
KK-theory as a triangulated category
Notes from the lectures by Ralf Meyer

Focused Semester on KK-Theory and its Applications

Münster 2009

1 Lecture 1

Triangulated categories formalize the properties needed to do homotopy theory in
a category, mainly the properties needed to manipulate long exact sequences. In
addition, localization of functors allows the construction of interesting new functors.
This is closely related to the Baum-Connes assembly map.

1.1 What additional structure does the category KK have?

Suspension automorphism Define A[n] = C0(R−n, A) for all n ≤ 0. Note that
by Bott periodicity A[−2] = A, so it makes sense to extend the definition of
A[n] to Z by defining A[n] = A[−n] for n > 0.

Exact triangles Given an extension I // // E // // Q with a completely posi-
tive contractive section, let δE ∈ KK1(Q, I) be the class of the extension. The
diagram

I // E

���������

Q

δE
O>>>

^^>>>

where O // denotes a degree one map is called an extension triangle. An
alternate notation is

Q[−1]
δE // I // E // Q.

An exact triangle is a diagram in KK isomorphic to an extension triangle.
Roughly speaking, exact triangles are the sources of long exact sequences of
KK-groups.

Remark 1.1. There are many other sources of exact triangles besides extensions.

Definition 1.2. A triangulated category is an additive category with a suspension
automorphism and a class of exact triangles satisfying the axioms (TR0), (TR1),
(TR2), (TR3), and (TR4). The definition of these axiom will appear in due course.

Example 1.3. The category KK with suspension and exact triangles as above is
triangulated. ♦

Warning 1.4. The Z/2-graded KK-category is not a triangulated category. �
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1.2 Cones and cylinders

Definition 1.5. Let f : A → B be a ∗-homomorphism. Then the cone of f is
cone(f) =

{
(a, b) ∈ A ⊕ C0

(
(0, 1], B

) ∣∣∣ b(1) = f(a)
}

, while the cylinder of f is

cyl(f) =
{

(a, b) ∈ A⊕C0

(
[0, 1], B

) ∣∣∣ b(1) = f(a)
}

. Note that any ∗-homomorphism
f : E → Q gives rise to an extension triangle

Q[−1] // cone(f) // // cyl(f) // // Q

and that the cone of idA : A→ A is the cone of A.

Definition 1.6. Let f : A→ B be a ∗-homomorphism. Then there is an extension
B[−1] // // cone(f) // // A with a completely positive contractive section. The

class of this extension in KK1(A,B[−1]) turns out to be f [−1] : A[−1]→ B[−1], so
this gives a extension triangle

A[−1]
f [−1] // B[−1] // cone(f) // A.

Such an extension triangle is called an mapping cone triangle.

Warning 1.7. It is possible that in Definition 1.6, the class of the extension in
KK1(A,B[−1]) should be −f [−1]. This sign error is due to the fact that cone(f)′ ={

(a, b) ∈ A⊕C0

(
[0, 1), B

) ∣∣∣ b(0) = f(a)
}

, is an alternate definition of the mapping
cone. �

Lemma 1.8. A triangle is exact if and only if it is isomorphic to a mapping cone
triangle.

Proof. Assume I // // E // // Q is an extension with a completely positive con-
tractive section, and consider the diagram

Q[−1] I // //

α

��

E
f // // Q

Q[−1] // cone(f) // E
f // Q.

The proof of excision in KK shows that α exists, and that α is invertible in KK.
Moreover, δE : Q[−1] → I makes the resulting diagram commutative, so exact tri-
angles are isomorphic to mapping cone triangles.

For the converse consider the diagram

Q[−1] // cone(f) // E
f // Q

Q[−1] // cone(f) // // cyl(f) // // Q

and the definition of cyl(f). �

Remark 1.9. By the previous lemma, it is clear that one can define exact triangles in
terms of mapping cone triangles. It is worth mentioning that by using this approach,
one can prove excision with Puppe sequences. �
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1.3 Properties of exact triangles - The axioms (TR0), (TR1),
(TR2), and (TR3)

Definition 1.10 ((TR0)). Triangles isomorphic to exact ones are exact and

A
idA // A // 0 // A[1]

is exact. The last part can be reformulated as

0 // A
idA // A // 0

is exact.

Definition 1.11 ((TR1)). Any morphism in the category is part of an exact tri-
angle, i.e. for any f : A→ B, there is an exact triangle

B[−1] // C // A
f // B.

KK satisfies (TR1). By using the Cuntz picture, one can represent f ∈ KK0(A,B)
by a ∗-homomorphism f̃ : qA→ B ⊗K. Then form the diagram

(
B ⊗K

)
[−1] //

∼

cone(f̃) // qA
f̃ //

∼

B ⊗K

∼

B[−1] // cone(f̃) // A // B

where ∼ denotes KK-equivalence.
Another point of view is to note that f ∈ KK0(A,B) ∼= KK1

(
C0(R, A), B

)
and

then look at B[−1]
f [−1] // A[−1] // E // B . �

Definition 1.12 ((TR2)). The triangle

A
u // B

v // C
w // A[1]

is exact if and only if the triangle

B
−v // C

−w // A[1]
−u[1] // B[1]

is exact.

Remark 1.13. In the last part of (TR2), it is only required that an odd number of
the maps change sing. Thus it is enough that one of maps has a change of sign. �

KK satisfies (TR2). Given f : A→ B, we have extension triangle

A[−1]
f [−1] // B[−1] // cone(f) // A

f //

∼ /.-,()*+−
B

B[−1] // cone(f) // cyl(f) // B

where the last triangle commutes up to sign. �
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Definition 1.14 ((TR3)). Given an commutative diagram of with exact rows

A //

α

��

B //

β

��

C // A[1]

α[1]

��
A′ // B′ // C ′ // A′[1]

there exist a morphism γ : C → C ′ such that the resulting diagram is commutative.

KK satisfies (TR3). In a special case, this is the functorality of the mapping cone.
For the general case one can use the Cuntz picture. �

1.4 General facts about triangulated categories

For any category D and A,B objects in D, one denote by D(A,B) the group of
morphisms from A to B.

Proposition 1.15. Let T be a triangulated category, D an object of T and

A // B // C // A[1]

an exact triangle. Then there is an induced long exact sequence

// T(D,A[n]) // T(D,B[n]) // T(D,C[n]) // T(D,A[n+ 1]) //

and an induced dual long exact sequence

// T(A[n+ 1], D) // T(C[n], D) // T(B[n], D) // T(A[n], D) // .

Proof. Since the arguments for the two long exact sequences are similar, we only
show the first part. The proof of this follows a similar argument as the one for KK.
Note that it suffices to show exactness at one point in the long exact sequence. By
using (TR0) and (TR3) one can show that the composition of any two consecutive
morphisms in an exact triangle is zero, and this shows that “im ⊂ ker” in the long
exact sequence. To show “ker ⊂ im” consider

D //

��

0 //

��

D[1]
−idD[1]// D[1]

��
B // C // A[1] // B[1]

and use (TR3). �

Definition 1.16. A functor from a triangulated category is called (co)-homological
if it creates long exact sequences from exact triangles as in Proposition 1.15.

Theorem 1.17. If

A //

α

��

B //

β

��

C //

γ

��

A[1]

α[1]

��
A′ // B′ // C ′ // A′[1]

is a morphism of exact triangles in T with α and β invertible, then γ is invertible.
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Proof. Observe that for all objects D in T, the morphisms T(D,α) : T(D,A) →
T(D,A′) and T(D,β) : T(D,B) → T(D,B′) are invertible. By the Yoneda lemma
it suffices to prove that T(D, γ) is invertible for all D in T. This follows from the
5-lemma applied to the diagram

T(D,A) //

α

��

T(D,B) //

β

��

T(D,C) //

γ

��

· · ·

T(D,A′) // T(D,B′) // T(D,C ′) // · · ·

where “· · · ” denotes the continuing long exact sequence. �

Corollary 1.18 (Uniquness of mapping cones). The exact triangle

A
f // B // C // A[1]

containing f : A→ B is unique up to isomorphism.

Warning 1.19. The isomorphism in Corollary 1.18 is not a natural isomorphism. A
“workaround” for this is to use model categories. �

Exercise 1 For all objects A,B in a triangulated category the diagram

A
ιA // A⊕B

πB // B
0 // A[1]

is an exact triangle.

Exercises 2 If A
u // B

v // C
w // A[1] is an exact triangle with w = 0,

then it is isomorphic to the exact triangle in Exercise 1.

Exercises 3 The diagram A
f // B // 0 // A[1] is an exact triangle if

and only if f is invertible.

Exercises 4 The morphism f is invertible if and only if cone(f) = 0.

1.5 Other kinds of exact sequences

1.5.1 Mayer-Vietoris

Theorem 1.20. If f1, f2 have completely positive contractive section, then there is
an exact triangle

A1 ⊕B A2
// A1 ⊕A2

// B // (A1 ⊕B A2)[1]

where A1 ⊕B A2 is the pullback of

A2

f2��
A1

f1

// B
.

Proof. Let H =
{

(a1, a2, b) ∈ A1⊕A2⊕C
(
[0, 1], B

) ∣∣∣ f1(a1) = b(0), f2(a2) = b(1)
}

,
i.e. H is the homotopy pullback, and use the fact that A1 ⊕B A2 → H is an KK-
equivalence. �
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1.5.2 Crossed products

Let α : A → A be an automorphism, and define the mapping torus of α by Tα ={
f ∈ C

(
[0, 1], A

) ∣∣∣ f(1) = a
(
f(0)

)}
. By considering the two exact triangles

A
idA−α // A

ια // Aoα Z // A[1] and Tα // A
idA−α // A // Tα[1] one get

that Aoα Z and Tα[1] are KK-equivalent.

1.5.3 Homotopy colimit

Consider the inductive system (An, αn : An → An+1) of C∗-algebras. The homotopy
colimit of this system, hocolim(An, αn), is the mapping cone of id−S :

⊕∞
n=0An →⊕∞

n=0An where S is the shift map, (ai)∞i=0 7→ (a′i)
∞
i=0 with a′0 = 0 and a′i =

αi−1(ai−1) for i > 0.
Note that cokerS = lim−→(An, αn). In some nice cases we have that lim−→(An, αn)

is KK-equivalent to the homotopy colimit.

1.5.4 Observation

We have replaced questions about exactness of sequences with questions about iso-
morphisms.

2 Lecture 2

We have seen that triangulated categories are efficient for manipulating a single
exact sequence. But this is limited to one dimensional diagrams. For Z2-actions
things get more complicated. One way to proceed is step-by-step, i.e. using the
Pimsner-Voiculescu sequence twice. One can then ask: “Is there some structure
behind such iterative constructions?” and “Can we do homological algebra in trian-
gulated categories?”. The answer is to both questions is “Yes”.

2.1 Motivation and definitions

We are motivated by the following picture:

Triangulated category T

Homological functor F

++
Abelian category C

Projective objects in T

⊆

Projective objects in C

⊆

where in nice cases F gives an equivalence on the projective objects (e.g. there is
an adjoint F† from the projectives in C to the projectives in T. Moreover, by taking
projective resolutions, one can get more information about T. For instance, if all
projective resolutions have length one, we obtain the Universal Coefficient Theorem
(UCT).

Henceforth T will be a triangulated category, C an Abelian category with sus-
pension (i.e. an automorphism C → C), and F: T → C a homological functor that
commutes with suspensions.

Warning 2.1. The functor K∗ : KK → AbZ/2 satisfies the requirement for functors
F, while K0 : KK → Ab does not. Here the suspension in AbZ/2 maps (G0, G1) to
(G1, G0). �
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Definition 2.2. A morphism f ∈ T(A,B) is F-monic if F(f) is monic, F-epic if
F(f) is epic, F-phantom if F(f) = 0, and an F-equivalence if F(f) is invertible.

A chain complex C• : · · · // Cn
∂n // Cn−1

∂n−1 // Cn−2
// · · · is F-exact if

F(C•) is exact. An object A of T is F-contractible if F(A) = 0. A resolution
0← A← C0 ← C1 ← · · · in T is a F-resolution if it is F-exact.

Lemma 2.3. Let A
u // B

v // C
w // A[1] be an exact triangle in T. The

following are equivalent:

1. u is F-monic.

2. w is F-phantom.

3. v is F-epic.

4. · · · // 0 // A
u // B

v // C // 0 // · · · is F-exact.

Proof. Use the long exact sequence

· · · // Fn+1(C)
Fn+1(w)// Fn(A)

Fn(u) // Fn(B)
Fn(v) // Fn(C) // · · ·

to show (1) ⇒ (2) ⇒ (3) ⇒ (1). Then use the sequence to show that (1), (2, and
(3) are equivalent to (4). �

Exercise 5 A morphism f is an F-equivalence if and only if the object cone(f) is
F-contractible.

Exercise 6 The F-phantom morphisms determine the F-monic morphisms, the F-
epic morphism, the F-equivalences, and the F-contractible objects.

Exercise 7 (hard) The F-phantom maps determine F-exact chain complexes.

Remark 2.4. Observe that the F-phantom maps form an ideal and are closed under
suspensions. �

Definition 2.5. Let D be an Abelian category. A homological functor G: T → D
is called F-exact if it maps F-exact chain complexes to exact chain complexes.

Exercise 8 A homological functor G is F-exact if and only if F(f) = 0 for each
F-phantom map f .

Definition 2.6. An object A of T is F-projective if the functor T(A, ) is F-exact.
Similarly, the object A is F-injective if the functor T( , A) is F-exact.

Example 2.7. In KK, C is K∗-projective since KK∗(C, B) ∼= K∗(B). ♦

Remark 2.8. There is a general fact that direct sums, suspensions and retracts of
F-projectives remain F-projective. �

2.2 Two digressions

1. Let Ho(T) be the homotopy category of chain complexes of T. Then Ho(T) is
triangulated since T is additive. Moreover the F-exact chain complexes form
a thick subcategory. Localizing at this thick subcategory yields a derived cat-
egory, Der(T,F). The derived category Der(T,F) has a canonical t-structure
because we may define F-exactness of chain complexes in a fixed degree. The
heart of this t-structure is an Abelian category C, and the functor T→ Ho(T)
gives a homological functor F̃ : T→ C with the same kernel as F.
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2. Homotopy fixed points can be defined for any Z-action on a object of a trian-
gulated category T. This fail for Z/2 or Z2 actions (“the classifying space of
G should be one dimensional”). To work with such thing one need KKZ/2 or
KKZ2

respectively.

2.3 The Universal Coefficient Theorem

From Example 2.7 and Remark 2.8 it is clear that for countable sets I0, I1, the
object

(⊕
I0

C
)
⊕
(⊕

I1
C0(R)

)
in KK is K∗-exact. The next theorem shows that

there are no more K∗-projective objects in KK than these. But first a tiny bit of
notation: AbZ/2

c is the category of countable Z/2-graded Abelian groups.

Theorem 2.9. Define K†∗ :
{

Countable free Z/2-graded Abelian group
}
→ KK by(⊕

I0
Z[0]

)
⊕
(⊕

I1
Z[1]

)
7→
(⊕

I0
C
)
⊕
(⊕

I1
C0(R)

)
. Then K†∗ is a functor,

K∗
(
K†∗(H)

)
= H, KK

(
K†∗(H), B

)
= HomZ/2

(
H,K∗(B)

)
, and K†∗ sets up an equiva-

lence between the projective objects in AbZ/2
c and the K∗-projective objects in KK.

Now let A be a separable C∗-algebra. Then K∗(A) is a countable Z/(2)-graded
Abelian group, so we have the following free resolution

0 K∗(A)oo H0
εoo H1

doo 0oo (A)

with both H0 and H1 countable. By applying K†∗ to this resolution and defining ε†

in a suitable way (this can be done by Theorem 3.1) we obtain

0 Aoo K†∗(H0)
ε†oo K†∗(H1)

K†∗(d)oo 0oo (B)

with ε† ◦K†∗(d) = 0. Note that one obtain the resolution (A) by applying K∗ to (B).
Furthermore, if ε† splits then A is isomorphic to a retreat of K†∗(H0). In this case
there is an idempotent p : H0 → H0 such that A ∼= range

(
K†∗(p)

) ∼= K†∗
(

range(p)
)
.

Recall that KK( , A) is a cohomological functor. From this, the fact that ε† ◦
K†∗(d) = 0 in the sequence (B), and the mapping cone triangle of K†∗(d),

K†∗(H1)
K†∗(d) // K†∗(H0)

d′ // cone(K†∗(d)) // K†∗(H1)[1],

it follows that there is a map φ : cone(K†∗(d))→ A such that φ ◦ d′ = ε†. It can be
shown that K∗(φ) is an isomorphism. Thus there is a 6-term exact sequence

KK0(Ã, B) // KK0(K†∗(H0), B) // KK0(K†∗(H1), B)

��
KK1(K†∗(H1), B)

OO

KK1(K†∗(H0), B)oo KK1(Ã, B)oo

where K∗(A) = K∗(Ã). Using Theorem 2.9 one can replace KK0(K†∗(H0), B) →
KK0(K†∗(H0), B) with Hom

(
H0,K∗(B)

)
→ Hom

(
H1,K∗(B)

)
. From the above we

get the Universal Coefficient Theorem for KK:

Theorem 2.10 (The Universal Coefficient Theorem (UCT)). For A,B objects in
KK we have

Ext
(
K∗(A),K∗(B)

)
// // KK0(Ã, B) // // Hom

(
K∗(A),K∗(B)

)
for some Ã with K∗(A) = K∗(Ã).
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Definition 2.11. The UCT class is the class of objects A in KK such that for
objects Ã as in Theorem 2.10, one has Ã ∼= A.

Exercise 9 Let A1, A2 belong to the UCT class. If K∗(A1) ∼= K∗(A2), then A1
∼=

A2. Thus any isomorphisms K∗(A1) → K∗(A2) lifts to an KK-equivalence
A1 → A2.

Remark 2.12. The Universal Coefficient Theorem followed from the fact the K∗-
projective resolutions in KK had length one and that we had an equivalence K†∗
from the projectives in AbZ/2

c to the K∗-projectives in KK.

2.4 Another example

For objects (A,α) in KKZ define F′ by

F′(A,α) =
{
K∗(A) with Z-action induced by α

}
.

Then F is a functor from KKZ to the category of countable Z/2-graded Z[Z]-
modules. The only thing different from the previous section is that there are
F′-projective resolutions of length two. Consequentially, there is no Universal Co-
efficient Theorem in this case.

In order to get an Universal Coefficient Theorem for KKZ we have to look at
other functors. So consider F: KKZ → KK[Z] defined by

F(A,α) =
{
A ∈ KK with α : Z→ KK(A,A)

}
.

In this case there is a correspondence between the projectives obtained by letting
F†(A⊗ Z[Z]) = C0(Z)⊗A. From the resolution

0 K∗(A)oo A⊗ Z[Z]oo A⊗ Z[Z]oo 0oo

we obtain length one F-projective resolutions in KKZ. In this case the result-
ing Universal Coefficient Theorem is the Pimsner-Voiculescu sequence comparing
KKZ(A,B) to KK(A,B).

3 Lecture 3

Recall that for KK we had

KK

K∗
))
AbZ/2

c

P

⊆

FreeAbZ/2
c

⊆

K†∗
∼

oo

where AbZ/2
c are the category of countable Z/2-graded Abelian groups and P are

the K∗-projective objects in KK. The functor K†∗ was an adjoint to K∗ on the
projective objects, and from the projective resolution 0← K∗(A)← H0 ← H1 ← 0
we obtained an exact triangle K†∗(H1) → K†∗(H0) → Ã → K†∗(H1)[1]. This gave us
the Universal Coefficient Theorem by applying Hom( , B). Another homological
functor we could have used is K∗( ⊗ B). By applying this functor to the exact
triangle, and rewriting the resulting long exact sequence, the result would have
been some kind of Künneth formula. Now, this all hinged on the ability to lift a
projective resolution in AbZ/2

c to an K∗-projective resolution in KK. We can do this
because of Theorem 3.1:
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Theorem 3.1. Let T be a triangulated category, C a stable Abelian category (i.e. it
has a suspension automorphism) with enough projective objects, and F: T→ C be a
stable homological functor (i.e. it commutes with the suspension automorphisms).
Denote by PC the projective objects in C, and let F† be a with a left adjoint of F
defined on PC such that F ◦ F† ∼= idPC

. Then the categories of F-projective objects
in T and the projective objects in C are equivalent. Moreover, for A an object in
T, the projective resolutions of F(A) in C corresponds up to isomorphism bijectively
with the F-projective F-resolutions of A in T.

Example 3.2. For G a compact (quantum) group, let T = KKG, C = Rep(G) −
ModZ/2

c where Rep(G) is the representation ring of G, and F = KG∗ : T→ Rep(G)−
ModZ/2

c . In this case F†(Rep(G)) = C, KG∗ = KKG∗ (C, ) and KKG∗ (C, B) =
KG
∗ (B) = HomRep(G)(Rep(G),KG

∗ (B). Here projective resolutions have length
more than one, so one must use some more argumentation to get an UCT. This
was done by Rosenberg and Schochet in [RS86]. ♦

For the remainder of this lecture we will use the definitions of Theorem 3.1. so
T will be a triangulated category, C an Abelian category with suspension (i.e. an
automorphism C → C), and F: T → C a homological functor that commutes with
suspensions. Moreover, PF will denote F-projective objects, while NF will denoted
the F-contractible objects. Our goal is to relate homological algebra in the Abelian
category C to things happening in the original triangulated category T.

3.1 The F-phantom tower over A

Let

0 Aoo P0
π0oo P0

δ1oo P0
δ2oo P0

δ3oo · · ·oo

be an F-projective resolution of an object A in T. The F-phantom tower of A is

A N0

ι10 // N1

ι21 //

O
|||

~~|||

N2

ι32 //

O
|||

~~|||

N3
//

O
|||

~~|||

· · ·

O
|||

~~|||

P0

π0

``BBBBBB

P1

π1

``BBBBBB

δ1

oo P2

π2

``BBBBBB

δ2

oo P3

π3

``BBBBBB

δ3

oo · · ·oo

where Ni+1 is the mapping cone of πi, each πi is F-epic, and each ιi+1
i is F-phantom

(recall that O // denotes a map of degree one).
To construct this tower inductively, we start by looking at the leftmost triangle.

So let N0 = A, N1 be the mapping cone of π0 and consider

P0
π0 // N0

ι10 // N1
// P0[1].

Since π0 is F-epi, the map ι10 is F-phantom by Lemma 2.3. So to do our inductive
construction it is enough to find a F-epic map π1 : P1 → N1. Since T(P1, ) is a
F-exact functor and π0 ◦ δ1 = 0 we have

T(P1, N1[0]) // // T(P1, P0[1]) // // T(P1, N0[1])

δ1

∈

� // 0

∈

Thus there is a π1 in T(P1, N1) mapping to δ1. It is even possible to show that π1
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is unique. To show that π1 is F-epic, consider the commutative diagram

F(N1[0]) // // F(P0[1]) // // F(N0[1])

F(P1[0]) //

F(π1)

OO

F(P0[1]) // // F(N0[1])

with exact rows and do a diagram chase.

Definition 3.3. Let I be an ideal in an additive category D. A morphism f : A→
B in D is I -versal if for any morphism j : A → X in I there exist a morphism
B → X making the diagram

A
f //

j

��

B

∃~~~
~

~
~

X

commutative.

Remark 3.4. If I is an ideal in an additive category D, then for any n > 0 the
collection all composition of n morphisms from I , I n, is also an ideal. �

Now consider the ideal of F-phantom maps, I = ker F and consider the diagram

P0
π0 //

0

  AAAAAAAA A
ι10 //

j

��

N1

∃~~|
|

|
|

X

with j ∈ I . Since I (P, ) = 0 if P is F-projective and j ◦ π0 ∈ I , it follows
that j ◦ π0 = 0. Since T( , X) is cohomological there is a morphism N1 → X
making the resulting diagram commutative, so ι10 is I -versal. Similarly, if ιn0 =
ι10 ◦ · · · ιnn−1 : A→ Nn then ιn0 is I n-versal.

Now assume that the F-projective resolutions have finite length, that is ιn+1
n is

invertible for large n (i.e. n larger then the length of the resolution). So F(ιn+1
n ) = 0

and F(Nn) = 0 for large n. Thus the Ni’s are eventually F-contractible objects.
The assignment A 7→ Nn for large n gives a functor from T to NF up to F-
equivalence∗. Now since the map A → Nn is I -versal and eventually Nn ∼= Nn+1

we get I n(A, ) ∼= I n+1(A, ). By defining I∞(A, ) =
⋂

I n(A, ) of can show
that I∞(A,B) ∼= T(Nn, B).

3.2 The octahedron axiom

Before we state the axiom (TR4), we need some notation: Let
A // B

������

C

O??
__??

e and

A //

��???? C

B

??����o denote an exact and a commutative triangle respectively (recall that

O // denotes a degree one morphism).

Definition 3.5 ((TR4) - The octahedron axiom). Given the solid lines in the
diagrams

∗ If the F-projective resolutions does not have finite length, one can use hocolim(Ni, ι
i+1
i ) under

some assumptions on direct sums.
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Z

o

X //

>>~~~~~~

~~~~~~~~
Y

``AAAAAA

  AAAAAA

Z

  @@@@@@ e Z

~~}}}}}}
e

V

O

OO

//______ W

O

OO

Z

>>}}}}}}

``@@@@@@ o

and

U

O
}}}

~~}}} e

X // Y

¬̈
``AAAAAA

¬̈[1]

  AAAAAA

U

O}}}

>>}}}

  A
A

A o Uo

V

O

OO

//______ W

O

OO

O}}}

>>}}}

O
}}}

~~}}}

U

``A
A

A e

(where each morphism is repeated twice except ¬̈ : Y → U and ¬̈[1] : Y [1]→ U [1]),
there are morphisms U → V and V → W (each given twice by dotted lines) such
that the resulting triangles are exact or commutative as indicated.

3.3 The approximation tower

The approximation tower is in some sense analogues to creating a cellular complex.
The skeletons will be called An, while the cells of the complex are the Pn’s from
the F-projective resolution. We construct of the approximation tower

0 A0
// A1

//

~~||||||
A2

//

~~||||||
A3

//

~~||||||
· · ·

~~|||||||

P0

OBBB

``BBB

P1

OBBB

``BBB

δ1

oo P2

OBBB

``BBB

δ2

oo P3

OBBB

``BBB

δ3

oo · · ·oo

by induction using the F-phantom tower and the octahedron axiom.
By looking at the exact triangles containing the map ιn0 ,

Nn[−1] // An // A
ιn0 // Nn,

we can form the commutative diagram

Pn[−1] //

���
�
� 0 //

��

Pn

��

Pn

���
�
�

An //

���
�
� A

ιn0 // Nn //

ιn+1
n

��

An[1]

���
�
�

An+1
//

���
�
� A

ιn+1
0 //

��

Nn+1
//

��

An+1[1]

���
�
�

Pn // 0 // Pn[1] Pn[1]

where the downward arrows //___ exist and form exact triangles by (TR4).

Definition 3.6. Let D be a subcategory of T. If D is closed under isomorphisms,

suspensions and exact triangles (i.e. if
A // B

������

C

O??
__??

e is an exact triangle where two

of the objects are in D, so is the third), then D is a triangulated subcategory.
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Remark 3.7. The collection of F-contractible objects, NF, form a triangulated sub-
category. �

Definition 3.8. Let PF be the collection of F-projective objects in T. The trian-
gulated subcategory of T generated by PF is the smallest triangulated subcategory
〈PF〉 of T that contains P.

Remark 3.9. All the An’s from the approximation tower belong to 〈PF〉. �

In the case of finite F-projective resolutions, we have that ιn+1
n : Nn → Nn+1

is a F-equivalence. It follows that the assignment A 7→ An is a functor up to F-
equivalence. Our next goal is to show that A 7→ An is left adjoint to the inclusion
〈PF〉 → T.

3.4 Localization

Observe that if P ∈ PF and N ∈ NF then T(P,N) = 0. Thus for P ′ ∈ 〈PF〉 one
has T(P ′, N) = 0. Now assume as before that the F-projective resolutions have
finite length. This implies that there is an exact triangle

An // A // Nn

Ovv

〈PF〉

∈

NF

∈

for large n. Since we are only interested in 〈PF〉 and NF up to F-equivalence, it
follows that the functors A 7→ An and A 7→ Nn are F-exact.

Now let B be a F-contractible object. By applying T( , B) to the exact triangle
above we obtain the exact sequence

T(An, B) // T(A,B) // T(Nn, B) // T(An[1], B)

0 0

Consequentially the functor A 7→ An is left adjoint to the embedding 〈PF〉 → T,
so T decomposes into 〈PF〉 and NF in a controlled way. This is an example of
localization.

Definition 3.10. The localization of a functor G: T → D at NF is the functor

LG: T→ D given by the composition T
A7→An// 〈PF〉

G // D .

Given a functor G: T → D, then the maps An → A induce a natural trans-
formation from LG to G. The Baum-Connes assembly map is a special case of
this.

4 Lecture 4

For a triangulated category T, a stable Abelian category C, and a stable homological
functor F: T → C we have the collections PF of F-projective objects and NF of
F-contractible objects. Moreover, we have the localizing∗ category 〈PF〉. The pair(
〈PF〉,NF

)
is complementary in the sense that T

(
〈PF〉,NF

)
= 0 and for each

A ∈ T there is an exact triangle P // A // N // P [1] with P ∈ 〈PF〉
and N ∈ NF.
∗ A category is localizing if is is triangulated and closed under countable direct sums.
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Warning 4.1. Usually the case is that T
(
NF, 〈PF〉

)
6= 0. �

Under mild technical assumptions on direct sums (or if all F-resolutions in T
has finite length), the categories 〈PF〉 and NF generates T, that is T is the smallest
category containing 〈PF〉 and NF that is closed in exact triangles and countable
direct sums. We can in principle understand how objects in 〈PF〉 are built out
of generators (by using the approximation tower). This in turn leads to spectral
sequences, so studying 〈PF〉 is a “topological” problem.

4.1 Triangulated categories for the Baum-Connes conjecture

In order to apply our machinery to the Baum-Connes conjecture, we must first fix
the category T and the functor F. However, one often start with a functor F′ and
then modifies his functor to F such that ker(F′) = ker(F). So let G be a locally
compact group, T = KKG and F ′ = {H ⊆ G | H is a compact subgroup of G}
(Note that the Baum-Connes conjecture holds for compact groups). Let F′ : KKG →∏
H∈F ′ KKH be the exact functor which in each component “forgets” some of the G-

action (i.e. the G-action becomes an H-action). Then F′ is a triangulated functor∗,
and ker(F′) = {f a morphism in KKG | f becomes 0 in KKH for all H ∈ F ′}.

The next step is to find and adjoint. Since F′ does not have an adjoint, we modify
F′ to F without changing the kernel. To do this we need some more definitions.

Definition 4.2. Given a compact subgroup H of G, the restriction functor is
ResHG : KKG → KKH , and the induction functor is IndGH : KKH → KKG.

Proposition 4.3. Let H be an open compact subgroup of G. Then the functors
IndGH and ResHG are adjoint so KKG

(
IndGH(A), B

) ∼= KKH
(
A,ResHG (B)

)
.

Now if G is totally disconnected, then any compact subgroup of G is contained
in an compact open subgroup. Thus we do not change ker(F′) if we replace F ′

with the family of compact open subgroups. Since the set of such subgroups are
countable, Proposition 4.3 shows that the functor F so obtained has an adjoint.

In the general case, any locally compact group G contains an open almost con-
nected subgroup. Moreover, any compact subgroup of G is contained in one of
these almost connected subgroups. If L is an almost connected subgroup of G,
then L contains a maximal compact subgroup K, any compact subgroup of L is
subconjugate to K (i.e. conjugate to a subgroup of K), and L/K is a smooth
manifold. Thus we might replace F ′ with F = F ′ ∩M where M = {H ⊆ G |
G/H is a smooth manifold with a smooth G-action}.
Remark 4.4. We have the following relationship between categories:

KKG
ResHG //

p∗G/H
��

KKH

RKKG(G/H)

∼=
GnG/H∼H

88rrrrrrrrrr

where p∗G/H is a kind of pullback. Thus if A and B are G-C∗-algebras one has
KKH(A,B) ∼= RKKG(G/H;A,B). �

Now let X be a smooth proper G-manifold. In this case there is a left ad-
joint for the functor p∗X : KKG∗ → RKKG∗ (X), namely pX ⊗ for pX = C0(T X)
or pX = C0

(
X; Cliff(T X)

)
. Consequentially, for all G-C∗-algebras A and B one

have RKKG∗ (X;A,B) ∼= KKG∗ (pX ⊗A,B). This generalizes the duality isomorphism
since we have RK∗(X) ∼= KK∗

(
C0(T X

)
= KKtop

X (T X). For more see the lectures
by Kasparov (the lecture notes are available online).
∗ Although F′ is not a homological functor, is is exact so everything works out fine.
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Proposition 4.5. Let G be a locally compact group and F be a countable family
of compact smooth subgroups in G (i.e. G/H is a smooth manifold with smooth

G-action for each H ∈ F ). Then the functor KKG
F // ∏

H∈F KKH defined by
“forgetting part of the G-action in each factor” has a left adjoint defined on the
range of F. Therefore KKG has enough F-projective objects (i.e. any object in KKG

has a F-projective resolution). Any F-projective object is a direct summand of a
direct sum of G-C∗-algebras of the form IndGH(A) with H ⊂ G compact and A a
H-C∗-algebra, and all objects of this form are F-projective.

Remark 4.6. Recall that for H a subgroup of G and A a H-C∗-algebra we have
Gn IndGH(A) ∼Morita H nA. �

Question (open) What is the universal homological functor describing ker(F)?
Equivalent: Describe the F-derived functors.

The above question is easy when G is torsion free. Then the universal homolog-
ical functor is F: KKG → KK[G/G0] (with G/G0 → KK0(A,A) for A ∈ KK[G/G0]).

4.2 Localization and the Baum-Connes conjecture

By the choices in the previous section we obtain the collections

NF = {A ∈ KKG | A ∼= 0 in KKH for all compact H ⊆ G}

and
〈PF〉 =

〈
{IndGH(A) | H ⊆ G compact and A a H-C∗-algebra}

〉
.

Moreover
(
〈PF〉,NF

)
form a complementary pair, and the assumptions on direct

sums are satisfied, so NF and 〈PF〉 generates KKG.

Theorem 4.7. With the definitions above, the localization of KKG to NF (denoted
by KKG/NF) is equivalent to the category RKKG(EG) where EG is the universal
proper G-space. Moreover the diagram

KKG(A,B) //

p∗EG
��

KKG/NF(A,B)

RKKG(EG;A,B)

∼=
66lllllllllllll

commutes, where p: EG→ {pt}.

Let us now assume that EG has a dual, i.e. RKKG∗ (EG;A,B) ∼= KKG∗ (pEG⊗A,B).
It is a fact that if B ∈ NF then p∗EG(B) ∼= 0 in RKKG(EG). This implies that
KKG∗ (pEG ⊗A,B) = 0 for all B ∈ NF, whence pEG ∈ 〈PF〉. It is worth mentioning
that one can often construct pEG by hand to see this directly.

Now assume even more, namely that pEG is a proper G-C∗-algebra, that is a
G n EG-C∗-algebra. The duality isomorphism above can then be described using
the Dirac element D ∈ KKG(pEG,C) ∼= RKKG(EG; C,C) 3 1 and the dual Dirac
element Θ ∈ RKKG(EG; C, pEG) ∼= KKG(pEG, pEG) 3 1. This gives conditions
on D and Θ that insure invertibility of the duality map. In particular p∗EG(D)
and Θ must be inverse of each other. Now p∗EG(idA ⊗ D) is invertible, whence
p∗X(idA ⊗ D) is invertible for all proper G-spaces X. By letting X = G/H it

follows that ResHG (idA ⊗D) is invertible, so A⊗ pEG
idA⊗D // A is an F-equivalence.

Consequentially

A⊗ pEG
idA⊗D // A // cone(idA ⊗D) // A⊗ pEG[1]
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is a triangle as needed for localization. Thus KKG/NF(A,B) ∼= KKG(A⊗pEG, B) ∼=
RKKG(E ;A,B).

Let us finally localize K∗(Aor G). We get

K∗
(
(A⊗ pEG) or G

) ∼=duality lim−→
X⊆EG

X compact

KKG
(
C0(X), A

)
.

The localization LG at NF of a functor G has the following properties

• LG is exact,

• LG|NF = 0, and

• LG→ G is invertible on PF.

If there is a functor G′ and a natural transformation G′ → G with these properties,
then it is equivalent to LG → G. An example of a natural transformation with
these properties is the Baum-Connes assembly map, so it must be the localization
map.

4.3 Remark on the Farrell-Jones conjecture

To get the Farrell-Jones conjecture, replace KKG by a category of equivalent spectra.
The functor F becomes the restriction functor for the family of virtually cyclic
subgroups.
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