,up < a < b and A( 1 - q) 2 b(1 - q). Now 
IIPw-PII = Ilp(l -qkll = IU -q)pU -9111 < (1h)llU -q)b(l -q)ll = 
(l/p) I[( 1 - q)bll < n/,u < 1. Hence pqp is invertible in ph4p, and it easily 
follows that p 5 q. I 

COROLLARY II.l.3. Under the same hypotheses as II. 1.2, 

E bLco,@) 5 %Lco,@) and E tA,mj(4 5 EIA,db). 

Proof. This follows from 11.1.2 and the continuity of 5 under monotone 
limits. I 

COROLLARY II. 1.4. A quasitrace on an A W*-algebra is oder-preserving 
on self-adjoint elements. 
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ProoJ Since a quasitrace is linear on commutative C* subalgebras, it 
can be calculated on any self-adjoint element by integrating over its spectral 
projections. If Q < b, it follows from II.3 that 

and a routine argument then shows that 7(a) < 7(b). a 

Remark 11.1.5. It is not clear that a faithful quasitrace is strictly 
monotone even if M is a factor. This is closely related to the question of 
whether a II, AW*-algebra factor can contain a non-normal hyponormal 
element. It is possible that strict monotonicity implies linearity for 
quasitraces. 

The proof of the next proposition is due to S. Berberian, who has also 
obtained Corollary II. 1.4 (unpublished). 

PROPOSITION 11.1.6. A quasitrace on an A W*-algebra is norm- 
continuous; if a, b are self-adjoin& then 

In general, 

IW> - @)I S 7(l) 11~ - 4. 

17(x) - 7(~)l s 2’/27(1) lb -YII. 
ProoJ: Let l=lla-bJ(; then --A. l<a-b<Le 1, and b-1. l<a< 

b+l. 1; z(b)-h(l) = t(b-La 1) < r(u) < z(b+1. 1) = r(b)+k(l), 
since b commutes with 1. The second statement follows by applying the first 
to the real and imaginary parts. 1 

It follows immediately from II. 1.1(i) and [ 1; Sect. 17, Theorem 11, that if 7 

is a quasitrace on an A W* algebra M, then 7(x) = 7(px) for all x in M, 
where p is the largest finite central projection of M. Thus it suffices to study 
quasitraces on finite A W*-algebras. 

Let M be a finite A W*-algebra. Then there is a unique centre-valued 
dimension function D on M, defined in [ 1; Chap. 61. This can be extended to 
a “centre-valued quasitrace” T on finite linear combinations of orthogonal 
projections. The function T is order-preserving; hence by an argument 
similar to that of the proof of 11.1.6, T can be extended by continuity to all 
of M. The following properties hold for T: 

(i) T(x + y) = T(x) + T(y) if x, y are commuting normal elements. 
(ii) T(Ax) = AT(x) for all x in M, 1 E Cc. 
(iii) T(z) = z if z is central. 
(iv) 0 ,< T(x*x) = T(xx*) for all x in A4. 
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(v) a < b implies T(a) < T(b). 

(vi) T is norm-continuous. 

THEOREM 11.1.7. Every quasitrace on M is uniquely expressible in the 
form rp . T, for some positive linear functional cp on Z(M). 

Proof. Let r be a quasitrace on M, and set rp = z/Z(M). Set t, = q . T; 
then r, is a quasitrace on M, as t is linear on Z(M). Observe that r(e) = r,(e) 
for every simple projection e in M, and hence r = r, on linear combinations 
of orthogonal simple projections. 

Write Z(M) N C(X) f or a compact Hausdorff X. Let E > 0 be fixed. For 
any projection p in M, let ~9 be the continuous function on X corresponding 
to T(p). Since X is totally disconnected, we may find continuous functions f 
and g on X, each taking on only a finite number of values, all rational (if M 
has a type I summand, we also require that f and g lie in the set of values T 
takes on projections), with f < fi Q g and q( g -f) < E. There are thus finite 
orthogonal families {qt}, (rj} of simple projections in M such that 
JJ qi < p < C rj and ri(C rj - C qi) < E. But since $2 qJ = r,(C qi), and 
similarly with the rj, it follows that both z(p) and rl(p) are between r,(C qi) 
and r,(C rj); hence \r(p) - r,(p)1 < E. Since E is arbitrary, r = r, on 
projections, hence by continuity, r = ri. 1 

COROLLARY 11.1.8. The set of quasitraces on an A W*-algebra forms a 
complete lattice. 

COROLLARY II. 1.9. Let M be an A W*-algebra, 70 aJinite trace on M. If 
r is a quasitrace on M with s < tO, then z is a trace. 

Proof: We may assume A4 is finite. Then there is a largest central 
projection p such that T is linear on PM, and supp(r) < supp(r,) < p in 
Z(M). 1 

COROLLARY 11.1.10. Every quasitrace on an A W*-algebra is a 2- 
quasitrace. 

COROLLARY II. 1.11. Let t be a quasitrace on an A W*-algebra M, and 
suppose a, b are positive elements of M. Then 

r(a + b) < 2(z(a) + t(b)). 

Proof: In M,M, set 

x= ($1 i); 
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then x*x= (“i* i), and 

xx* = 
a 

bl/za1/2 

Let z be 

then (y $*)-xx* =zz*; thus z(a + b) = z(x*x) = s(xx*) Q 5( ‘0” t) = 
2(z(a) + z(b)). I 

11.2. Quasitraces on General C*-Algebras 

In this section, we show that there is a natural bijection between the set of 
2-quasitraces and the set of lower semicontinuous dimension functions on a 
C*-algebra. This was partially described in [4]. Using this, we show that 
every 2-quasitrace on a C*-algebra extends to the enveloping A IV*-algebra 
described in 1.4. Consequences include the fact that 2-quasitraces are almost 
linear on almost commuting elements. 

LEMMA 11.2.1. Let A be a C*-algebra, and a, b positive elements of A 
with a < b. For any E > 0, there exists x in A such that x*x = f,(a) and 
f,,,(b) xx* = xx*. 

Proof Represent A on a Hilbert space. Choose 1 and P with s/3 < 1 < 
P < 42, and P =&&a), q = J%,~, (b). Set c=f,,,(b)f,(a). Inasmuch as 
f,(a) <P, S,,,(b) > q, and the right projection of qp is p (notation: 
RP(qp) = p) (11.1.2), it follows that RP(c) = RP(f,(a)). If c = u ]c] is the 
polar decomposition of c, then the element x = uv6(a))1’2 belongs to A. Now 
x*x =f,(a) and RP(xx*) < RPdf,,,(b)), so fc,6(b) is a unit for XX*. 1 

THEOREM 11.2.2. There is a natural afine bijection between the sets of 
quasitraces and weakly subadditive (unnormalized) lower semicontinuous 
rank functions, on any C*-algebra A. The 2-quasitraces correspond to the 
subadditive (lower semicontinuous) rank functions. 

Proof If D is a weakly subadditive lower semicontinuouus rank function 
on A, define a quasitrace r, as follows. If B is a commutative C*-subalgebra 
of A, say, B N C,(X), hen D induces a countably additive finite measure on 
X, which defines a positive linear functional on B; call it r,. This defines r, 
unambiguously on normal elements. 

In general, if x is an element of A, write x = a + ib with a and b self- 
adjoint; define rD(x) = rb(a) + iz,(b). Then 7D satisfies II.l.l(ii) and (iii). To 
show rD(x*x) = rD(xx*), it suffices to show that for all non-negative 
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continuous functions f on 0(x*x) U {0} vanishing at 0, D(f(x*x)) = 
D(f(xx*)). Represent A on a Hilbert space, and let x = u (xl be the polar 
decomposition. If y = u(f(x*x))“*, then y belongs to A, y*y =f(x*x), and 
yy * =f(xx*). Thus rD is a quasitrace. 

Conversely, let r be a quasitrace on A. For a in A, define D,(a) = 
supF r(f,(\aI)). Being a positive linear functional on C*(lal), r is bounded, 
and so D,(a) is finite. We shall show that D, is a weakly subadditive lower 
semicontinuous rank function. 

(I) D, yields a subadditive lower semicontinuous rank function on 
commutative C*-subalgebras of A, by the results of 1.2. 

(II) If a, b are orthogonal elements, then Ial I 1 bl, so Ial and 1 bl 
commute. Hence, D,(u + b) = D,(l a + bl) = D,(l al + / b() = D,(u) + D,(b) 
by I. 

(III) If 0 < a < b and E > 0, let x be as in Lemma 11.2.1; since f,,,(b) 
is a unit for xx*, they commute; and since IIxx*II Q 1, xx* <j&(b). Thus 
U&>> = W*) G 4f-&N~ so D,(a) < D,(b). 

(IV) By I, we have that D,(u) = D,(u’) = D&k) for a > 0 and A. in 
C - (0). Hence D,(x) = D,(x*x) = D,(xx*) = D,(x*) for all x. 

(V) For a, b in A, we have that D,(ub) = D,(b*u*ub) < D,(b*b) = 
D,(b) (b*u*ub < 11 bll* b*b); similarly D,(ub) < D,(u). 

(VI) By (I) and 1.1.5, D, is lower semicontinuous. 

Thus D, is a weakly subadditive lower semicontinuous rank function. It is 
readily checked that the two assignments described above are mutual 
inverses, and are affme. 

If r is a 2-quasitrace, then D, is subadditive by I. 1.7. Conversely, if D, is 
subadditive, it can be extended to an enveloping A W*-algebra M as in 
Section 1.4, and so t can be extended to a quasitrace on M. Thus 7 is a 2. 
quasitrace by II. 1.10. 

This completes the proof of the theorem. fl 

COROLLARY 11.2.3. Every quasitruce on a C*-algebra is bounded; in 
particular, (I511 = sup{r(u) ( 0 Q a, llull< 1) < co. 

Proof: By I. 19(b), D, is bounded, and if 0 < a and I( u I\ < 1, then 
+I < D,(a). I 

It is easily seen that II tl( is also equal to sup (D,(u) 1 a E A}. 

COROLLARY 11.2.4. Let T, zO be 2-quasitruces on a C*-algebra with 
r<?J, and let M be the A W*-algebra constructed for DTO in Section 1.4. 
Then there is a 2-quasitruce f on M such that 5 = f o 8. 
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Proof: This follows from 11.2.2 and I. 1.18. 1 

COROLLARY 11.2.5. If z is a 2-quasitrace on a C*-algebra A, then 

(i) r extends uniquely to a 2-quasitrace on 2 so that (1 ~(1 = r( 1); 

(ii) r is order-preserving; 

(iii) if a, b are self-adjoint elements of A, then (7(a) - z(b)( < 
I)~11 /(a -b/I; in general, Is(x) - r(y)1 ( 2”’ [(r() [Ix - y(l; in particular, t is 
norm-continuous; 

(iv) if a, b are positive elements of A, then t(a + b) < 2(z(a) + z(b)). 

It is clear that the 2-quasitrace r, on A, determined by D, (1.4) is given 
by the formula r,(a(a,)) = lim, r(a,) (this is well-defined by the continuity 
of r), so we have the following corollary. 

COROLLARY 11.2.6. Let z be a 2-quasitrace on a C*-algebra A. Then for 
every E > 0, there is a S > 0, there is a S > 0 such that whenever a, b are 
self-adjoint elements inside the unit ball of A, 

(lab-ball <6 implies I( z(a + b) - t(a) - r(b)]1 < E. 

Proof: Suppose not; then for some E > 0, there exist self-adjoint elements 
a,, b, in the unit ball of A so that II a,, b, - b, - a, I( < l/n and I t(a, + b,) - 
t(a,) - t(b,J > E. Set x = n((a,)), y = z((b,)) in A. Then x and y commute 
and are self-adjoint; thus rJx + JJ) = 7,(x) + ro( y). However, tJx + y) = 
lim, $a, + b,), tw(x) = lim, r(a,), 7,(y) = lim, s(b,), a contradiction. 1 

11.3. Results about Dimension Functions 

In this section, we obtain some results about extendability of rank 
functions to dimension functions; these are consequences of the work in 1.2. 

THEOREM 11.3.1 (Compare 1.3.8). Let D be a subadditive lower semi- 
continuous rank function on a C*-algebra. Then D extends uniquely to a 
lower semicontinuous dimension function on A. 

Proof By 1.4.1, D extends to its enveloping A W*-algebra M, and 
D = D, for a unique quasitrace r on M. By 11.1.7, r extends uniquely to a 
quasitrace on any matrix algebra over M, hence by 11.2.2 and the uniqueness 
of the extension obtained in 1.3.8, we conclude that the extension of D to 
matrix rings is lower semicontinuous. I 

Recall that a hereditary C*-subalgebra B of a C*-algebra A is full if the 
closed two-sided ideal, (ABA)-, generated by B, equals A; B is completely 
fulZ if the two-sided ideal ABA generated (algebraically) by B is A. 
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THEOREM 11.3.2. Let B be a hereditary C*-subalgebra of A, and D a 
subadditive lower semicontinuous rank function on B. Then D extends 
uniquely to a function on ABA satisfying 1.1.2(ii)-(x). Zf B is full, then D 
extends to a lower semicontinuous dimension function on A tf and only tf the 
extension to ABA is bounded. In particular, tf B is completely full, D auto- 
matically extends to a lower semicontinuous dimension function on A. 

Proof Let a = Cy cixidi be a typical element of ABA, with cir di in A. 
and xi in B. Define three elements of M,A, 

c= rlc;‘cn]; x= [“’ *.. ,1; d=[ 1: 0-j. 

Considering A as the upper left hand corner subalgebra of M,A, we have 
a = cxd, and thus a*a = d*x*c*cxd. Set y= (x*c*cx)“*; as M,B is a 
hereditary subalgebra of M,A (write B = L n L * for a left ideal L of A; 
then M,B=(M,L)n(M,L)*, so M,B is hereditary) and x belongs to it, so 
does y. We also observe that a*a = d*y*yd; set w = yd. We may define (as 
in [3; 1.41) an isomorphism @ from A, = (M,A), onto (M,A),, E M,,(B); 
Cp extends to an isomorphism from (a*Aa)- onto a C*-subalgebra of M,B. 
We can use this isomorphism to transfer the extension of D to M,B, to 
(a*Aa)-, and therefore to a, once we show that the function constructed in 
this way is well-defined. 

For this, we need only show that if u and v are elements of M,A such 
that u*u = v*v = a*a, and UU*, UV* belong to M,B, then D(uu*) = D(uv*). 
However, if z = vu*, then zk = filk(vv*) zflilk(uu*) converges to z, and each 
zk belongs to M,B, so that z does also. Now, z*z = UV*VU* = (uu*)~, and 
zz* = (uv*)*, so 

D(uu*) = D((uu*)‘) = D(z*z) = D(zz*) = D((uv*)~) = D(uv*). 

The extended function is a rank function, since any countable collection of 
elements of A is contained in a singly generated hereditary C*-subalgebra. 

If B is full, then ABA contains the Pedersen ideal of A, which is a local 
C*-algebra; thus if the extension of D to ABA is bounded, it extends to A by 
Corollary 1.4.8. 1 

The hypothesis that B be full can be eliminated by 11.4.7. 

COROLLARY 11.3.3. Let D, and D, be lower semicontinuous subadditive 
rank functions on a C*-algebra A. Zf D, and D, agree on a full hereditarv 
C*-subalgebra of A, then D, = D, . 

A further extension theorem will be obtained (11.4.7). 
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11.4. Results about Quasitraces 

We begin with some corollaries of Theorems 11.3.1 and 11.3.2. 

PROPOSITION 11.4.1. Let r be a 2-quasitrace on a C*-algebra A. Then 5 
extends to a quasitrace on M,,A for all n. 

PROPOSITION 11.4.2. Let B be a full hereditary C*-subalgebra of a C*- 
algebra A, and let z be a 2-quasitrace on B. Then t extends uniquely to a 2- 
quasitrace z on ABA, and 5 extends to a 2-quasitrace on A tf and only ifit is 
bounded on ABA. 

COROLLARY 11.4.3. Let z be a quasitrace on a simple C*-algebra A. 
Then there is a 2-quasitrace on A which agrees with 5 on a hereditary C*- 
subalgebra of A. 

Proof This follows immediately from 1.1.13 and 11.3.2. 1 

So if A is a simple C*-algebra, there is an afine retraction from the set of 
quasitraces on A onto the set of 2-quasitraces. This should be true in general; 
in fact, it seems likely that every quasitrace is a 2-quasitrace (see remark 
1.1.19(d)). 

Denote the set of normalized 2-quasitraces on a C*-algebra A by QT(A), 
and the set of (normalized) dimension functions by DF(A). If A is unital, 
then QT(A) and DF(A) are compact convex sets. 

THEOREM 11.4.4. If A is a unital (Y-algebra, then QT(A) is a simplex. 

Proof The proof is quite similar to Thoma’s proof for traces 1221. We 
outline the argument. It suffices to show that the set of 2-quasitraces is a 
(complete) lattice. If r, and rZ are 2-quasitraces on A, then both extend to the 
enveloping A W*-algebra M for Dr,++2 by 11.2.4; call the extensions al, a*. 
Then ai and a, have a greatest lower bound on M (11.1.8); this infimum 
restricted to A is clearly the infimum for r, and r2. Thus the set of 2- 
quasitraces is a lattice. Now if (Zi} is any collection of 2-quasitraces, let rO 
be one of the ri, and set ui = inf(r,, r,J. All of the ui extend to M,,, and the 
set of extensions has an infimum by 11.1.8, which (when restricted to A) is 
the’ infimum of {ri}. 1 

It is reasonable to conjecture that DF(A) is also a simplex in general, 
although it can fail to be metrizable when A is separable (example 1.2.3). 

PROPOSITION 11.4.5. Let A be a C*-algebra. The set T(A) of normalized 
traces of A is a closed face in QT(A). 

Proof If r is a trace on A, and r = Lr, + (1 - A) T* with L unequal to 
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0, 1, where r, , t2 belong to QT’(A), set a = min@, 1 -A). Then r,, t2 < 
r,, = a-‘r; they extend to MzO, and are therefore linear by 11.1.9. 1 

PROPOSITION 11.4.6. The set, denoted LSCDF(A), of lower semi- 
continuous dimension functions on a C*-algebra A is a face in DF(A). 

ProoJ This follows immediately from 1.15. 1 

Summarizing, if A is a unital C*-algebra, there is a continuous affine 
bijection from a face, LSCDF(A), of the compact convex set DF(A) onto the 
simplex QY(A). The inverse is not in general continuous (1.2); in fact, 
LSCDF(A) is frequently dense in DF(A), and is possibly always dense in it. 
If A is stably finite, then LSCDF(A) is at least nonempty [ 141, so that so is 
QTtA). 

If A is not unital, then by considering the unitification A’, 11.4.4 yields that 
the set of quasitraces of bound at most 1, together with zero, forms one of 
Effros’ simplex spaces; and analogues of 11.4.5 and 11.4.6 follow. 

THEOREM 11.4.7. Let A be a C*-algebra, Z a closed two-sided ideal, and 
z an element of QT(Z). Then 5 extends uniquely to an element of QT(A). 
Hence if D belongs to LSCDF(Z), then D extends uniquely to an element of 
LSCDF(A). 

Proof: By 11.2.2, it suffices to prove existence of extensions for 
dimension functions, and uniqueness for quasitraces. Let (c,} be a sequence 
in I as in the proof of 1.35. If a is an element of A, we have (c, -c,) 
u*+, - 4 G II a II2 (cm - cJ2, so D(ac, - ac,) < D(c, - c,J -+ 0 (as 
m, n -+ co). Thus (ac,) is a Cauchy sequence in the completion R of I in the 
D-metric. Call the limit a^. It is easily verified that the map a t--+ a^ is a *- 
homomorphism of A into R,. Via the maps described at the end of 1.4, we 
obtain a *-homomorphism of A into the A W*-algebra M extending the 
natural map of I into M, so the rank function D yields the desired extension. 

To prove uniqueness, we may assume A possesses an identity. Let F be the 
closed face consisting of elements of QT(A) which vanish on I. Let 7, and r? 
be elements of QT(A) with z1 = z2 on I. Then 7, - z2 = Af, - pf2 with f,, fz 
in F and A, ,u positive. Evaluation at 1 yields A =p. Decompose 
7* = af, + (1 - a) r3 with f, E F, tj in the complementary face. Since 

SUp{~~(~)I~E~+,ll~ll~ l}= 1, 

we obtain a = 0, so z2 is in the complementary face to F, and it follows that 
r1=s2. I 

PROPOSITION 11.4.8. Let (Ai} be a directed system of unital C*-algebras. 

%0/45/3-3 
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and A =l& A, the unital V-direct limit. Then QT(A) is afj‘?nely 
homeomorphic to @ QT(AJ. 

Proof This is routine, except that 11.2.2 and 11.4.8 are required to pass 
from the algebraic inductive (= direct) limit to its completion. 1 

THEOREM 11.4.9. Let g be the collection of all C*-algebras for which 
QT(A) = T(A) ( i.e., every 2-quasitrace is a trace). Then g contains all type I 
C*-algebras, and is closed under the formation of quotients, ideals, 
extensions, direct limits, and matrix rings. 

Proof A quasitrace on a quotient clearly lifts, so g is closed under 
quotients, and is closed under extensions and formation of ideals by 11.4.7 
and [7; 2.10.41, and under direct limits by 11.4.8. 

To show that all type I C*-algebras are in PZ, we observe that 
commutative C*-algebras are in 9, and that every type I can be constructed 
by extensions and limits of continuous trace C*-algebras. Now 11.4.10 below 
completes the proof. 1 

PROPOSITION 11.4.10. If A is a C*-algebra such that for all closed prime 
ideals P, A/P belongs to 9, then A belongs to @. 

Proof: Let r be an extreme point of QT(A) (A may be assumed unital), 
and D its corresponding lower semicontinuous dimension function. Then D 
is an extreme point of the face LSCDF(A), hence is extreme in DF(A). We 
shall show that ker D is prime. 

Let D be the corresponding dimension function on 2 = A/ker D. Complete 
d at the rank metric to obtain the regular ring R, and observe that fi is 
obviously extremal in LSCDF(2). Now fi extends to a rank function on R. 
We now show that the image of 6 in P(z) = {pseudo-rank functions on R} 
is extremal. 

If it were not, there would exist a regular ring pseudo-rank function E on 
R so that E < kD. By 1.3%proof, E restricts to a dimension function on 2, 
hence on A, G, such that G lies in the face generated by D in DF(A). Hence 
G = D. As 2 is dense in 1, we would obtain that E = D. Thus D is an 
extremal point of P(R). By [12; 19.141, d is simple. 

Let I, J be ideals of 2 such that IJ = 0. Clearly, {r E E 1 Zr = 0 = rl) is a 
two-sided ideal of R, and is nonzero and proper if both I and J are. This 
would contradict the simplicity of R; hence 2 must be prime. 

By hypothesis, t must be a trace. The natural map T(A) -+ QT(A) has 
image containing has all of the extreme points of QT(A); by the Krein- 
Milman theorem and compactness of T(A), the map must be onto. 1 

By applying the Cayley transform and its inverse, one can easily show 
that T(A) = QT(A) for all C*-algebras if and only if T(B) = QT(l3) for the 



DIMENSION FUNCTIONS 329 

single C*-algebra, the full C*-algebra of the free group on two generators, 
B = c*(F,). 

COROLLARY 11.4.11. A unital stably jkite C*-algebra in 9 admits a 
trace; in particular, this applies to those unital stably jkite C*-algebras in 
the class closed under extensions, ideals, quotients, direct limits, and matrix 
rings, generated by type I C*-algebras. 

Proof: By 1X.4.9, T(A) = QT(A); by [ 14; 2.41, QT(A) # 0. i 

The second part of 11.4.11 is of course well-known, and admits a simple 
direct proof. 

III. K,* AND RELATED TOPICS 

The group K,* defined in 141 in analogy with the usual construction of K, 
for C*-algebras, has been used as a technical tool to prove existence of 
dimension functions. The construction of K,* for nonsimple C*-algebras is 
discussed in [ 141; the main feature that distinguishes this case from the 
simple situation, is that stable finiteness does not guarantee that the natural 
pre-ordering is a partial ordering. A main result of 141 is that there is a 
duality between K;(A) and DF(A), in the sense that there is a natural 
bijection between the states (pre-order preserving homomorphisms into I?) of 
K,* and DF(A). 

Unfortunately (except in rather special cases, cf. 1.2), DF(A) is 
unmanageably large. The set QT(A) is much more tractable, and because of 
its correspondence with LSCDF(A), there is hope that QT(A) might serve as 
a predual for K?(A), in the sense that K,* may be realized as a set of affine 
functions on QT(A). 

This potential duality may be carried farther in some cases. When A is 
stably finite, K,(A) admits a natural partial ordering, and if A @ K has 
enough projections, one would expect that elements of QT(A) would be 
determined on projections. Then QT(A) could be viewed as a set of states on 
K,(A). Indeed, if A is an AF algebra, QT(A) = T(A), and the duality is 
complete, as T(A) can be identified with the state space of K,(A). 

So if A has many projections, we can hope for relationships 

K,(A) +, QT(A) - K,* (A > - WA ). 

where the double-headed arrows represent dualities. We shall show these 
dualities hold for a class of C*-algebras containing all simple AF algebras, 
and obtain en passant an explicit description of K,*. In the course of this, the 
isomorphism classes of the closed right ideals in such C*-algebras are deter- 
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mined (K$ plays a similar role with respect to closed right ideals that K, 
plays with respect to projection-generated right ideals). 

In 111.1, we obtain a portion of the duality in a more general situation, and 
derive some consequent results about K, and the set of dimension functions; 
then in 111.2, we establish the right ideal isomorphism class results, and in 
111.3, we describe the structure of K,*. 

Throughout, A will denote a stably finite unital C*-algebra, although this 
is done for convenience only-the corresponding results hold for non-unital 
C*-algebras, with only the obvious modifications necessary. 

111.1. Representation of K,* by AfJine Functions 

In this section, we shall assume that A is stably (HP), i.e., M,A has 
property (HP) (Definition 1.1.9) for all n. 

There is a natural order-preserving homomorphism from K,,(A) into the 
pre-ordered K,*(A). This is not generally one to one 14; p. 153, 1541; even 
when it is one to one, it is not generally an order-isomorphism onto its 
image. 

Let S be the state space of K,,(A). If p is a projection in M,A, we obtain 
a continuous affine function p^ on S by evaluation. For a in M,A, set 
a^ = sup{ p^ 1 p E (a*M,Aa)- ). 

Observe that since there exists an integer n such that a belongs to M,A, a^ 
is less than or equal the constant function n, and is thus bounded. 

LEMMA III. 1.1. If { p,} is any increasing approximate identity for 
(a*M, Aa)- consisting of projections, then a^ = sup 3, ; thus a^ is afJine and 
lower semicontinuous. 

Proof: If q is a projection in (a*M,Aa)-, then { p,,qp,,} converges to q; 
thus for sufficiently large n, q is equivalent to a subprojection ofp,, and thus 
4<a,. I 

It is also clear that if a I b, then (a + b)- = a^ + 8 (observe that 
((a + b)* M,A(a + b))- N (a*Mo,Aa)- 0 (b*M,Ab)-). 

LEMMA 111.1.2. Zf [a] < [b] in K,*(A), then S,<8. 

Proof If [a] < [b], there is a c in M,A, with a I c, b I c, and 
a + c 5 b + c. So we may assume that a 5 b. If p is a projection in 
(a*M,Aa)-, then p&a by [3; 1.91, sop &, b, and therefore p 5 b. If (q,}is 
an approximate identity for (b*M,Ab)- consisting of projections, then 
p 6 bq, 6 q, for n sufficiently large. By [3; 1.71, p is equivalent to a subpro- 
jection of qn, so fl< 4,. I 

Therefore the function A: a + a^ yields a pre-order preserving 
homomorphism (also denoted A) from K,*(A) into the set of bounded aftine 
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functions on S with the ordinary ordering. Each point x in S defines a state 
on K,*(A) by evaluation, and hence a dimension function on A by 141. 

THEOREM 111.1.3. The mapping above is an aflne bijection between S 
and LSCDF(A); the induced a@ne bijection between S and QT(A) is a 
homeomorphism. 

Proof. Let x in S be fixed. If a is a positive element of M,A, 
a”=sup(p^\p$a}. But if p&a, then p&f,(a) for some E>O, so 
fi < (f,(a))- < a^, and in particular Z(p) < a(f,(a)) < a(a). Therefore by 
Proposition 1.1.5, the dimension function corresponding to x is lower semi- 
continuous dimension function on A is completely determined by its values 
on projections; thus the map is one to one. If D is any lower semicontinuous 
dimension function on A, then D induces a state on K,*(A), and hence by 
composition a state on K,,(A); and the map is thus onto. 

Let ( ra} be a net in QT(A) with { ra} -+ t,,, and let X, , x0 be the 
corresponding points of S. Let p be a projection in M,A. Since 
r(p) = D,(p) for every t in QT(A), we have r,(p) = D,,(p) = a,(p) + 
t,,(p) = Z,,(p) for every p, and hence x, -+ x, in S. A compactness argument 
yields continuity of the inverse map. I 

COROLLARY 111.1.4. Let A be a unital, stably finite, stably (HP) C*- 
algebra. Then the state space of K,,(A) is a simplex. 

This corollary slightly generalizes the corresponding result for AF algebras 
[9; 1.7). 

COROLLARY 111.1.5. Let A be as in 111.1.4, and D a dimension function 
on A. There is a unique lower semicontinuous dimension function D on A 
which agrees with D on projections. Hence there is a (generally discon- 
tinuous) a&e retraction from DF(A) onto LSCDF(A). 

111.2. Description of Right Ideals 

We begin with a general result about module isomorphism of right ideals 
in C*-algebras. 

PROPOSITION 111.2.1. Let B be a C*-algebra, containing elements a, b. 
Then the following are equivalent: 

(1) There is a continuous module isomorphism of (aB)- onto (bB)-. 

(2) There is an isometric module isomorphism of (aB)- onto (bB)-. 

(3) There is a sequence (u,) in (bAa*)-, with I(u,]\ < 1, such tharfor 
all x in (aB)-, {u,x} converges, and w(x) = lim u,x is an isometric module 
isomorphism of (aB)- onto (bB)-. 
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(4) There is an isomorphism (p from (aBa*)- onto (bBb*)-, and a 
sequence (u,) in (bBa*)- with )(1(,/l < 1, such that (u,x) conoerges for all x 
in (aB)-, (u,* y) converges for ally in (bB)-, (u,xu,*) conuerges to q(x) for 
all x in (aBa*)-, and (u,* yu,) converges for ally in (bBb)- to q-‘(y). 

Proof: The implications (3) * (2) and (2) 3 (1) are trivial. 

(1) =z- (4). Let w (aB)- + (bB)- be a continuous module 
isomorphism. Represent B on a Hilbert space, and let w(a) = u (w(a)1 be the 
polar decomposition. As RP(u) = RP(a), U*U is a unit for (aBa*)-. If x 
belongs to (aB)-, then ux is an element of B by [2; 2.11; so if x lies in 
(aBa*)-, then uxu * belongs to B. Similarly (as w-r is continuous), we 
obtain that u*y belongs to B for y in (bB)-, and that uxu* lies in (bBb*)- 
for all x in (aBa*)-. 

Set q(x) = uxu*; then 0 is an isomorphism of (aBa*)- onto (bBb*)-. If 
u, = filAl b I> ~f,,,(l a I), then w -+ ux for all x in (aB)-, and u,xu,* + p(x) 
for all x in (aBa*)-. 

(4) + (3). Taking the same sequence (a,), it is clear that w(x) = 
lim U,X is a module homomorphism of (aB)- into (bB)- which is isometric 
as, for all x in (aB)-, 

(] w(x)]]* = lim ](u,x](’ = lim ]]u,xx*u,*]] = ]]p(xx*)]] 
= JJxx*(I = IJXIJZ. 

Now yl is onto, since if y belongs to (bB)-, the sequence (u,* y) converges to 
an element x of (aB)- with v(x) = y. 1 

One observation that is worth being made at this point is that a mapping 
sending a to b (a, b elements of a C*-algebra A) extends (uniquely) to a 
continuous module homomorphism (aA)- + (bA)- if and only if there exists 
an integer K such that b*b < Ka*a. 

In order to characterize completely the isomorphism clases of closed right 
ideals by means of the homomorphism JI described in 111.1, we are required 
to make additional assumptions on A (already assumed to be unital and 
stably (HP): 

(1) The C*-algebra A has the cancellation property for finitely 
generated projective modules, i.e., for V, W,, W, such modules, 

V@W,=V@W* implies W, 1: W,. 

(2) The partially ordered abelian group K,(A) is unperforated, that is, 
if x is an element of K,(A) such that IUC > 0 for some positive integer n, then 
x > 0. 
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Of course, AF algebras satisfy both properties, as well as all of the 
previous ones. 

LEMMA 111.2.2 [9; 1.41. Let (G, u) be an unperforated partially ordered 
abelian group with order unit u, and suppose x belongs to G. Zf f(x) > 0 for 
all states f of (G, u), then x belongs to G +. Thus if B is a stably finite unital 
C*-algebra having K,(B) unperforated, then for any x in K,,(B) with z? 9 0. 
xE K,,(B)+. 

PROPOSITION 111.2.3. Let B be a unital C*-algebra with the cancellation 
property for finitely generated projective modules. Then B is stably finite. Zf p 
is a projection in M,B, and q a projection in M, B with /q] Q [ p) in K,(B), 
then q is equivalent to a subprojection of p; tf additionally, q lies in M, B, the 
equivalence may be unitarily implemented within M, B. 

Proof: This is completely routine. I 

In the presence of (HP), the cancellation property is equivalent to unitary 
1 -stable range (definition below). 

PROPOSITION 111.2.4. Let B be a unital C*-algebra with (HP). The 
following are equivalent: 

(1) B has unitary l-stable range, i.e., if aB + bB = B (equivalently. 
aa* + bb* is invertible), then there is a unitary u in B so that a + bu is 
invertible. 

(2) The invertible elements of B are dense in B. 

(3) B has the cancellation property for finitely generated projection 
modules. 

Proof That (1) 0 (2) is proved in [21], and (l)*(3) in 111; 
Corollary 1, p. 2011. 

(3) ti (2). Let b be an element of B, and choose E > 0. Represent B on 
a Hilbert space, and let b = u tb( be the polar decomposition. Let p be a 
projection in (b*Bb)- such that [(p lb1 - (bJIJ < E. Then ()(blp - IbIll < E, so 
)(bp-b((=)(u(b)p-uIb(JJ <E. Then up belongs to B, so q=upu* also is 
in B. Further, 

II@ - bll= IIUPU*U Ibl- u IbIll = IIUP lbl - u IbIll < ~3 
so (Iqbp - blJ < 28. Setting c = qbp, we see that c*c is invertible in pBp, and 
CC* is invertible in qBq. In particular,* p - q, so by cancellation 
l-p- l-q.Findvsothatv*v=l-p,andvv*=l-q.Thend=c+ev 
is invertible, and (Id - bll < 3.5. 1 
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Remarks 111.2.5. If B is stably finite and unital, it is not generally true 
that K,,(B) is unperforated-for example, B = C(iRlP’) [ 16; IV.6.471. This 
example can also be used to obtain stably finite unital C*-algebras C, D 
such that C&D, but M,C-M,D (c.f. [20], [5; 1.111). 

The cancellation property does not hold for commutative C*-algebras 
generally -non-equivalent vector bundles can be stably equivalent. It is not 
known whether such phenomena can occur for simple C*-algebras, or in the 
presence of (HP). Although evidence suggests that K,* is better behaved than 
K,, torsion or perforation may well occur here too. 

In the (K,,) torsion-free situation, there is a partial result available on 
unperforation. 

PROPOSITION 111.2.6. Let G be a partially ordered abelian group with the 
property that every quotient by an order-ideal is torsion-free. Let x be an 
element of G; if nx > 0 for some positive integer n, then mx > 0 for all 
suficiently large m. 

Proof: Let n be a fixed integer for which y = nx > 0, and let H be the 
order-ideal (=hereditary subgroup) generated by y. Then x lies in H (as the 
quotient group G/H is torsion-free), and y is an order unit for H; thus there 
exists an integer N such that Ny > kx for k = 1,2,..., n - 1. Thus Nnx > kx 
or (Nn - k)x > 0 for k = 1, 2,..., n- 1; if m>Nn, then mx is a sum of one 
of these and a mulitple of nx. I 

We can now begin the classification of countably (hence singly) generated 
closed right ideals of A. 

PROPOSITION 111.2.7. Let A be a unital C*-algebra having (HP) and 
cancellation. For elements a, b in A, there is an isometric module 
homomorphism of (aA)- into (bA)- if and only if 

for some (or any) approximate identities (p,), (4”) for (aAa*)-, 
(bAb*)-, respectively, for every n there exists an m such that 
P,S%* 

There is a continuous module isomorphism of (aA)- onto (bA)- if and only 
is 

for each n, there is an m so that both p,, 5 q,,, and q sp,. 

ProoJ If there is an embedding of (aA)- into (bA)- (as A-modules), 
then the proof of 111.2.1 yields an embedding v, of (aAa*)- into (bAb*)-. If 
v,=limkukp, then v, E A, v~vn=pn, and v,v,* =p(p,)E (bAb*)-. So if 
m is sufficiently large, &p,) is equivalent to a subprojection of q,,, . If 
(aA)- N (bA)-, the same argument applies to the inverse map. Conversely, 
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suppose each p, is subisomorphic to some qm. By passing to a subsequence, 
we may assume M = n for each n. Let w, be a partial isometry with 
wfw, = pl, and w, w: = r, < q,. By cancellation, pz -pl 5 q2 - rl ; let w, 
be a partial isometry with w:w2 =p2 -p, and w2 w: = r2 < q2 - rl. We 
may continue inductively, to obtain w, so that w,* w, = p, -pn- , and 
w,w,*=r,gq,-r,--..-r”_,. The w, (or rather left multiplication by 
the w,J define isometric module isomorphisms from ( pn -p,- ,)A onto r,A. 
and hence from U pnA = @ (p, -p,-,)A to @ r,A s (bA)-. This extends 
isometrically to (Up,,A)- = (aA)-. If each q,, is subordinate (with respect 
to 5) to a pm, by relabelling we may assume p1 5 q1 5 p2 5 q2 5 . . . . and now 
the standard interweaving argument can be used to build an isomorphism 
(onto) from (0 p,A)- to (CJ q,A)--namely, wr = u, as above, wf a 
partial isometry from q2 - r, to a subprojection s, of pz -p,, w3 from 
p3 - s, -p, to a subprojection of q3 - q2, etc., and two inverse maps 
(U P,A) 2 (U q,A) are simultaneously built up. 1 

COROLLARY 111.2.8. Suppose (in addition to the hypotheses of 111.2.7) 
that K,(A) is unperforated. If (aAa*)- and (bAb*)- have approximate iden- 
tities (p,) and (4”) with A(p, -pn- J B 0 and A(qm - q,,- ,) % 0 for all m, 
n, then (aA)- is isometrically isomorphic to a submodule of (bA)- tf and 
only if 

A(a) <A(b); 

and (aA- N_ (bA)- rfand o&y tf 

A(a) = A(b). 

Proof: We have that p^, 4 sup $,,, = 6, so 8, & 4, for sufficiently large m 
(by compactness of the state space). Thus p, 5 qm by 111.2.2 and 111.2.3. 1 

This result has an application when A is simple. We first require a 
description of closed finitely generated right ideals. 

LEMMA 111.2.9. Let B be a C*-algebra, and a an element of B. The 
following are equivalent: 

(1) The right ideal aB is closed; 

(2) there exists a projection p in B such that aB = pB; 

(3) the subalgebra aBa* is closed; 

(4) there exists a projection p in B so that aBa * = pBp. 

Proof. The implications (2) + (l), (2) o (4), and (4) 3 (3) are trivial. 

(1) + (2). If aB is closed, then (aa*) = ab for some b in B; thus 
(aa *)1’2 = abb *a * < 11 b/l2 aa*. By functional calculus, for sufficiently small 
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E > 0, f,(aa*) is a projection p which is a unit for au*. Now p belongs to 
aB, and pa = a, so Q lies in pB. The proof of (3) S- (4) is similar. i 

COROLLARY 111.2.10. Let B be a C*-algebra, I a closed right ideal of B. 
Then Z isfinitely generated (as a right ideal, not necessarily as a closed right 
ideal) if and only if I = pB for some projection p in B. 

ProoJ: Write Z = C: s,B. In M,,B, consider the right ideal generated by 

A simple computation shows that sh4,B = e, ,M,I, so siU,B is closed, and 
thus by 111.2.9, there is a projection p in sM, B such that PM, B = sM,, B. But 
p has nonzero elements only in the first row, and since p =p*, its only 
nonzero entry must occur in the (1, 1) position, and that entry q must be a 
projection. It is clear that qB = I follows from sM,,B =pM,, B. 1 

COROLLARY 111.2.11. Let A be a simple unital C*-algebra with (HP) 
and cancellation, and so that K,(A) is unperforated. Let a, b be elements of 
A such that neither aA nor bA is closed. Then (aA)- is isometrically’ 
module-isomorphic to a submodule of (bA)- if and only if5 < 6; and @A)- 
is (isometrically) module-isomorphic to (bA)- if and only if a^ = 8. 

Proof: By 111.2.9, @Au*)- and (bAb*)- possess strictly increasing 
approximate identities, whose successive differences must be order units in 
K,(A) (as A is simple). Now apply 111.2.8. 1 

LEMMA 111.2.12 (Folklore). If B is a C*-algebra, and p,q, are 
projections of B, then pB 5 qB if and only ifp and q are linked via a partial 
isometry. 

Via 111.2.12, 111.2.11 yields a complete classification of all isomorphism 
classes of countably generated closed right ideals (here “countably generated 
closed,” means, the closure of a countably generated right ideal) in a simple 
C*-algebra with all the hypotheses in 111.2.11. Of course, if A is separable, 
every closed right ideal is countably generated, and in general, every coun- 
tably generated closed right ideal is singly generated. 

We have that, if aA is not closed, 

(aA)- is isometrically module-embeddable in (bA)- if and only if 
a^<&; 

’ “Isometrically” can be replaced by a continuous module isomorphism with closed image. 
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(aA)- is (isometrically) module-isomorphic to @A)- if and only if 
a^ = 8, and bA is not closed. 

By going up to matrix rings, we can show by the same methods, that if aA is 
closed while bA is not, then a^ < 8 implies 

a4 I (bA)- 5 (bA)- I (bA)-, 

where I indicates orthogonal direct sum- this may be realized concretely as 
therowspace ((x,y)IxEuA,yE(bA)-}-anda*=$impliescAI(bA)-r 
(bA)- I (bA)-. 

One can also ask, given two closed right ideals (aA)-, (bA)-, is there a 
surjective A-module homomorphism f: (aA)- + (bA)-? It can be shown that 
since (bA)- = (@pIA)- with {pi} an orthogonal set of projections, any such 
f will split continuously, i.e., 

there exists g: (ba)- + (aA)- so that fsf= f and gfs = g. 

The maps f and g can be straightened out to yield f ‘, g’ with g’ an isometry 
onto its image. It follows that there exists a closed submodule (CA)- of 
(aA)- so that (aA)- = (CA)- + g’((bA)-) and (CA)- ng’((bA)-) = {O). 
We thus deduce a^ = ? + 8; hence the formal difference a^ - 8 must be lower 
semicontinuous; if uA, bA are both not closed, this is sufftcient as well. 

For general unital C*-algebras A, K,* is still intimately related to the 
classifications of closed right ideals. For example, it follows (from the 
definitions) that 

(a) If there is a continuous A-module homomorphism (aA)- -+ (bA)-- 
with dense image, then D(a) > D(b) f or all dimension functions D of A. 

(b) If (aA)- is embedded continuously as an A-submodule of (bA)- 
then D(a) <D(b). 

(c) If (uA- = (bA)- + (CA)- (in particular, the right side must be 
assumed closed) and (bA)- n (CA)- = (0), then D(a) = D(b) + D(c) for all 
lower semicontinuous dimension functions D. 

Returning to our examples satisfying (HP), etc., let us calculate the 
isomorphism types of closed non-principal right ideals in a UHF algebra A. 
Then K,(A) is a rank one dense subgroup of IR, and since the isomorphism 
classes are in bijection with the pointwise suprema, we see that (0,l ] is a 
complete listing. Furthermore, if M is a maximal right ideal, then 
{ p^ 1 p =p* =p* EM} = 1, since by Powers’ theorem Aut(A) acts tran- 
sitively on the maximal right ideals. Hence all maximal right ideals are 
module isomorphic (this latter does not follow directly from the transitivity 
alone, since *-algebra automorphisms are generally not module 
homomorphisms). 
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111.3. Characterization of K,* 

We now apply the results of the previous sections to obtain the promised 
description of K,*. There is one additional assumption required on A ; 
however, this is vacuous in many cases: 

DEFINITION 111.3.1. If B is a unital (stably finite) C*-algebra with stable 
(HP), then B is K$-continuous if for every E > 0, there is a projection p in B 
so that 0 < p^ < E. 

The term K,*-continuous is an analogy with the description of finite W*- 
algebras. It follows from 1.1.14 that an infinite dimensional simple C*- 
algebra (with (HP) etc.) is always K,*-continuous-more is true (111.3.4). 

THEOREM 111.3.2. Let A be a unital stably finite Kt-continuous C*- 
algebra with stable (HP) and cancellation, and having K,(A) unperforated. 
Then the function A from K,*(A) into the set of bounded aSJine functions on 
QT(A) is an order-isomorphism onto its image. 

Proof: It suffices to show that if a^ < b, then [a] < [b] in K;(A)-so we 
must find c in M,A orthogonal to both a and b, such that a + c 5 b + c. It 
is clear from Proposition 111.2.1 that if (dB) - is isometrically isomorphic to 
a submodule of (eB)-, then d 2 e; so it suffices to find c in M,A (for 
suf’liciently large k) orthogonal to a and b, with ((a + c) M,A)- iso- 
metrically module-isomorphic to a submodule of ((b t c)M,A)-. The 
hypotheses of cancellation and K,*-continuity imply that A has a sequence of 
orthogonal full projections, and thus contains a sequence of increasing 
projections r,, with A(rm - rmwl) 9 0. Set k = n t 1, and c = e,,,,,,,,, i) 0 
CC 2-“r,). If (P;) and (q;) are approximate identities for (aM,Aa *)- 
and (bM,Ab*)-, then (p, = p$ t rm) and (qm = q; + r,) are approximate 
identities for ((a t c)MJ(a t c)*)- and ((b t c) M,A(b t c)*)- 
respectively; further, A(p, -pm-i) * 0 and A(qm - qm - 1) % 0, for all m. 
Since A (a t c) < A (b t c), the result follows from 111.2.8. 1 

It is highly likely that the above result holds without the hypothesis of K,*- 
continuity. 

To complete the description of K,*(A), the range of A must be calculated. 
The image of the positive cone (by 111.3.2, K,*(A) is now known to be a 
partially ordered, rather than just a pre-ordered group), A(K$(A)+), consists 
of all countable increasing pointwise suprema of functions of the form fl, for 
p a projection in M,A ; so each such function is lower semicontinuous. The 
function A is also pointwise onto-if r E QT(A) and 1 > 0, there is an a in 
M,A such that a^(t) = A. 

COROLLARY 111.3.3. Let A be a F-algebra satisfying the hypotheses of 
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111.3.2, and suppose that QT(A) is metrizable and (p ] p =p2 =p* E M-A} 
is dense in Aff(QT(A))+. Then K,*(A) is order-isomorphic to the group of 
differences of bounded lower semicontinuous afine functions on QT(A), 
equipped with the pointwise ordering. 

ProoJ: The image contains Aff(QT(A)), and it contains countable 
increasing pointwise suprema of elements of Aff(QT(A)) that are bounded 
above; since K,f(A) is generated by its positive cone, the result follows. 1 

LEMMA 111.3.4. Let A he a unital stably finite C*-algebra having stable 
(HP), cancellation, and K,(A) unperforated. Suppose A admits no finite 
dimensional representations. Then 

{p 1 p =p2 =p* E M,A} is dense in Aff(QT(A))‘. 

(Zn particular, K,*(A) is continuous.) 

ProoJ: We first show that K,(A) is a dimension group. This is done by 
establishing Riesz decomposition along the lines of [25; 11.10.3]; the proof 
can be adapted almost verbatim, because the cancellation and unperforated 
properties have been hypothesized. (If A is already AF, this is of course well- 
known.) 

Next, any irreducible finite dimensional representation would induce a 
trace r, which in turn yields the map K,(z): K,,(A) -+ R, a state of K,(A), 
with discrete range. Conversely, assume that there is a state t: K,(A) --, R 
with discrete range. We may assume that t is pure, as in the proof of [24; 
Lemma 4.41. This lifts back to a dimension function on A (III.l.S), and thus 
a quasitrace t is obtained, such that t = K,(t). Since K,(t)(K,(A)) is discrete, 
A/Ker r, must be finite dimensional (and simple). 

Under our hypotheses, therefore, K,,(A) admits no state with cyclic image. 
By [24; Corollary 4.91, the image of K,(A)+ is dense in Aff(S(K,(A))+, 
where S(K,(A) is the state space of K,,(A)---this latter is naturally iden- 
tifiable with QT(A), and the result follows. a 

COROLLARY 111.3.5. Let A be a unital AF C*-algebra with no finite 
dimensional representations. Then the conclusion of 111.3.3 holds (and 
QT(A) = T(A)). If A has exactly n pure traces, then K;(A) = iR” with the 
usual ordering. 

If A is not K,*-continuous, the image of A is harder to describe; the 
function A will not be pointwise onto. The interested reader should consult 
[24; 4.81 for a description of the norm closure of K,(A). 
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