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BIVARIANT K-THEORY FOR SMOOTH MANIFOLDS II

LECTURES BY: HEATH EMERSON (JOINT WORK WITH RALF MEYER)
NOTES BY: ROBIN DEELEY

Abstract. Building on the first talk, we describe equivariant Kasparov theory
for smooth manifolds in purely topological terms, using an appropriate theory
of equivariant correspondences. There is always a map from the topological
theory to the analytic theory, and it is an isomorphism under some hypotheses
related to the existence of certain equivariant vector bundles. We conclude by
listing various geometric situations under which the hypotheses hold, and by
showing how and why these considerations are important for equivariant index
theory.

1. Duality correspondances and KK-theory

Goal: Give a geometric description of KKG(C0(X),C0(Y)) where G is a proper
groupoid, and X and Y are smooth G-manifolds.

Recall from last time: We denote by G a proper groupoid with base space
Z and X denotes a G-space (see Section 2 of the previous lectures notes for the
definitions of these terms).

Theorem 1.1. Let X be a smooth properG-manifold. Then there exists natural (duality)
isomorphisms

KKG(C0(TX) ⊗ A,B) � KKGoX(C0(X) ⊗ A,C0(X) ⊗ B)
KKGX(C0(X) ⊗ A,B) � KKGoX(C0(X) ⊗ A,C0(TX) ⊗ B)

Today: Describe index theory topologically. (The main reference for the
material contained in these notes is [2])

2. Wrong-way maps and index theory

We begin by discussing some index problems.

Example 2.1. We take G to be trivial and X to be a K-oriented smooth manifold
(note: K-orientablity in the classical case is equivalent to being spinc). For now
we assume that X is compact so that we are in the classical case of the Atiyah-
Singer Index Theorem. We denote the Dirac operator of X by DX and its class in
KK(C(X),C) by [DX].
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2LECTURES BY: HEATH EMERSON (JOINT WORK WITH RALF MEYER) NOTES BY: ROBIN DEELEY

Problem: For E ∈ K∗(X) compute the index of the twisted Dirac operator (i.e.
ind(DE

X)).
Solution: Fix a smooth embedding i : X ↪→ Rn. Denote the normal bundle of
i(X) by N and use the tubular neighborhood theorem to get φ̂ : N ↪→ Rn an open
embedding. (Note that N is K-oriented since both the trivial bundle X ×Rn and
TX are).

The above data produces a number of KK-theory elements via the construc-
tion in Section 3 of the previous lectures notes. This construction took a G-
equivariantly K-oriented vector bundle, V, over a space Y (where G is a proper
groupoid) and produced an element in KKGoY(C0(Y),C0(V)). In our current
setup we have two bundles: N over the zero section and Rn considered as
vector bundle over a point. Hence, we can form

ξN! ∈ KKX(C(X),C0(N))
πRn! ∈ KK(C(X),C)

We also have φ̂! ∈ KK(C0(N),C0(Rn)).

Theorem 2.2 (Atiyah-Singer). Using the notation we have defined above we have that

[DX] = ξN! ⊗C0(N) φ̂! ⊗C0(Rn) πRn!

Exercise: Use this theorem to produce a cohomology formula for ind(DE
X).

Remark. Our construction in the previous example still works if X is noncompact.

Example 2.3. Let X be a smooth manifold with a smooth action of a compact
group, G. Moreover, assume that the action preserves a fixed K-orientation on
X. We can again form the Dirac operator, DX, and its class, [DX] ∈ KKG(C0(X),C).

We produce an equivariant of the previous example. To begin, fix an equivari-
ant embedding i : X ↪→ E, where E is a Euclidean space with a linear G action.
That such an embedding exists is due to Mostow – as long as X is compact. We
let N denote the normal bundle and again form KK-elements:

ξN! ∈ KKG(C(X),C0(N))
πRn! ∈ KKG(C(X),C)
φ̂! ∈ KKG(C0(N),C0(Rn))

Theorem 2.4. With the notation defined above, we have that

[DX] = ξN! ⊗C0(N) φ̂! ⊗C0(E) πRn!

Remark 2.5. It turns out that if X is not compact there may not be an embedding
of the required form. The next theorem makes this precise. For purposes of the
theorem, “finite orbit type” means that there are at most finitely many subgroups
(up to conjugacy) which are stabilizers of points in X.
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BIVARIANT K-THEORY FOR SMOOTH MANIFOLDS II 3

Theorem 2.6 (Mostow). A smooth G-manifold, X, embeds in a linear representation
of G if and only if X has finite orbit type.
Example 2.7. Let G = S1 and X equal the disjoint union of countable copies of S1.
We define z ∈ G = S1 to act on the nth-copy of S1

⊆ X by zn. The roots of unity
are stabilizers. It follows that this action is not of finite orbit type and hence (by
the previous Theorem) that the “required” embedding does not exist.

Therefore, in this case, the analogue of (2.4) does not exist, of course.
We now return to the general setting. That is, G a proper groupoid and X a

smooth equivariantly K-oriented G-manifold – thus a bundle of smooth, K-oriented
manifolds over the base of G, with elements in G acting diffeomorphically be-
tween fibres and preserving K-orientations.

General Problem: Describe the class of the fibrewise Dirac operator [DX] ∈
KKG(C0(X),C0(Z)) topologically – if possible (see Section 4 of the notes from
the first lecture.) We first need an embedding result. A natural choice in the
groupoid case is a embedding of the form:

i : X ↪→ E

where E is a G-equivariant vector bundle over Z.

Example 2.8. We define a groupoid as follows. First we consider R ×Z T2 where
T2 is the torus and the Z action on R is by translation and the action on T2 is
determined by A ∈ GL2(Z). We then have p : R ×Z T2

→ S1. We denote this
groupoid by GA and note that its base (which we denote by ZA) is S1.

Lemma 2.9. The GA-equivariant vector bundles over S1 are in one-to-one correspon-
dance with representations π ∈ Rep(T2), which are fixed by the action of A on the dual,
T̂2 (i.e., π ◦ A ∼ π).

We now assume that the action on T2 is ergodic. For example, this is the case

if A =

(
2 1
1 1

)
. It then follows that there are no fixed points in Rep(T2) except

for multiples of the trivial representation.

Corollary 2.10. If A induces an ergodic action on T2, then the only GA-equivariant
vector bundles over S1(= ZA) carry the trivial action of GA.

If we let GA act on itself by translation, then it can not be imbedded into a
GA-equivariant vector bundle (since if it could it would carry the trivial action).
Thus, for this compact example, the immediate analogue of (2.4) does not exist.

3. An embedding theorem for certian groupoids

We have seen that in order to get index theorems, we need embeddings. Our
goal in this section is to address the question of when such embeddings exist
(see Theorem 3.6). To begin, we have a number of definitions.
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4LECTURES BY: HEATH EMERSON (JOINT WORK WITH RALF MEYER) NOTES BY: ROBIN DEELEY

Definition 3.1. Let X be a G-space. Then X has enough G-equivariant vector
bundles, if for each x ∈ X and each finite-dimensional representation of the
compact isotropy group, Gx

x, there exists G-equivariant vector bundle (over X)
whose restriction to x contains the given representation of Gx

x.

Definition 3.2. Again let X be a G-space. Then X has a full vector bundle if
there existsG-equivariant vector bundle, V, (such a V will be called a full vector
bundle) such that for any x ∈ X and any irreducible representation of Gx

x is
contained in the representation of Gx

x on Vx.

Definition 3.3. A G-equivariant vector bundle over a G-space is trivial if it has
the form p∗X(E) for some E over Z. Note that pX is the map X to Z given in the
definition of G-space. A G-equivariant vector bundle is called sub-trivial if it is
a direct summand of a trivial bundle.

Remark 3.4. In the case of a group, G, the base Z is a point, so that G-trivial
bundles on X are trivial in the classical sense. If G has non-trivial base Z but no
morphisms, then G-equivariant vector bundles on Z are just the same as vector
bundles on Z, G spaces are just spaces which fibre over Z, and trivial bundles
on G-spaces X are bundles which are pulled back from Z.

The following gives an example of aG-equivariant vector bundle which is not
even sub-trivial.

Example 3.5. Let X be Z as a S1-space (using the trivial action). We consider
the vector bundle Z × C with the action of S1 defined via z · (n, λ) = (n, zn

· λ).
This vector bundle is not sub-trivial (since it contains infinitely many irreducible
representations of S1).

Theorem 3.6. Let G be a proper groupoid and X be a smooth G-manifold. If either
A: X/G is compact and Z has enough vector bundles.
B: The covering dimension of X/G is finite and Z has a full vector bundle.
Then, everyG-equivariant vector bundle over X is subtrivial and there exists a smooth

embedding of X into a trivial vector bundle over Z.

Example 3.7. Lück and Oliver have proved that if Γ is a discrete group with
EΓ/Γ compact, then, letting G = Γ oEΓ, we have the Z(= EΓ) has enough vector
bundles. Therefore, our embedding theorem applies to this groupoid.

Example 3.8. If G is a closed subgroup of an almost connected group, then EG
(as the base of G = G o EG) has enough vector bundles. This follows from the
Morita invariance of the condition of having enough vector bundles, and the
corresponding fact about compact groups.

4. NormalMaps

We now have the required embedding theorem (Theorem 3.6). Looking at
Example 2.1, we see that we need equivariant versions of normal bundles and
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BIVARIANT K-THEORY FOR SMOOTH MANIFOLDS II 5

the tubular neighborhood theorem. To this end, we define normal maps, which
roughly speaking are embeddings along with a tubular neighborhood.

Definition 4.1. Let X and Y be G-spaces. A G-equivariant normal map from X
to Y is a triple, Φ = (V,E, f̂ ), where V is a subtrivial G-equivariant vector bundle
over X, E is a G-equivariant bundle over Z, and f̂ : V ↪→ EY(:= p∗Y(E)) is an open
G-equivariant embedding.

We define the degree of Φ to be dim(V)−dim(E). The stable normal bundle of Φ
is defined to be [V]−[EX] ∈ VKOG(X), where VKOG(X) denotes the Grothendieck
group of the monoid of isomorphism classes of realG-equivariant vector bundles
over X. Finally, we define the trace of Φ via

tr(Φ) := f = πEY ◦ f̂ ◦ ξV

We note that ξV maps the zero section (i.e. X) into V. Hence, f is a map from X
to Y.

We say that a normal map, Φ, is K-oriented (resp. smooth) if the vector
bundles occurring in the triple (e.g., V, E, etc) are K-oriented (resp. smooth).

Example 4.2. Let G be trivial. Then normal maps from X to a point are “equiv-
alent” to smooth structures on X × Rn. (The quotes are needed, since we need
a notion of equivalence on the set of smooth structures to make this statement
precise).

The next theorem is a reformulation of Theorem 3.6 into the language of
normal maps.

Theorem 4.3. Let G be proper. Then, any smooth G-manifold X, such that either
condition A) or B) of Theorem 3.6 hold, admits a smooth normal map to Z.

Definition 4.4. We define an equivalence relation on the set of isomorphism
classes of normal maps via the following (throughout, Φ = (V,E, f̂ ) is a normal
map)

(1) Lifting: For any vector bundle over Z, W, we define

(V,E, f̂ ) ∼ (V ⊕WX,E ⊕W, f̂ ×Z idW)

and call the second of these two the lift of Φ by W. Two normal maps,
Φ0 and Φ1, are stably isomorphic if there are lifts Φ0 and Φ1 which are
isomorphic.

(2) Isotopy: An isotopy between two normal maps, Φ0 and Φ1, is a family
(parameterized by [0, 1]) of normal maps such that the end points are
isomorphic to Φ0 and Φ1 respectively.

We then define an equivalence relation by taking the one generated by the
lifting and isotopy relations above. Moreover, if we restricted to smooth normal
maps, then we can define a “smooth” equivalence relation by requiring the
isomorphisms, lifts and isotopies be smooth.
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6LECTURES BY: HEATH EMERSON (JOINT WORK WITH RALF MEYER) NOTES BY: ROBIN DEELEY

Theorem 4.5. Let X and Y be smooth G-manifolds. We assume that
(1) TY is subtrivial;
(2) X admits a smooth G-equivariant normal map to Z

Then smooth equivalence class of K-oriented smooth normal maps from X to Y are in
one-to-one correspondance with pairs ( f , τ), where f is a smooth homotopy class of a
smooth map X to Y and τ is K-orientation on [TX] − f ∗([TY]).

Proof. We give the main idea of the proof. The idea is to construct a normal
map that has trace equal to a given f : X → Y. Assuming that G is trivial, we
have embedding i : X ↪→ Rn (in general, we have an embedding of the type in
Theorem 3.6). We then have embedding f × i : X→ Y ×Rn and projection map
Y × Rn

→ Y. Moreover, f is just the composition of these two maps. The next
step in the proof is to produce normal maps maps for smooth embeddings and
projections. The previous argument shows that once we have this result we are
done. �

Remark 4.6. We have not discussed the composition of normal maps. Compo-
sition is defined up to isotopy and, moreover, the trace of a composition is the
composiiton of the traces.

Definition 4.7. We denote the category of equivalence classes of G-equivarant
normal maps by Mor(G).

Proposition 4.8. The following defines a functor:

Mor(G) → KKG(4.1)

(V,E, f ) 7→ ξV! ⊗ f̂ ! ⊗ πEY !(4.2)

5. Correspondances

We now define the notion of a correspondence. Correspondences are the
topological objects which in a natural way produce elements of KK-theory. They
were first introduced in [1]. The definition here is different (see Remark 5.2).

Definition 5.1. Let X and Y be G-spaces. Then a (G-equivariant K-oriented)
correspondance from X to Y is a quadruple, (M, b, f̂ , ξ), where
1) M is a G-space,
2) b : M→ X is a G-map,
3) f̂ : M→ Y is an K-oriented normal G-map,
4) ξ ∈ RK∗

G,X(M) (see the notes from the first lecture for the definition of
RK∗
G,X(M)).

Remark 5.2. There are three main differences between this definition of corre-
spondances and the original one in [1]. Firstly, we do not assume that the map
b is proper (the “support” conditions have been passed to the K-theory part; we
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BIVARIANT K-THEORY FOR SMOOTH MANIFOLDS II 7

note that in [1] vector bundles are used rather than actual classes in K-theory).
Secondly, because we are working equivariantly, we need f̂ to be a normal map.
Finally, the spaces X and Y need not be smooth manifolds.

Definition 5.3. We define an equivalence relation on correspondances by letting
it be the equivalence relation generated by

(1) Bordism;
(2) Equivalence of normal maps;
(3) Thom modification.

We discuss the last of these relations (i.e. Thom modification) in more detail.
Let (M, b, f̂ , ξ) be a correspondance and V a G-equivariant K-oriented vector
bundle over M, then the Thom modification of (M, b, f̂ , ξ) by V is the correspon-
dance

(V, b ◦ π, f̂ ◦ π, π∗(ξ) · ξV)
whereπdenotes the projection map V →M andξV is the Thom class in RK∗

G,M(V).
We note that the Thom class was defined in the previous lecture (see either the
notes from that lecture or [3]).

Theorem 5.4. We denote the equivalence classes of correspondances from X to Y by
k̂kG(X,Y). Then k̂kG(X,Y) is a category.

Theorem 5.5. LetG be a proper groupoid and X be a smoothG-manifold. Assume that
X admits a smooth normal map to the base of G (i.e. Z) and that all vector bundles over
X are subtrivial. Then, for each G-space Y, the map K̂KG → KKG obtained by combining
ordinary functoriality with respect to the map b : M → X, the wrong-way functorial-
ity of the map f (see Equation 4.2), and the module structure of KKG(C0(M),C0(Y))
over RK∗G,X(M), determines a canonical isomorphism K̂KG(X,Y)→ KKG(C0(X),C0(Y)).

This result describes equivariant Kasparov groups for commutative C*-algebras
in purely topological terms. But it requires some hypotheses. One is that we
only consider Kasparov morphisms with source a smoothG-manifold. Another
hypothesis has to do with an ample supply of G-equivariant vector bundles on
X.
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