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Introduction

Outlook

The aim of this reading group is to study the proof of the following

Theorem (Johnson, 2020)

Every infinite dp finite field is algebraically closed, real closed, or admits a
nontrivial henselian valuation.

Main sources (all available on ArXiv):

[1] Will Johnson, Dp finite fields I: infinitesimals and positive
characteristic, 2019.

[2] Will Johnson, Dp finite fields II: the canonical topology and its
relation to henselianity, 2019.

[3] Will Johnson, Dp finite fields III: inflators and directories, 2019.
[4] Will Johnson, Dp finite fields IV: the rank 2 picture, 2020.
[5] Will Johnson, Dp finite fields V: topological fields of finite weight,

2020.
[6] Will Johnson, Dp finite fields VI: the dp finite Shelah conjecture,

2020.
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Introduction Stable fields conjecture

Stable fields

Let T be an L-theory. We call T stable in case no L-formula has the order
property (OP) modulo T , i.e. there are no M |= T , a L-formula ϕ(x̄ , ȳ)
and sequences (ai )i∈N, (bi )i∈N in M, such that we have

ϕ(ai , bj)⇐⇒ i < j .

A field K is called stable if its theory Th(K ) in the language of rings
Lring = {+, ·, 0, 1} is stable.

Conjecture (197x)

Every infinite stable field is separably closed.

Conversely: Every separably closed field is stable (Ershov/Wood).
A special case of stability is ω-stability.

Theorem (Macintyre, 1971)

Every infinite ω-stable field is algebraically closed.
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Introduction Stable fields conjecture

What’s known about stable fields?

Conjecture (197x)

Every infinite stable field is separably closed.

For now, we consider all fields in Lring. The following special cases of the
conjecture are known:

1971 Infinite ω-stable fields are algebraically closed (Macintyre).

1980 Infinite superstable fields are algebraically closed (Cherlin-Shelah).

2011 Infinite stable fields of weight 1 are separably closed
(Krupinsky-Pillay).

2017 Infinite stable fields of finite dp rank are algebraically closed
(Halevi-Palacin).

2020 Infinite large stable fields are separably closed
(Johnson-Tran-Walsberg-Ye).
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Introduction Shelah Conjecture

NIP

Definition

Let L be a language, T an L-theory, ϕ(x̄ , ȳ) an L-formula. We define

I VC-dim(ϕ(x̄ , ȳ)) ≥ n if there are sequences (ai )i∈{1,...,n} und
(bJ)J⊆{1,...,n} (in a model of T ) such that we have

ϕ(ai , bJ)⇐⇒ i ∈ J

I VC-dim(ϕ(x̄ , ȳ)) = sup{n ∈ N : VC-dim(ϕ(x̄ , ȳ)) ≥ n} ∈ N ∪ {∞}
In case VC-dim(ϕ(x̄ , ȳ)) =∞, we say that ϕ(x̄ , ȳ) has the independece
property (IP).
We say that T has NIP if no formula has IP.

Example:

I In Th(Q, <) we have VC-dim(x < y) = 1.

I In Th(Z; +, ·, 0, 1) we have VC-dim(x |y) =∞.
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I VC-dim(ϕ(x̄ , ȳ)) ≥ n if there are sequences (ai )i∈{1,...,n} und
(bJ)J⊆{1,...,n} (in a model of T ) such that we have

ϕ(ai , bJ)⇐⇒ i ∈ J
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Introduction Shelah Conjecture

VC-Dimension of a relation

0 1 0 1 1 0 1 1 1 1 0 1 . . .
1 0 0 1 1 0 1 0 1 1 1 0 . . .
1 1 0 1 0 0 1 1 1 1 1 1 . . .
0 1 0 1 1 0 1 0 1 1 1 0 . . .
1 0 1 1 1 0 0 1 1 0 1 0 . . .
0 1 1 1 0 0 1 0 1 0 1 0 . . .
0 1 1 1 1 0 1 0 0 0 0 0 . . .
1 1 0 1 1 1 1 0 1 1 0 0 . . .
1 1 1 1 1 0 1 1 1 1 1 1 . . .
0 1 0 1 1 0 1 1 1 0 0 0 . . .
...

...
...

...
...

...
...

...
...

...
...

...

Definition

A structure has NIP, if every definable relation ϕ(x̄ , ȳ) has finite
VC-dimension.
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VC-Dimension of a relation

< 0 1 2 3 4 5 6 7 8 9 10 . . .

0 0 1 1 1 1 1 1 1 1 1 1 . . .
1 0 0 1 1 1 1 1 1 1 1 1 . . .
2 0 0 0 1 1 1 1 1 1 1 1 . . .
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Introduction Shelah Conjecture

The Shelah Conjecture

A theory has NIP (or: is dependent) if every formula has finite
VC-dimension.

Definition

We call a field K NIP if its Lring-theory has NIP.

Examples

I Any separably closed field is NIP.

I Any real closed field is NIP.

I Any p-adically closed field (or a finite extension therof) is NIP. The
field C((t)) has NIP.

I The field Q has IP.

Shelah Conjecture for NIP fields

Every infinite NIP field is separably closed, real closed, or admits a
nontrivial henselian valuation.
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Introduction Shelah Conjecture

History of the Shelah Conjecture

Shelah (Sh:783 and Sh:863) suggests strong dependence as a solution to
the equation

x

dependent
=

superstable

stable

He poses the following test question:

Conjecture (Shelah)

Infinite strongly dependent fields are algebraically closed, real closed or
‘like the p-adic numbers, or a finite extension of such’.

Moreover, he asks for a classification of NIP fields.
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Shelah (Sh:783 and Sh:863) suggests strong dependence as a solution to
the equation

x

dependent
=

superstable

stable

He poses the following test question:

Conjecture (Shelah)

Infinite strongly dependent fields are algebraically closed, real closed or
elementarily equivalent to a field admitting a valuation v , with strongly
dependent value group and strongly dependent residue field, that
eliminates field quantifiers in some Denef-Pas languagea, or a finite
extension of such.

athis is believed to imply henselianity

Moreover, he asks for a classification of NIP fields.
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Introduction Shelah Conjecture

Comparing the Conjectures

Let T be any theory. If ϕ(x̄ , ȳ) has IP, then it also has the order property:

stable =⇒ NIP

Proposition (J.-Koenigsmann)

The first statement implies the second:

I Every infinite NIP field is separably closed, real closed, or admits a
nontrivial henselian valuation.

I Every infinite NIP field is separably closed, real closed, or admits a
nontrivial definable valuation.

Here, a valuation v on a field K is called definable if Ov is an
Lring-definable subset of K . Any field admitting a nontrivial definable
valuation is unstable. Thus, we have:

Shelah Conjecture for NIP fields =⇒ Stable fields conjecture

Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 10 / 28



Introduction Shelah Conjecture

Comparing the Conjectures
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Introduction Shelah Conjecture

Consequences of the Shelah Conjecture

Shelah Conjecture for NIP fields

Every infinite NIP field is separably closed, real closed, or admits a
nontrivial henselian valuation.

implies any of the following statements:

I Stable fields conjecture.

I Every infinite NIP field is separably closed, real closed, or admits a
nontrivial definable valuation.

I Every infinite NIP field is separably closed, real closed, or admits a
nontrivial definable henselian valuation.1

I (Henselianity conjecture) Any NIP valued field (K , v) is henselian.1

Note: A valued field (K , v) is called NIP if its theory in the language
Lval = Lring ∪ {O} is NIP.

1Halevi-Hasson-J.
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nontrivial definable valuation.

I Every infinite NIP field is separably closed, real closed, or admits a
nontrivial definable henselian valuation.1

I (Henselianity conjecture) Any NIP valued field (K , v) is henselian.1

Note: A valued field (K , v) is called NIP if its theory in the language
Lval = Lring ∪ {O} is NIP.

1Halevi-Hasson-J.
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dp-minimality, dp-rank and strong dependence Dp-minimality

Dp-minimality

Definition

I Let M be an L-structure. We say that M has an ICT-pattern of
depth 2 if there are L-formulae ϕ(x , ȳ) and ψ(x , ȳ) and sequences
(āi )i∈ω and (b̄j)j∈ω in M such that for all i , j ∈ ω the type

ϕ(x , āi ) ∧ ψ(x , b̄j) ∧
∧
k 6=i

¬ϕ(x , āk) ∧
∧
l 6=j

¬ψ(x , b̄l)

is consistent.

I A theory is dp-minimal if no M |= T has an ICT-pattern of depth 2.

Facts:
I Any strongly minimal / o-minimal / weakly o-minimal / p-minimal /

C-minimal theory is dp-minimal.
I An ordered abelian group Γ is dp-minimal (in Loag = {0,+, <}) if

and only if Γ/pΓ is finite for all p. (J.-Simon-Walsberg)
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ϕ(x , āi ) ∧ ψ(x , b̄j) ∧
∧
k 6=i

¬ϕ(x , āk) ∧
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dp-minimality, dp-rank and strong dependence Dp-minimality

Not dp-minimal: A chessboard

Example: Consider the language L = {R, I} with two unary function
symbols and the L-structure C with universe C and interpretations
RC(z) = Re(z) and I C(z) = Im(z). Then the formulae R(x) = y and
I (x) = y give an ICT pattern of depth 2 via the sequences ai = bi = i for
all i ∈ ω:
For any i , j ∈ ω, the type

R(x) = i ∧ I (x) = j ∧
∧
k 6=i

¬R(x) = k ∧
∧
n 6=j

¬I (x) = n

is obviously consistent.

Similar: Let Γ be an ordered abelian group with Γ/pΓ infinite and choose
any γ ∈ Γ \ {0}. Then, the formulae ∃z : x = y + p · z and
y − γ < x < y + γ give an ICT pattern of depth 2.

Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 13 / 28
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dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

Dp minimal fields

Theorem (Johnson)

A field K is dp-minimal if and only if K is perfect and there exists a
valuation v on K such that:

1. v is henselian.

2. v is defectless (i.e., any finite valued field extension (L, v) of (K , v) is
defectless, i.e., satisfies [L : K ] = [vL : vK ][Lv : Kv ]).

3. The residue field Kv is either an algebraically closed field of positive
characteristic or elementarily equivalent to a local field of
characteristic 0.

4. The value group vK is almost divisible, i.e., [vK : n(vK )] <∞ for all
n.

5. If char(Kv) = p 6= 0 then [−v(p), v(p)] ⊆ p(vK ).

In particular, the Shelah Conjecture holds for dp-minimal fields.
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dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

Structure of the proof, part 1

‘⇐=’: The fact that any field occuring in the classification is dp-minimal is
(comparatively) easy: It uses the fact that all occuring residue fields are
dp-minimal, all value groups are dp-minimal, and variants of

Theorem (Chernikov-Simon)

Let (K , v) be a henselian valued field of equicharacteristic 0. Then

(K , v) is dp-minimal︸ ︷︷ ︸
in Lval

⇐⇒ Γv is dp-minimal︸ ︷︷ ︸
in Loag

and Kv is dp-minimal︸ ︷︷ ︸
in Lring

Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 15 / 28



dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

Structure of the proof, part 2

‘=⇒’: The difficult part is to conjure up a valuation out of thin air. This is
done in two steps:

Theorem (J.-Simon-Walsberg, Johnson)

Any dp-minimal valued field is henselian, i.e., the henselianity conjecture
holds for dp-minimal fields.

Theorem (Johnson)

Any infinite dp-minimal field is algebraically closed, real closed or admits a
nontrivial definable V -topology.

Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 16 / 28



dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

Structure of the proof, part 2

‘=⇒’: The difficult part is to conjure up a valuation out of thin air. This is
done in two steps:

Theorem (J.-Simon-Walsberg, Johnson)

Any dp-minimal valued field is henselian, i.e., the henselianity conjecture
holds for dp-minimal fields.

Theorem (Johnson)

Any infinite dp-minimal field is algebraically closed, real closed or admits a
nontrivial definable V -topology.

Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 16 / 28



dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

Structure of the proof, part 2

‘=⇒’: The difficult part is to conjure up a valuation out of thin air. This is
done in two steps:

Theorem (J.-Simon-Walsberg, Johnson)

Any dp-minimal valued field is henselian, i.e., the henselianity conjecture
holds for dp-minimal fields.

Theorem (Johnson)

Any infinite dp-minimal field is algebraically closed, real closed or admits a
nontrivial definable V -topology.

Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 16 / 28



dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

Consequences of the characterization of dp-minimal fields

There are two striking consequences of Johnson’s characterization:

1. Any dp-minimal field K has a bounded absolute Galois group (i.e., for
each n ∈ N, the field K has only finitely many extensions of degree n).

2. Any finite extension of a dp-minimal field is dp-minimal.2

Open Questions:

1. Is there a direct proof that dp-minimality implies boundedness? Does
the same hold for inp-minimal fields?

2. Is there a direct proof that dp-minimality goes up to finite extensions
(in Lring)? Does the same hold for inp-minimal fields?

2It follows immediately from the definition of dp rank that any finite extension of a
dp-minimal field has finite dp-rank.
Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 17 / 28
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dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

Excursion: the canonical henselian valuation

Let K be any field. If K is not separably closed, one can order the
non-trivial henselian valuations on it. Divide the class of henselian
valuations on K into two subclasses, namely

H1(K ) = {v henselian on K |Kv 6= Kv sep}

and
H2(K ) = {v henselian on K |Kv = Kv sep}.

Then any valuation v2 ∈ H2(K ) is finer than any v1 ∈ H1(K ), i.e.
Ov2 ⊂ Ov1 , and any two valuations in H1(K ) are comparable.
Furthermore, if H2 is non-empty, then there exists a unique coarsest vK in
H2; otherwise there exists a unique finest vK ∈ H1. In any case, vK is
called the canonical henselian valuation.
If K admits a nontrivial henselian valuation, then vK is nontrivial.
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dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

The Canonical Henselian Valuation

O = K

vK

H1(K )

H2(K )

Abbildung: The canonical henselian valuation
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dp-minimality, dp-rank and strong dependence Johnson’s results on dp-minimal fields

Rephrasing Johnson for dp-minimal fields

Let K be an infinite dp-minimal field and let vK be the (possibly trivial)
canonical henselian valuation on K . Then one of the following holds:

1. KvK is real closed or algebraically closed of characteristic 0 and K ≡ R((Γ))
or K ≡ C((Γ)) (as fields) where Γ ≡ vKK (as ordered abelian groups) and Γ
is dp-minimal.

2. charK = p > 0, KvK is algebraically closed, (K , vK ) is tame Kaplansky and
K ≡ Fp((Γ)) (as fields) where Γ ≡ vKK (again, as ordered abelian groups)
and Γ is dp-minimal.

3. char(K ,KvK ) is of mixed characteristic (0, p) and KvK is finite. Then
K ≡ Q((Γ)) (as fields) where Q is a finite extension of Qp and Γ is
dp-minimal.

4. char(K ,KvK ) is of mixed characteristic (0, p) and KvK is infinite. In that
case KvK |= ACFp and K ≡ L((Γ)) (as fields) where L is a field admitting a
rank 1 valuation v turning it into a mixed characteristic tame Kaplansky
field, with residue field as in (2) above and Γ is dp-minimal.

Moreover, any of the fields described in clauses (1)− (4) is dp-minimal.
Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 21 / 28



dp-minimality, dp-rank and strong dependence Dp finiteness

ICT patterns

Let T be any theory. We work in a monster model C |= T .

Definition

Let Σ(x̄) be a partial type and κ a cardinal (possibly finite). An ICT
pattern of depth κ consists of a sequence of formulae ϕα(x̄ , ȳ) and an
array of parameters (bα,i ) for α < κ and i ∈ ω such that for any
f : κ→ ω, the following type is consistent:

Σ(x̄) ∪ {ϕα(x̄ , bα,f (α)) : α < κ}
∪ {¬ϕα(x̄ , bα,i ) : α < κ, i ∈ ω and i 6= f (α)}

Note: If ϕ(x̄ , ȳ) has IP, then by compactness we can construct ICT
patterns of arbitrary depth κ for the constant sequence (ϕ(x̄ , ȳ))α<κ.

Fact (Shelah)

T has IP if and only if there are ICT patterns of arbitrary depth.
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dp-minimality, dp-rank and strong dependence Dp finiteness

Dp rank

Let T be any theory and Σ(x̄) a partial type. The dp rank of Σ(x̄) is
defined as

dp(Σ(x̄)) = supκ{there is an ICT pattern of depth κ in Σ(x̄)}

in case there is such a supremum, and dp(Σ(x̄)) =∞ otherwise.

Fact/Definition

I T is NIP if and only if dp(x = x) <∞.

I T is strongly dependent if and only if dp(x = x) ≤ ℵ−0 , i.e., the depth
of any ICT pattern is finite, but there may be ICT patterns of
arbitrary finite depth.

I T is dp finite if and only if dp(x = x) is finite, i.e. there is a finite
bound on the depth of ICT patterns of types in one variable.

I T is dp-minimal if and only if dp(x = x) = 1.
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dp-minimality, dp-rank and strong dependence Dp finiteness

Dp rank

Let T be any theory and Σ(x̄) a partial type. The dp rank of Σ(x̄) is
defined as

dp(Σ(x̄)) = supκ{there is an ICT pattern of depth κ in Σ(x̄)}

in case there is such a supremum, and dp(Σ(x̄)) =∞ otherwise.

Fact/Definition

I T is NIP if and only if dp(x = x) <∞.

I T is strongly dependent if and only if dp(x = x) ≤ ℵ−0 , i.e., the depth
of any ICT pattern is finite, but there may be ICT patterns of
arbitrary finite depth.

I T is dp finite if and only if dp(x = x) is finite, i.e. there is a finite
bound on the depth of ICT patterns of types in one variable.

I T is dp-minimal if and only if dp(x = x) = 1.

Franziska Jahnke (WWU Münster) Dp finite fields 10.09.2020 23 / 28



dp-minimality, dp-rank and strong dependence Dp finiteness

Dp rank

Let T be any theory and Σ(x̄) a partial type. The dp rank of Σ(x̄) is
defined as

dp(Σ(x̄)) = supκ{there is an ICT pattern of depth κ in Σ(x̄)}

in case there is such a supremum, and dp(Σ(x̄)) =∞ otherwise.

Fact/Definition

I T is NIP if and only if dp(x = x) <∞.

I T is strongly dependent if and only if dp(x = x) ≤ ℵ−0 , i.e., the depth
of any ICT pattern is finite, but there may be ICT patterns of
arbitrary finite depth.

I T is dp finite if and only if dp(x = x) is finite, i.e. there is a finite
bound on the depth of ICT patterns of types in one variable.

I T is dp-minimal if and only if dp(x = x) = 1.
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dp-minimality, dp-rank and strong dependence Dp finiteness

An application: perfectness

Proposition (Johnson)

Any dp finite field is perfect.

Uses the following ingredients of dp rank on definable sets X and Y :

I dp(X ) > 0 if and only if X is infinite.

I If X and Y are in definable bijection, then dp(X ) = dp(Y ).

I If X ⊂ Y , then dp(X ) ≤ dp(Y ).

I dp(X × Y ) = dp(X ) + dp(Y ).

Proof of the proposition: Since Kp is in definable bijection with K , we
have dp(Kp) = dp(K ). K imperfect ⇒ K is a definable Kp-vector space
of dimension > 1. Thus, Kp × Kp injects definably into K . This shows

dp(K ) ≥ 2 · dp(Kp) = 2 · dp(K ).

Thus, dp(K ) = 0 and K is finite. Finite fields are perfect.
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An application: perfectness

Proposition (Johnson)

Any dp finite field is perfect.

Uses the following ingredients of dp rank on definable sets X and Y :

I dp(X ) > 0 if and only if X is infinite.

I If X and Y are in definable bijection, then dp(X ) = dp(Y ).

I If X ⊂ Y , then dp(X ) ≤ dp(Y ).

I dp(X × Y ) = dp(X ) + dp(Y ).

In fact, Shelah shows in Sh:863 that any strongly dependent field is
perfect.
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dp-minimality, dp-rank and strong dependence Johnson’s results on dp finite fields

Shelah conjecture for dp finite fields

The main aim of this reading seminar is to understand the proof of

Theorem (Johnson, Dp finite fields VI: the dp finite Shelah conjecture)

Let K be an infinite dp finite field. Then K is either algebraically closed,
real closed or admits a nontrivial henselian valuation.

Again, the proof follows the same two step pattern as in the dp-minimal
case:

Theorem (Johnson)

1. Dp finite henselianity conjecture: any dp finite valued field is
henselian.

2. Dp finite existence conjecture: Any infinite dp finite field is either
algebraically closed, real closed or admits a nontrivial definable
valuation.
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dp-minimality, dp-rank and strong dependence Johnson’s results on dp finite fields

Consequences of the dp finite classification

Halevi-Palacin: An ordered abelian group Γ has finite dp rank in Loag if
and only Γ/pΓ is finite for all but finitely many primes.

Corollary (Halevi-Hasson-J.)

A field K is dp finite if and only if K is perfect and there exists a valuation
v on K such that:

1. v is henselian.

2. v is defectless (i.e., any finite valued field extension (L, v) of (K , v) is
defectless, i.e., satisfies [L : K ] = [vL : vK ][Lv : Kv ]).

3. The residue field Kv is either an algebraically closed field of positive
characteristic or elementarily equivalent to a local field of
characteristic 0.

4. The value group vK satisfies [vK : p(vK )] <∞ for all but finitely
many primes p.

5. If char(Kv) = p 6= 0 then [−v(p), v(p)] ⊆ p(vK ).
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dp-minimality, dp-rank and strong dependence Johnson’s results on dp finite fields

Dp rank versus strong dependence

Corollary

A dp finite field is dp-minimal if and only if it has bounded absolute Galois
group.

Question: Is there a direct proof of this?

Theorem (Halevi-Palacin)

An ordered abelian group Γ is strongly dependent (in Loag) if and only
Γ/pΓ is finite for all but finitely many primes.

Thus, one gets

Theorem (Halevi-Hasson-J.)

Assume that Shelah’s conjecture holds for strongly dependent fields. Then
any strongly dependent field has finite dp rank.
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Addendum The henselianity conjecture in positive characteristic

Henselianity conjecture

Theorem (Johnson)

Let (K , v) be an NIP field of positive characteristic. Then v is henselian,
i.e., the henselianity conjecture holds for NIP fields of positive
characteristic.

Proof ingredients:

I Infinite NIP fields of characteristic p > 0 admit no Artin-Schreier
extensions (Kaplan-Scanlon-Wagner)

I (K , v) valued field and L/K a finite normal extension. Then every
extension of v to L is definable (identifying L with Kd for d = [L : K ])

I Let G be an NIP group. Then G 00 exists, i.e., the intersection of all
type-definable subgroups of G of bounded index is itself a subgroup of
bounded index. (Shelah)
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