
AN INTRODUCTION TO VALUED FIELDS

FRANZISKA JAHNKE

These lecture notes are a (slightly) extended version of my lecture course ‘Valued
Fields’ as given during the first week of the Münster Month in Model Theory. They
are heavily based on the book Valued Fields by Engler and Prestel, as well as
(unpublished) lectures given by Jochen Koenigsmann at the University of Oxford
in Hilary 2010. Many of the proofs presented are taken from (or at least inspired
by) one of these two sources.

My eternal gratitude goes to Peter Sinclair who did the bulk of the typing of
these notes!

1. Definitions and Basic Properties

Intuitively, a valuation measures the size of the elements of a field. Before we can
formally define a valuation, we need to introduce ordered abelian groups. These
will serve as the range of our valuation maps, i.e., their elements are the possible
‘sizes’.

Definition 1.1. An ordered abelian group is an abelian group (Γ,+) with a relation
< on Γ satisfing ∀γ, δ, λ ∈ Γ:

(O1) ¬(γ < γ) (< is irreflexive)
(O2) γ < δ =⇒ ¬(δ < γ) (< is antisymmetric)
(O3) γ < δ ∧ δ < λ =⇒ γ < λ (< is transitive)
(O4) γ < δ ∨ δ < γ ∨ δ = γ (< is total)
(O5) γ < δ =⇒ γ + λ < δ + λ (compatibility of < and +)

The last condition implies in particular that any ordered abelian group which
contains at least two elements is torsion free: if γ > 0 then

0 < γ < γ + γ < γ + γ + γ < . . .

so γ is not a torsion element. The proof for γ < 0 is symmetric. In particular, any
ordered abelian group is either trivial or infinite.

We start by giving some basic examples of ordered abelian groups.

Examples 1.2.

(1) (R,+, <) is an ordered abelian group. Moreover, any subgroup (Γ,+) of
(R,+) with the induced ordering is again an ordered abelian group, e.g.,

(Q,+), (Z,+), (Z+
√

2Z,+), ({0},+), etc.
(2) If Γ1,Γ2 are ordered abelian groups, then the lexicographic direct product

(Γ1 ⊕ Γ2,+, <) is also an ordered abelian group, with the ordering defined
by

(γ1, γ2) < (δ1, δ2)⇐⇒ γ1 < δ1 or γ1 = δ1 ∧ γ2 < δ2.

Note that an ordered abelian group might not carry a unique ordering, as the
following exercise shows.
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Exercise 1.3. Show that there are two non-isomorphic expansions of (Z × Z,+)
to an ordered group.
Hint: (Z⊕Z,+) with the lexicographic ordering is not isomorphic to (Z+

√
2Z,+)

as a subgroup of (R,+), even though we have Z⊕Z ∼= Z+
√

2Z as groups. One way

to show this is that Z+
√

2Z does not have a minimal positive element; another one
is to show that Z+

√
2Z does not have a convex subgroup.

Definition 1.4. A valuation on a field K is a surjective map v : K → vK ∪ {∞},
where vK is some ordered abelian group (called the value group) satisfying ∀x, y ∈
K:

(V1) v(x) =∞ if and only if x = 0
(V2) v(xy) = v(x) + v(y)
(V3) v(x+ y) ≥ min{v(x), v(y)}

Note that in the above definition, we extend + to vK∪{∞} by setting γ+∞ =∞
for all γ ∈ vK ∪ {∞}. We moreover extend the ordering to vK ∪ {∞} by setting
γ <∞ for all γ ∈ vK.

Examples 1.5.

(1) Let K be any field. The map v : K → {0,∞} with v(0) =∞ and v(x) = 0
for all x 6= 0 is a valuation. It is called the trivial valuation.

(2) If K = Q and p is a prime, we can write any x ∈ Q× in a unique way
as pν cd with c, d ∈ Z and gcd(c, d) = 1 such that p - c, d holds. Setting
vp(x) = ν gives a valuation on Q with value group Z; this is called the
p-adic valuation.

(3) If K = k(t) for some field k and p ∈ k[t] is irreducible, we can do the same:
write f ∈ K as pν gh for g, h ∈ k(t) with gcd(g, h) = gcd(p, g) = gcd(p, h) =
1 and set vp(f) = ν. This is again called p-adic valuation, the value group
is again Z.

(4) If K = k(t), we also get another valuation with value group Z, namely
the degree valuation v∞. Here, for f, g ∈ k(t) \ {0}, we set v∞(f/g) =
deg(g)− deg(f).

Note that for any p-adic valuation vp and as well as for v∞ on k(t), we have
v(x) = 0 for all x ∈ k.

We now note some first properties.

Basic Properties 1.6. Let (K, v) be a valued field. Then, we have ∀x, y ∈ K:

(1) v(1) = 0
(2) v(x−1) = −v(x)
(3) v(−x) = v(x)
(4) v(x) < v(y) =⇒ v(x+ y) = v(x)

Proof. The first three equations follow immediately from the definition. For last
implication, consider x, y ∈ K with v(x) < v(y). Suppose for a contradiction that
v(x+ y) > v(x) holds. Then, we have

v(x) = v(x+ y − y) ≥ min{v(x+ y), v(y)} > v(x)

which gives the desired contradiction. �

Definition and Remark 1.7. The set Ov = {x ∈ K : v(x) ≥ 0} is a valuation
ring of K, meaning Ov is a subring of K such that for all x ∈ K, we have either
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x ∈ Ov or x−1 ∈ Ov. Its group of units is O×v = {x ∈ K : v(x) = 0}. The
remaining elements, mv := {x ∈ K : v(x) > 0}, form the unique maximal ideal of
Ov (in particular, Ov is a local ring). The quotient field Kv = Ov/mv is called the
residue field of (K, v). For a ∈ Ov, we write a for the corresponding element in
Kv; the map a 7→ a is called the residue map.

It is easy to check that if char(K) = p > 0 then char(Kv) = p, and in case
that char(K) = 0 then we have char(Kv) is either 0 or p for any prime p. We
often write the characteristic of K and Kv as a pair, so (char(K), char(Kv)) ∈
{(0, 0), (0, p), (p, p)}. In case char(K) = char(Kv), we say that (K, v) has equichar-
acteristic 0 or p as appropriate. Otherwise, we say that (K, v) has mixed charac-
teristic.

We now return to the previous examples to work out their valuation rings, max-
imal ideals and residue fields.

Examples 1.8.

(1) If K is equipped with the trivial valuation v, we have K = Ov and hence
mv = {0}. In particular, we get K = Kv and so char(K) = char(Kv).

(2) The valued field (Q, vp) has valuation ring

Ov =
{a
b

: a, b ∈ Z, p - b, gcd(a, b) = 1
}

= Z(p),

which is the localization of Z at the ideal generated by p. Its maximal ideal
is

mv =
{a
b

: a, b ∈ Z, p | a, gcd(a, b) = 1
}

= pZ(p).

It follows immediately that the residue field

Kv = O/m = Z(p)/pZ(p)
∼= Z/pZ ∼= Fp

is the field containing p elements, and so (K, v) has mixed characteristic
(0, p).

(3) In analogy to the p-adic valuations on Q: for p ∈ k[t] irreducible, the p-adic
valued field (k(t), vp) has valuation ring k[t](p), maximal ideal p ·k[t](p), and
residue field k[t]/p ·k[t], the latter being precisely the splitting field of p over
k.

(4) (k(t), v∞) has residue field k.

There are three different ways to think about valuations. One can either define
valuations via the valuation map (as we have done), via valuation rings or via the
residue map (often called a place). As we explain below, the last of these is the
reason for the name ‘valuation’. We now introduce places and show that the three
notions all encode basically the same information.

Definition 1.9. A place on a field K is map φ : K → k ∪ {∞} which maps
surjectively onto some field k satisfying ∀x, y ∈ K:

(P1) φ(x+ y) = φ(x) + φ(y)
(P2) φ(1) = 1
(P3) φ(xy) = φ(x) · φ(y) whenever φ(x) · φ(y) is defined.

Here, we extend + to k ∪ {∞} by setting x +∞ = ∞ + x = ∞ +∞ = ∞ for any
x ∈ k. We extend · to k×∪{∞} by setting x ·∞ =∞·x =∞·∞ =∞ for x ∈ K×;
both 0 · ∞ and ∞ · 0 are left undefined.
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It is clear that every valuation ring gives rise to a place and vice versa:

Remark 1.10. Every valuation ring O ⊆ K determines a place mapping a ∈ O to
a ∈ Kv and a ∈ K \O to ∞. Conversely, given a place φ : K � k∪{∞}, φ−1(k) is
a valuation ring of K with maximal ideal m = φ−1({0}) and residue field k. These
correspondences are inverse to one another.

Examples 1.11.

(1) Let K be any field and v the trival valuation. The associated place is the
identity map φ : K → K.

(2) If K = k(t) and a ∈ k, consider the p-adic valuation v = vp where p is the
irreducible polyonimal p(t) = t− a. Then Kv = k and the associated place
φ : Ovp → k is the map f/g 7→ f(a)/g(a), namely the evaluation map at a.

Before we can explain how valuation rings enter the picture, we need one further
definition.

Definition 1.12. Two valuations v : K → vK ∪{∞} and w : K → wK ∪{∞} are
called equivalent if there is an isomorphism of ordered abelian groups ϕ : vK → wK
such that the following diagram commutes:

K×

v

||

w

""
vK

ϕ // wK

In this case we write v ∼ w.

Observation 1.13. The notions ‘valuation’, ‘valuation ring’ and ‘place’ coincide,
in the following sense:

{v valuation on K}/ ∼ 1:1←→ {O valuation ring on K} 1:1←→ {places on K}
In particular, a valuation ring O ⊆ K defines a valuation on K which is unique up
to isomorphism of valued fields.

Proof. If two valuations are equivalent then they clearly have the same valuation
ring. If O is a valuation ring on K, then Γ := K×/O× is an abelian group, and
is in fact an ordered abelian group with the ordering defined by xO× ≤ yO× iff
yx−1 ∈ O. Now v : K → Γ ∪ {∞} with v(0) = ∞ and v(x) = xO× for x ∈ K× is
a valuation. If a valuation w induces O, then w is equivalent to v as constructed
above since O× is exactly the kernel of the surjection w : K× → wK. The previous
remark gave the correspondence between places and valuation rings. �

From this point on, we consider valuations only up to equivalence. To get used
to working with valuations, we now prove some simple facts about valuation rings.

Proposition 1.14. If O ⊆ K is a valuation ring then O is integrally closed in K.

Proof. Suppose x ∈ K satisfies xn + an−1x
n−1 + . . .+ a0 = 0 for some ai ∈ O. We

want to show that x ∈ O. In case K = O, the statement is clear. Otherwise, we
have m ) {0}. If x /∈ O then x−1 ∈ m, so (multiplying the original equation by
x−n), we get

an−1x
−1 + . . .+ a0x

−n︸ ︷︷ ︸
∈m

= −1

and so −1 ∈ m, which is impossible. Thus, x ∈ O. �
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Proposition 1.15. Every non-trivial valuation ring O of Q is of the form O =
Ovp = Z(p) for some prime p ∈ Z.

Proof. For a non-trivial valuation, we always have Z ⊆ O ( Q. If Z ⊆ O× then it
follows immediately that we have O = Q. Assume Z 6⊆ O× and take p ∈ Z minimal
such that we have p > 0 and p /∈ O×. By splitting p into its prime factorization,
it is easy to see that one of the prime factors of p must have positive valuation; by
minimality of p, we must have p equal to this prime factor. For any prime q 6= p,
there are a, b ∈ Z with 1 = ap + bq by the Euclidean algorithm. Since v(1) = 0
and v(ap) ≥ v(p) > 0, we must have v(bq) = 0, and so v(b) = v(q) = 0 (since
b, q ∈ Z ⊆ O). Thus q ∈ O× for all q 6= p, which means the only non-invertible
elements in O are multiples of p, and hence O = Z(p). �

A similar argument shows that every non-trivial valuation on k(t) that is trivial
on k is equal to v∞ or vp for some irreducible p ∈ k[t].

Proposition 1.16. Let K be an algebraic extension of a finite field. Then K
admits only the trivial valuation.

Proof. If K is an algebraic extension of a finite field, v a valuation on K, then for
all x ∈ K× there exists n ∈ N such that xn = 1, which implies v(xn) = nv(x) = 0.
Thus, we conclude v(x) = 0 since vK is torsion-free. �

We would like to show that algebraic extensions of finite fields are the only fields
with no interesting valuations. To do this, note that every field K which is not
an algebraic extension of a finite field embeds either Q or k(t) with k = Fp for
some prime p. As Q and Fp(t) both admit non-trivial valuations, we now want to
extend these to non-trivial valuations on K. Thus, we need to study extensions of
valuations.

2. Extensions of Valuations

We now want to show that any (non-trivial) valuation on a subfield K ⊆ F can
be extended to a non-trivial valuation on F . This is a consequence of the next
theorem.

Theorem 2.1 (Chevalley Extension Theorem). Let F be a field, R ⊆ F a subring,
p ⊆ R a prime ideal. Then there is a valuation ring O of F with R ⊆ O and
mv ∩R = p.

Proof. Consider the localization

Rp :=
{a
b

: a ∈ R, b ∈ R \ p
}
/ ∼

of R at p where
a

b
∼ c

d
:⇐⇒ ad = bc.

This is a local ring with unique maximal ideal pRp. Consider the set

Σ := {(A, I) : A ⊆ F subring , I � A proper ideal, Rp ⊆ A, pRp ⊆ I}.
Then Σ is nonempty since it contains (Rp, p) and can be given a partial order via

(A, I) ≤ (A′, I ′)⇐⇒ A ⊆ A′ and I ⊆ I ′.
Note that Σ is obviously closed under chains. By Zorn’s lemma, there exists a
maximal element (O,m) ∈ Σ. By maximality, m is a maximal ideal of O. Moreover,
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m is the unique maximal ideal of O as otherwise the localization Om of O at m
together with the ideal mOm would be an element of Σ strictly bigger in the partial
order that (O,m). Hence, (O,m) is a local ring. In particular, we have O× = O\m.

Claim: O is a valuation ring of F .

Proof of claim: Assume not, then there is some x ∈ F× with x, x−1 /∈ O. In
particular, we get that O is properly contained in O[x] and O[x−1]. Since (O,m) is
maximal, the ideal mO[x] generated by m in O[x] must be all of O[x], symmetrically
mO[x−1] = O[x−1]. Thus, there exist elements a0, . . . , an, b0, . . . , bm ∈ m with

(?) 1 =

n∑
i=0

aix
i =

m∑
i=0

bix
−i.

We may assume that both n and m are minimal such that (?) is satisfied. Suppose
that we have m ≤ n. As b0 ∈ m, we get

m∑
i=1

bix
−i = 1− b0 ∈ O \m = O×.

Thus, for ci := bi
1−b0 ∈ m, we have

1 =

m∑
i=1

cix
−i

and thus

xn =

m∑
i=1

cix
n−i.

Plugging this into the equation (?) above, we get

1 =

n∑
i=0

aix
i =

n−1∑
i=0

aix
i + an

m∑
i=1

cix
n−i,

contradicting the minimality of n. The case n ≤ m works analogously by swapping
x and x−1. This proves the claim.

By construction, we have p ⊆ m∩R. What is left to show is that equality holds.
However, we have

R \ p ⊆ (Rp)× ⊆ O× = O \m.
This implies p ⊇ m ∩R and thus finishes the proof. �

Definition 2.2. Let (F,w) and (K, v) be valued fields. We say that (F,w) is
an extension of (K, v) if K ⊆ F and w|K = v holds. In this case, we write
(K, v) ⊆ (F,w) and say that w is a prolongation of v.

Note that (F,w) being an extension of (K, v) is equivalent to Ov = Ow ∩ K.
Moreover, vK is a subgroup of wF and we have mv = mw ∩K. In particular, there
is an induced embedding of Kv into Fw.

Corollary 2.3. Let (K, v) be a valued field and F a field extension of K. Then
there is a prolongation w of v to F . Moreover, if v is non-trivial then w is non-
trivial.

Proof. Use Theorem 2.1 with R = Ov and p = mv to find w. If v is non-trivial then
we have {0} ( vK ⊆ wF , so w is also non-trivial. �



AN INTRODUCTION TO VALUED FIELDS 7

As promised, we can now show the converse to Proposition 1.16:

Corollary 2.4. If K is any field which is not an algebraic extension of a finite
field, then K admits a non-trivial valuation.

Proof. If char(K) = 0 then K is an extension of Q, and if char(K) = p then K
is an extension of Fp(t). In either case, any non-trivial valuation (which exists by
Examples 1.5) of the smaller field can be extended to K. �

Example 2.5. Let (K, v) be a valued field with value group vK and Γ an ordered
abelian group with Γ ≥ vK. Consider some t which is transcendental over K and
any γ ∈ Γ. Define a valuation w on K(t) with values in Γ via

w(

n∑
i=0

ait
i) = min{v(ai) + iγ : 0 ≤ i ≤ n}

for f =
n∑
i=0

ait
i ∈ K[t] and extend w to all of K(t) by setting

w

(
f

g

)
= w(f)− w(g)

for f, g ∈ K[t] \ {0}. Then w is a well-defined valuation extending v with value
group wK(t) = vK + Z · γ. We now look at two special cases of this construction
in more detail.

(1) Consider the case vK = Γ and γ = 0. Then w is called the Gauss extension
of v. In this case, w is the unique extension of v to K(t) such that w(t) = 0
and the residue t of t is transcendental over Kv with residue field K(t)w =
Kv(t) (Exercise!).

(2) In case γ /∈ vK and vK ∩ Z · γ = {0}, we have wK(t) = vK ⊕ Z · γ and
K(t)w = Kv.

We have already noted above that if (F,w) is an extension of (K, v), we get
induced embeddings of vK into wF and of Kv into Fw. We now want to show
that the index (respectively degree) of these can be linked to the degree of the field
extension.

Definition 2.6. Assume (K, v) ⊆ (F,w) is an extension of valued fields. Then,

e := e(w/v) := [wF : vK]

is called the ramification index of (K, v) in (F,w). Furthermore,

f := f(w/v) := [Fw : Kv]

is called the inertia degree of the extension.

We follow the usual convention that both e and f can be either finite or infi-
nite, without distinguishing between different infinite cardinalities. Before we prove
anything about these quantities, we start with some explicit examples.

Examples 2.7. Let p be a prime and consider the p-adic valuation vp on Q.

(1) We can extend vp to the Gauss extension w on Q(t) by setting

w(

n∑
i=0

ait
i) = min{v(ai)},
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for
n∑
i=0

ait
i ∈ Q[t], e.g.

w

(
1

p
t− t2 + p

)
= −1.

In this case, we have e(w/vp) = 1 and f(w/vp) =∞.

(2) Consider
√

2 ∈ Qalg. We want to extend vp to Q(
√

2) for different primes
p.
(a) If p = 2, we get w(

√
2) = 1

2v2(2) = 1
2 and α = 0 for any extension w

of v2 to Q(
√

2). Thus, we have e(w/v2) = 2 and f(w/v2) = 1.

(b) If p = 3, we get w(
√

2) = 1
2v3(2) = 0 and α =

√
2 over F3 for any

extension w of v3 to Q(
√

2). Thus, we conclude for the residue field

Q(
√

2)w = F3(i) and so we have e(w/v3) = 1 and f(w/v3) = 2.

(c) If p = 7, we have again w(
√

2) = 1
2v7(2) = 0 and α =

√
2 over F7 for

any extension w of v7 to Q(
√

2). As both 3 and 4 are square roots of

2 in F7, there are two possible prolongations of v7 to Q(
√

2), in either
case we have e(w/v7) = f(w/v7) = 1.

We now show that the degree of a field extension bounds both the inertia degree
and the ramification index.

Theorem 2.8 (Fundamental Inequality, version 1). Suppose (K, v) ⊆ (F,w) is an
extension of valued fields. Then ef ≤ [F : K].

Proof. Choose {γi : i ∈ I} ⊆ wF representatives of different cosets of wF/vK and
{αj : j ∈ J} ∈ Fw such that {αj} are linearly independent over Kv for e = |I|,
f = |J | finite. Take {gi}i∈I ⊆ F with w(gi) = γi for all i ∈ I and {aj}j∈J ⊆ O×w
with aj = αj for all j ∈ J .

Claim: The products {ajgi : i ∈ I, j ∈ J} are linearly independent over K.

Proof of claim: Take rij ∈ K not all zero. We will show that the element∑
rijajgi =: z

has valuation

w(z) = min
i,j
{w(rijajgi)} =: δ,

and hence is not zero. Choose i0 and j0 so that we have w(ri0j0gi0) = δ and note
that we can drop the aj factor since we have w(aj) = 0 for all j ∈ J .

Suppose there is i 6= i0 and j ∈ J (maybe j = j0) so that we have w(rijgi) =
w(ri0j0gi0). Rearranging, and using the fact that w(gi) = γi, we get

−γi0 + γi = −w(gi0) + w(gi) = w(ri0j0)− w(rij) ∈ vK

contradicting the fact that γi0 and γi are in different cosets of vK. Thus, if
w(rijgi) = w(ri0j0gi0) holds, we must have i = i0.

Now, suppose for a contradiction that w(z) > δ holds and write y := ri0j0gi0 .
Then, by our assumption, we have zy−1 ∈ mw. By the previous argument, this
implies rijgiy

−1 ∈ mw for all i 6= i0. Consider∑
j∈J

ri0jgi0aj = z −
∑

i6=i0,j∈J

rijgiaj .
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Multiplying this equation with y−1, we get∑
j∈J

ri0jgi0aj(ri0j0gi0)−1 = zy−1︸ ︷︷ ︸
∈mw

−
∑

i 6=i0,j∈J

rijgiajy
−1︸ ︷︷ ︸

∈mw

∈ mw.

This implies for the residue of the left hand side that∑
j∈J

ri0j(ri0j0)−1aj = 0 ∈ Kv

holds. But this contradicts the linear independence of the aj = αj , and hence we
must have w(z) = δ.

From the claim, we are done: we conclude

ef = |{ajgi : j ∈ J, i ∈ I}| ≤ [F : K].

�

Corollary 2.9. Assume (K, v) ⊆ (F,w) is algebraic. Then

(1) wF/vK is a torsion group and
(2) Fw is an algebraic extension of Kv.

Proof. Ad (1): Assume (K, v) ⊆ (F,w) algebraic. Take any γ ∈ wF and choose
some g ∈ F with w(g) = γ. Consider K ⊆ K(g) = L ⊆ F and u = w|L. By the
Fundamental Inequality (Theorem 2.8), [vL : vK] is finite, so there is some n ∈ N
with nγ ∈ vK. Part (2) is proved similarly. �

Our next aim is to prove the Conjugation Theorem, that is that if L/K is a
normal extension and v is a valuation of K, then any two prolongations of v to L
are conjugate by a K-automorphism of L.

Proposition 2.10.

(1) Suppose L/K is an algebraic extension, v a valuation on K, and let w1

and w2 be prolongations of v to L. If Ow1 ⊆ Ow2 holds, then we have
Ow1

= Ow2
.

(2) Assume L/K is purely inseparable, i.e., char(K) = p > 0 and every x ∈ L
satisfies xp

n ∈ K for some n ∈ N. Then every valuation on K extends
uniquely to L.

Proof. (1) Let (K, v) be a valued field, F an algebraic extension of K, w1, w2

prolongations of v to F with Ow1 ⊆ Ow2 . We remark first that Ow1 ⊆
Ow2 ⊆ L implies mw1 ⊇ mw2 : to see this, note that we have

x ∈ mw2
=⇒ x ∈ Ow2

∧ x−1 /∈ Ow2

=⇒ x−1 /∈ Ow1
=⇒ x ∈ mw1

.

Consider Ow1
/mw1

⊆ Ow2
/mw2

= Lw2. Then (exercise!) Ow1
/mw2

is a
valuation right of Lw2.

We claim that Ow1
/mw2

= Lw2
holds. Take α ∈ Lw2. By Corollary 2.9,

α is algebraic over Kv. Moreover, Kv = Ov/mv embeds into Ow1/mw2 .
Now the minimal polynomial of α/Kv is monic and has coefficients in
Kv ⊆ Ow1

/mw2
, so by Proposition 1.14, we get α ∈ Ow1

/mw2
.

This implies Ow1
/mw2

= Lw2, and hence mw2
is a maximal ideal of Ow1

.
But valuation rings have unique maximal ideals, which means mw2

= mw1
,

and hence Ow1 = Ow2 .
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(2) Assume L/K is purely inseparable and v is a valuation on K. Take x ∈ L
and n ∈ N with xp

n ∈ K. Let w be any extension of v to L. By Proposition
2.9, wL/vK is torsion, so wL embeds into the divisible hull D of vK. D is
again an ordered abelian group, and hence in particular torsion-free. Now,
we get pnw(x) = v(xp

n

) ∈ vK; since D is torsion-free, this determines w(x)
uniquely. �

Our next theorem is a version of the Chinese remainder theorem for valuations.
The analogue of coprime integers is given by incomparable valuation rings.

Definition 2.11. Let O1 and O2 be valuation rings of a field K. We say that O1

and O2 are comparable if either O1 ⊆ O2 or O2 ⊆ O1 holds.

Theorem 2.12. (Weak Approximation Theorem) Let O1, . . . ,On be incomparable
valuation rings of K and consider any elements xi ∈ Oi for 1 ≤ i ≤ n. Then there
exists some x ∈ K with x− xi ∈ mi for all 1 ≤ i ≤ n.

Proof. Define R :=
⋂n
i=1Oi and pi := R ∩mi for 1 ≤ i ≤ n; observe that each pi is

a prime ideal of R.

Claim 1: For all 1 ≤ i ≤ n, we have Oi = Rpi
.

Proof of claim: Note that Rpi
⊆ Oi holds, since we have merely added inverses

for elements in R \ pi ⊆ Oi \ mi, and every element in Oi \ mi has an inverse
in Oi. Now take a ∈ Oi, define Ia := {j ∈ {1, . . . , n} : a ∈ Oj} and write
αj = a + mj ∈ Oj/mj for each j ∈ Ia. Choose a prime p such that we have
p > char(Oj/mj) and such that αj is not a primitive pth root of unity in Oj/mj
for all j ∈ Ia.

Define b := 1 + a + . . . + ap−1. We show that we have b−1, ab−1 ∈ Oj for all j.
We consider three cases:

(1) If a ∈ Oj and αj = 1 then b = 1 + 1 + . . . + 1 = p 6= 0, so we get b ∈ O×j .

As we have assumed a ∈ Oj , we get b−1, ab−1 ∈ Oj in this case.

(2) If a ∈ Oj and αj 6= 1 then b =
1−αp

j

1−αj
6= 0, so again we have b ∈ O×j and

hence b−1, ab−1 ∈ Oj .
(3) In case a /∈ Oj , note that a−1 ∈ mj holds. Thus, we have 1 + a−1 + . . . +

a−(p−1) ∈ O×j , implying

b−1 = a−(p−1)(1 + a−1 + . . .+ a−(p−1))−1 ∈ Oj
and

ab−1 = a−(p−2)(1 + a−1 + . . .+ a−(p−1))−1 ∈ Oj .
Hence, we have b−1, ab−1 ∈ Oj for each j, so we get b−1, ab−1 ∈ R. As we have
b ∈ Oi, we obtain b−1 /∈ mi∩R = pi. Thus, we conclude a = ab−1/b−1 ∈ Rpi

which
proves the claim.

Claim 2: p1, . . . , pn are exactly the maximal ideals of R.

Proof of claim: We first show that each pi is a maximal ideal of R. Assume
that for some i, pi is not a maximal ideal. Then there is some maximal ideal b ≤ R
with pi ( b and some m ≤ Oi maximal with b ⊆ m. As mi is the unique maximal
ideal of Oi, this implies mi = m and hence mi∩Oi = b, contradicting b 6= pi. Thus,
pi is maximal.
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Now, let m be a maximal ideal of R. Suppose for a contradiction that m 6= pi
holds for all 1 ≤ i ≤ n. Then, for all 1 ≤ i ≤ n there is some mi ∈ m and pi ∈ pi
with 1 = pi +mi. So, we have∏

1≤i≤n

(1−mi) = 1 +m =
∏

1≤i≤n

pi

for some m ∈ m. Note that we have

R× =
⋂

1≤i≤n

O×i = R \ (p1 ∪ . . . ∪ pn).

As we have m ⊆ R \R×, we get m ∈ pj for some 1 ≤ j ≤ n. This implies

1 =

 ∏
1≤i≤n

pi

−m ∈ pj ,

a contradiction to pj being a proper ideal of R. This proves the claim.

Note that we have pi 6⊆ pj for all j, since otherwise we would have Oj = Rpj
⊆

Rpi = Oi. Thus, we have for i 6= j that pi + pj is an ideal which strictly contains a
maximal ideal, i.e., pi + pj = R for all i 6= j. By the Chinese Remainder Theorem,
the canonical map

R→ R/p1 × . . .×R/pn
is surjective. Thus, since

R/pi ∼= Rpi
/piRpi

= O/mi,
the induced map

R→ O1/m1 × . . .×On/mn
is also surjective, and hence there is an x with x ∈ xi + mi for all i, as desired. �

Using the Weak Approximation Theorem, we can now prove the finite version
of the Conjugation Theorem.

Theorem 2.13. (Conjugation Theorem) Let L/K be a finite normal extension of
fields. Suppose Ov is a valuation ring of K and that Ow1 ,Ow2 are valuation rings
of L extending Ov. Then Ow1

and Ow2
are conjugate over K, i.e., there is some

σ ∈ G = Aut(L/K) with σ(Ow1
) = Ow2

.

Proof. We first reduce to the case L/K Galois. Fix an algebraic closure Kalg of
K with L ⊆ Kalg. Define Ksep = {a ∈ Kalg : a separable over K} and consider
K ⊆ Ksep ∩ L ⊆ L. As Ksep ∩ L ⊆ L is a purely inseparable extension, every
valuation on Ksep ∩ L has a unique extension to L by Proposition 2.10. Moreover,
there is a canonical isomorphism Aut(L ∩ Ksep/K) ∼= Aut(L/K). Thus, we may
assume that L = Ksep ∩ L, and hence that L/K is Galois.

Let Õ be the integral closure of Ov in L.

Claim: Õ =
⋂
σ∈G σOw1

Proof of claim: Since each σOw1
is a valuation ring, each is integrally closed by

Proposition 1.14. As we have Ov ⊆ σOw1
for all σ ∈ G, the inclusion ‘⊆’ holds.

Conversely, take x ∈
⋂
σ∈G σOw1

and consider the distinct conjugates x =
x1, . . . , xn of x over K. Then, the minimal polyomial of x over K is of the form

f(t) =
∏
σ∈H

t− σ(x) ∈ K[t]
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for an appropriate H ⊆ G. As x ∈
⋂
σ∈G σOw1

, we have τ(x) ∈
⋂
σ∈G σOw for each

τ ∈ G. Thus, the minimal polynomial

f(t) ∈ K[t] ∩
⋂
σ∈G

σOw[t] = Ov[t],

and so x is integral over Ov, i.e., x ∈ Õ holds. This proves the claim.

Now assume for a contradiction that we have Ow2 6= σOw1 for any σ ∈ G. Then,
σOw1

and Ow2
are incomparable for all σ ∈ G by Proposition 2.10. Then, by the

Weak Approximation Theorem (Theorem 2.12), there exists some x ∈ mw2
with

x ∈ (σOw1
)× for all σ. Now, we have x−1 ∈

⋂
σ∈G σOw1

\ Ow2
, and hence

Õ
1.14
⊆ Ow2

∩
⋂
σ∈G

σOw1
(
⋂
σ∈G

σOw1
= Õ

which is a contradiction. �

Fact 2.14. The Conjugation Theorem also holds for arbitrary (not necessarily fi-
nite) normal extensions L/K.

Proof. For infinite extensions, use Theorem 2.13 and Zorn’s lemma. Alternatively,
see [EP05, Theorem 3.2.15]. �

We now draw some corollaries from Theorem 2.13 and its proof.

Corollary 2.15. (from the proof of Theorem 2.13) Suppose L/K is finite and

Galois, v a valuation on K, Õ the integral closure of Ov in L. Then, we have

Õ =
⋂
Ow, where w ranges over all prolongations of v to L.

Corollary 2.16. Suppose L/K is finite, v a valuation on K. Then v has only
finitely many extensions to L.

Proof. Consider N , the normal hull of L/K, namely the smallest normal extension
of K containing L in a given algebraic closure Kalg of K. If [L : K] = n then
[N : K] ≤ n!, so v has at most n! extensions to N , hence also to L. �

The Fundamental Inequality (Theorem 2.8) above can in fact be strengthened
to an equality in certain settings. The proof of this fact is beyond the scope of this
course and uses both the Conjugation Theorem (Theorem 2.13) and sophisticated
Galois Theory (some but not all of which is developed in Section 4). In this course,
we will not use the stronger version. For a proof, we refer the reader to [EP05].

Fact 2.17 (Fundamental Inequality Revisited, [EP05, Theorems 3.3.3 and 3.3.5]).
Suppose L/K is a field extension with [L : K] = n, v a valuation on K, and
w1, . . . , wr the prolongations of v to L. Write ei = e(wi/v) and fi = f(wi/v).
Then, we have

r∑
i=1

eifi ≤ n

and equality holds if either char(Kv) = 0, or (K, v) has mixed characteristic and
with v(p) finite (i.e., the set {γ ∈ vK : 0 ≤ γ ≤ v(p)} is finite).
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3. Hensel’s Lemma

3.1. Completions. In this section, we consider completions of valued fields. First,
we need the notion of a Cauchy sequence:

Definition 3.1. Let (K, v) be a valued field with vK ≤ (R,+) and (ai)i∈N a se-
quence in K. We say that (ai)i∈N is Cauchy if for all γ ∈ Γ there exists N ∈ N
such that for all n,m > N , we have

v(an − am) > γ.

Let K be any field. Recall that a map | · | : K → R is an absolute value if it
satisfies ∀x, y ∈ K:

(AV1) |x| = 0 if and only if x = 0
(AV2) |xy| = |x||y|
(AV3) |x+ y| ≤ |x|+ |y|

An absolute value is called ultrametric if the third condition (the triangle inequality)
can be strengthened to |x+ y| ≤ max{|x|, |y|}.

Remark 3.2. If (K, v) is a valued field with vK ≤ (R,+), then K has an absolute
value (in fact, an ultrametric absolute value) defined by |x|v = e−v(x). A sequence
is Cauchy in the valuation theoretic sense if and only if it is Cauchy with respect
to | · |v in the ‘classical’ sense.

Theorem 3.3. Let (K, | · |) be a field with an absolute value. Then, there is a

field K̂ which is complete with respect to | · | and an embedding i : K ↪→ K̂ which

preserves | · |, such that K is dense in K̂. Moreover, if (K̂ ′, i′) is another such pair,

then there exists a unique continuous isomorphism φ : K̂ → K̂ ′ preserving | · | such
that the diagram

K̂
φ // K̂ ′

K
O/

i

__

�.
i′

>>

commutes. K̂ is called the completion of K with respect to | · |.

Proof. Exactly the same as the construction of the reals from the rationals as
Cauchy sequences, i.e., K̂ is the ring of Cauchy sequences modulo the maximal
ideal of zero sequences. Details can be found in [EP05, Theorem 1.1.4]. �

We now study the completion of Q with respect to the p-adic absolute value.
The resulting structure is called the field of p-adic numbers.

Example 3.4. Let K = Q and v = vp for some prime p. We define Qp, the p-adic
numbers, to be the completion of Q with respect to | · |p := | · |vp . We claim that
there is a canonical isomorphism Qp ∼= R, where

R = {
∞∑
i=m

aip
i : ai ∈ {0, . . . , p− 1},m ∈ Z}.

Clearly, we have N ⊆ R; writing a natural number n base p gives finitely many

ai such that n =
∑k
i=0 aip

i ∈ R, e.g., for p = 2 we have

5 = 1 · 20 + 0 · 21 + 1 · 22 ∈ R.



14 FRANZISKA JAHNKE

It is easy to check that R is a commutative ring with the obvious addition and
multiplication (componentwise mod p with carrying over), e.g. again for p = 2, we
have

5 · 6 = (1 · 20 + 1 · 22)(1 · 21 + 1 · 22) = 21 + 22 + 23 + 24

and

5 + 6 = (1 · 20 + 1 · 22) + (1 · 21 + 1 · 22) = 20 + 21 + 2 · 22

= 20 + 21 + 23.

The trick for additive inverses is to have infinite carryovers with remainder zero.
For example,

−5 = 20 + 21 +

∞∑
i=3

2i.

Finally, multiplicative inverses exist in R; in the special case of

a =

∞∑
i=0

aip
i with a0 = 1

we have

a−1 = (1 + p

∞∑
i=0

ai+1p
i)−1 =

(
1− p

(
−
∞∑
i=0

ai+1p
i

)
︸ ︷︷ ︸

=:x

)−1

= 1 + px+ (px)2 + (px)3 + (px)4 + (px)5 + . . .

where the right hand side is a well-defined element in R as we only need to calculate
a finite sum to determine each coefficient. For example, if p = 2 we have

5−1 = (1− 2 · (−2))−1 = 20 − 22 + 24 − 26 + 28 − 210 + . . .

= 20 + 22 + 23 + 26 + 27 + 210 + 211 + 214 + . . .

To invert a general
∑∞
i=m aip

i with am 6= 0, we first invert p−ma−1
m

∑∞
i=m aip

i,
then multiply the result by am · pm.

Thus, R is a field, and so we have Q ⊆ R. We can extend vp (and thus | · |p) to
R via

vp

( ∞∑
i=m

aip
i

)
= min{i : ai 6= 0}.

This is a valuation with value group Z and residue field Fp (since the residue field
is a field with p elements).

We now show that Q is dense in R: every a =
∑∞
i=m aip

i ∈ R is the limit of(∑m+n
i=m aip

i
)
n≥0

. Note that this is a Cauchy sequence since for any γ ∈ Z we can

choose any N > γ and have

∀n, n′ ≥ N : vp(

m+n∑
i=m

aip
i −

m+n′∑
i=m

aip
i) ≥ min{n, n′} > γ

and it clearly converges to a. Moreover,
(∑m+n

i=m aip
i
)
n≥0

is a sequence in Q since

it is the product of pm and the finite sum
∑n
i=0 ai+mp

i, and sums of this form are
precisely the representations of natural numbers base p.
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Finally, the fact that (R, |·|p) is complete is easy to check: if (bn)n∈N is a Cauchy
sequence, then v(bn−bn′) > γ means that bn and bn′ agree on the first γ-many terms
in their sums. We can form a limit b =

∑
cip

i by choosing ci = (bn)i for n large
enough such that (bn′)i = (bn)i holds for n′ ≥ n. Then, we have b ∈ R. Thus, we
have R ∼= Qp, and its valuation ring with respect to the p-adic valuation is given by

Zp := Ovp =

{
m∑
i=0

aip
i : m ∈ N, ai ∈ {0, . . . , p− 1}

}
.

Example 3.5. Let k be a field and consider the field k(t) with the t-adic valuation
which is defined as

vt

(
n∑
i=0

ait
i

)
= min{i : ai 6= 0}

on k[t] and extended to the quotient field k(t) in the usual way. The completion of
(k(t), vt) is the power series field k((t)) with valuation

vt

( ∞∑
i=m

ait
i

)
= min{i : ai 6= 0}.

The proof is a simplified version of the one given in the previous example, as there
is no need to deal with carrying over.

Theorem 3.6 (Hensel’s Lemma for complete valued fields). Let (K, v) be a valued
field with vK ≤ R such that K is complete with respect to | · |v. Given a ∈ Ov and
f ∈ Ov[x] such that v(f(a)) > 2v(f ′(a)) holds, there is some b ∈ Ov such that we
have f(b) = 0 and v(b− a) > v(f ′(a)).

The proof works via Newton’s method. The idea is that if f(a) is ‘close’ to zero

(i.e., has ‘big’ valuation), then f(a − f(a)
f ′(a) ) is ‘even closer’. Before we get to the

proof, we show a helpful lemma:

Lemma 3.7. Suppose (K, v) is a valued field, f ∈ Ov[X]. Then, there is some
g(X,Y ) ∈ Ov[X,Y ] with f(X + Y ) = f(X) + f ′(X)Y + Y 2g(X,Y ).

Proof. Assume f(X) =
∑d
i=0 ciX

i for some ci ∈ Ov. Then, we have

f(X + Y ) =

d∑
i=0

ci(X + Y )i = c0 +

d∑
i=1

ci(X
i + iXi−1Y + gi(X,Y )Y 2)

for some appropriate gi ∈ Ov[X,Y ]

=

d∑
i=0

ciX
i

︸ ︷︷ ︸
f(X)

+

d∑
i=1

iciX
i−1Y︸ ︷︷ ︸

f ′(X)Y

+

d∑
i=1

cigi(X,Y ).︸ ︷︷ ︸
=:g(X,Y )

�

Proof of Theorem 3.6. Consider a valued field (K, v), an element a ∈ Ov and a
polynomial f ∈ Ov[X] satisfying the assumptions of the theorem. We will use
Newton’s method, starting at a, to construct a Cauchy sequence; b will be the limit
of said Cauchy sequence.
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Choose ε ∈ R>0 such that v(f(a)) = 2v(f ′(a))+ε holds. Note that since we have
v(f(a)) > 2v(f ′(a)), we get in particular f ′(a) 6= 0 and f(a)/f ′(a) ∈ mv. Define

a1 := a− f(a)
f ′(a) , so we have a1 ∈ Ov. Applying Lemma 3.7, we get

f(a1) = f(a) + f ′(a)

(
− f(a)

f ′(a)

)
+

(
f(a)

f ′(a)

)2

· d =

(
f(a)

f ′(a)

)2

· d

for some d ∈ Ov. Thus, we have

v(f(a1)) ≥ 2v(f(a)/f ′(a)) = 2v(f(a))− 2v(f ′(a)) = 2v(f ′(a)) + 2ε

and, using Lemma 3.7 again,

v(f ′(a1)) = v(f ′(a) +
f(a)

f ′(a)

(
−f ′′(a) +

f(a)

f ′(a)
· d̃
)

︸ ︷︷ ︸
=:e∈Ov

) = v(f ′(a))

since v(f ′(a)) < v(f(a)/f ′(a)) holds by assumption. In particular, we get f ′(a1) 6=
0. Note that by the definition of a1, we have v(a1 − a) = v(f ′(a)) + ε.

We now set a0 := a and define a sequence in K via an+1 = an − f(an)/f ′(an)
for n ≥ 0. Then, we can inductively repeat the argument replacing a1 with an+1

and a with an. For any n ≥ 1, we get

v(f ′(an+1)) = v(f ′(an)) = v(f ′(a))

and hence f ′(an) 6= 0 which implies that the sequence is well-defined. Moreover,
we have

v(f(an+1)) ≥ 2v(f ′(an)) + (n+ 1)ε = 2v(f ′(a)) + (n+ 1)ε,

which implies that if the sequence coverges, it must converge towards a root of f
as the sequence of its values is cofinal in vK ≤ R, and

v(an+1 − an) = v(
f(an)

f ′(an+1)
)

≥ 2v(f ′(an)) + (n+ 1)ε− v(f ′(a))

= v(f ′(a)) + (n+ 1)ε

which implies that the sequence is Cauchy. Since (K, v) is complete, there is a limit
b ∈ K with f(b) = 0. Finally, as we have

v(an − a) ≥ min
0≤m<n

{v(am+1 − am)} > v(f ′(a)),

we conclude that v(b) > v(f ′(a)) holds. �

Our next main aim is to find an alternative to completions in case the value
group is not a subgroup of (R,+). The goal is to find a smallest extension of a
valued field such that the conclusion of Theorem 3.6 holds. These will be called
henselizations.

3.2. Henselian Fields. In this chapter, we study fields for which the conclusion
of Theorem 3.6 holds, roughly speaking ‘if a polynomial takes a value close to zero,
then it has a root close by’. We first give an alternative definition:

Definition 3.8. A valued field K is called henselian if v extends uniquely to every
finite (algebraic) extension of K.
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Remark 3.9. It follows from Proposition 2.10 that (K, v) is henselian if and only
if v extends uniquely to every finite separable extension of K. Fix an algebraic
closure Kalg of K. Recall that the separable closure Ksep of K (in Kalg) is exactly
the compositum of all finite separable extensions of K (in Kalg). Thus, (K, v)
is henselian if and only if v extends uniquely to Ksep. Proposition 2.10 implies
moreover that v extends uniquely to Ksep if and only if it extends uniquely to Kalg.

We now show that henselianity is indeed equivalent to the fact that ‘Hensel’s
Lemma holds’.

Theorem 3.10 (Hensel’s Lemma). For a valued field (K, v), the following are
equivalent:

(1) (K, v) is henselian.
(2) Hensel’s Lemma holds: for all f ∈ Ov[X], a ∈ Ov with v(f(a)) > 2v(f ′(a)),

there exists some b ∈ Ov satisfying f(b) = 0 and v(a− b) > v(f ′(a)).
(3) Simple zeroes lift: For each f ∈ Ov[X] and a ∈ Ov with f(a) = 0 and

f
′
(a) 6= 0 in the residue field, there exists some b ∈ Ov such that f(b) = 0

and b = a holds.
(4) Every polynomial of the form Xn+Xn−1+an−2X

n−2+. . .+a0 with ai ∈ mv
for 0 ≤ i ≤ n− 2 has a zero in K.

Before we prove the theorem, we turn to another helpful lemma. This lemma
also explains where the Gauss extension of a valuation (as defined in Example 2.5)
gets its name from.

Lemma 3.11 (Gauss’s Lemma). Suppose (K, v) is a valued field, and consider
some f ∈ Ov[X]. Then there are h1, . . . , hn ∈ Ov[X], which are irreducible in
K[X], with

f = h1 · · ·hn.

Proof. Let f = g1 · · · gn be a factorization of f into irreducible factors in K[X].
Consider the Gauss extension ṽ of v to K(X), so

ṽ(

d∑
i=0

aiX
i) = min

0≤i≤d
{v(ai)}.

We can write f, g1, . . . , gn as f = af̃ and gi = big̃i with a, b1, . . . , bn ∈ K and

ṽ(f̃) = ṽ(g̃i) = 0 for all 1 ≤ i ≤ n. Note that f ∈ Ov[X] implies a ∈ Ov and
ṽ(g̃i) = 0 implies g̃i ∈ Ov[X]. Since we have

v(b1 · · · bn) =

n∑
i=1

ṽ(gi) = ṽ(f) = v(a),

we get b = b1 · · · bn ∈ Ov. Now, defining h1 := bg̃1, hi := g̃i for i ≥ 2 gives a
factorization of f as desired. �

Proof of Theorem 3.10. (2) ⇒ (3): Assume we have f ∈ Ov[X] and a ∈ Ov with

f(a) = 0 and f
′
(a) 6= 0. This implies f(a) ∈ mv and f ′(a) /∈ mv. Thus, we get

v(f(a)) > 0 = 2v(f ′(a))

and hence, if (2) holds, there is some b ∈ Ov with f(b) = 0 and v(b−a) > v(f ′(a)) =
0, in particular a− b ∈ mv. Thus, statement (3) holds.
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(3)⇒ (4): Given a polynomial of the form

Xn +Xn−1 + an−2X
n−2 + · · ·+ a0

with ai ∈ mv, we have f = Xn +Xn−1 = (X + 1)Xn−1. Thus, −1 is a simple zero
of f in Kv and, if (3) holds, f has a zero in K.

(1) ⇒ (3): Take f ∈ Ov[X], a ∈ Ov with f(a) = 0 and f
′
(a) 6= 0. By Lemma

3.11, we may assume that f is irreducible: otherwise, we replace f by some irre-

ducible component h ∈ Ov[X] with h(a) = 0 and h
′
(a) 6= 0.

Moreover, f is separable: if f is inseparable, then we have f = g(xp) for some

g ∈ Ov[X] and in that case f
′
would be identically zero, which contradicts f

′
(a) 6= 0.

Now, let L be the splitting field of f over K. Then there are a1, . . . , an ∈ L

with f = c
∏

(X − ai) for some c ∈ O×v (again, f
′ ≡ 0 otherwise); we may assume

that a1 = a. If (1) holds, let w be the unique extension of v to L and assume
n > 1 (otherwise, a1 ∈ K and we are done). By Galois Theory, there is some
σ ∈ Gal(L/K) with σ(a1) = a2. As w is the unique extension of v, σ induces an
automorphism σ ∈ Gal(Lw/Kv) such that

a2 = σ(a1) = σ(a) = a = a1

(note that a ∈ Kv is fixed by σ). But then a = a1 = a2 is not a simple root, a
contradiction!

(3)⇒ (2): Take f and a as in (2). By Lemma 3.7, we have

f(a−X) = f(a)− f ′(a)X +X2g(a,X)

for some g(Y,X) ∈ Ov[Y,X]; write g̃(X) = g(a,X) ∈ Ov[X]. As f ′(a) 6= 0 by
assumption, consider Y = X/f ′(a). Then, we have

h(Y ) :=
f(a− f ′(a)Y )

f ′(a)2
=

f(a)

f ′(a)2
− Y + g̃(f ′(a)Y )Y 2 ∈ Ov[Y ]

and h(0) = 0 6= −1 = h(0). If (3) holds, there exists some α ∈ Ov such that
h(α) = 0. Choose b = a − f ′(a)α ∈ Ov; check that this is a zero of f satisfying
v(b− a) > v(f ′(a)).

(4) ⇒ (1): We show ¬(1) ⇒ ¬(4). Assume (K, v) is not henselian, so there is
some finite Galois extension N/K with G = Gal(N/K) such that v has more than
one prolongation to N ; we fix one of these and denote it by w. Define D := {σ ∈
G : σ(Ow) = Ow}; and note that it is a subgroup of G. Moreover, since v has
more than one extension to N , the Conjugation Theorem (Theorem 2.13) implies
D � G. Consider the fixed field L := Fix(D); since D 6= G, we conclude that L is
a proper extension of K. Let Ow = O1, . . . ,On be the conjugates of Ow in N (by
Theorem 2.13, these are the valuation rings of all prolongations of v to N), and
define O′i := Oi ∩ L. By the definition of L and Theorem 2.13, O′1 has a unique
prolongation to L. Thus, there is some O′j with O′j 6= O′1.

Consider R :=
⋂

1≤i≤nO′i ⊆ L. By the (proof of the) Weak Approximation

Theorem (Theorem 2.12), we can choose β ∈ R with β − 1 ∈ m′1 and β ∈ m′i
for 1 < i ≤ n. Since O′1 6= O′j , we get β /∈ K (since an element of K is in one
maximal ideal if and only if it is in all of the maximal ideals). Consider the minimal
polynomial f of β over K, say

f(X) = Xk + ak−1X
k−1 + . . .+ a0
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for some am ∈ K and 0 ≤ m < k.

Claim: We have ak−1 ∈ 1 + mv and ak−2, . . . , a0 ∈ mv.

Proof of claim: Let β = β1, . . . , βk be the conjugates of β in N . Note that for
σ ∈ G \D we have β ∈ σ(m1), so σ(β) ∈ m1 holds for all σ ∈ G \D. Since each βi
occurs as σ(β1) for some σ ∈ G \D, we have βi ∈ m1 for all i > 1. Now

f =
∏

1≤i≤k

(X − βi)

and so ak−1 = −(β1 + . . . + βk) ∈ (1 + m1) ∩ K = 1 + mv holds (since we have
β1 ∈ 1 + m1 and βi ∈ m1 for i > 1). For i 6= k − 1, we get that ai is a sum of
products of at least two (distinct) βj , and so ai ∈ m1 ∩ K = mv holds for each
i < k − 1.

Now consider the polynomial

g :=
f(ak−1X)

(ak−1)k
= Xk +Xk−1 + ãk−2X

k−2 + . . .+ ã0

over Ov. As we have ak−1 ∈ 1 +mv ⊆ O×v , the claim implies that ãi ∈ mv holds for
each 0 ≤ i < k−1, and hence g satisfies the assumptions of (4). But g cannot have a
zero, since f is irreducible and k > 1. Thus, ¬(4) holds. Taking the contrapositive,
we conclude that (4)⇒ (1) holds. �

Examples 3.12. • Let K be any field with the trivial valuation v. Then
(K, v) satisfies condition (3) from Theorem 3.10, so is henselian.
• Let K = Qp (respectively k = k((t))) and v = vp (resp. v = vt). Then, by

Theorem 3.6, (K, v) satisfies condition (2) in Theorem 3.10, so is henselian.
• Let K = Q, v = vp for some prime p. For q 6= p prime, let

f(x) = Xn + qXn−1 + pqXn−2 + . . .+ pq.

By the Eisenstein criterion, f is irreducible. But

f(X) = Xn + qXn−1 = (X − q)Xn−1

has a simple root, so condition (3) from Theorem 3.10 fails, and hence
(K, v) is not henselian. Alternatively, f(qX)/qn satisfies the assumption
of condition (4) in Theorem 3.10, but fails the conclusion.
• Let K = k(t) and v = vt. Assume char(k) 6= 2. Then f(X) = X2 − (t+ 1)

is clearly irreducible, but f(X) = X2 − 1 has a simple zero, and hence
condition (3) from Theorem 3.10 fails. For char(k) = 2, use f(X) = X2 +
X − (t+ 1) instead. Hence, (k(t), vt) is not henselian.

The proof of the following corollary to Theorem 3.10 is left as an (easy) exercise.

Corollary 3.13. If (K, v) is henselian and gcd(char(Kv), n) = 1 holds, then we
have 1 + mv ⊆ Kn.

The final example of a henselian valued field treated in this section is left as
an ambitious exercise. Help can be found in [EP05, Exercises 3.5.5 and 3.5.6 and
Remark 4.1.8].
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Exercise 3.14. Suppose k is a field and Γ an ordered abelian group. We define

k((Γ)) =

∑
γ∈Γ

aγt
γ : aγ ∈ k for all γ ∈ Γ and {γ : aγ 6= 0} is well-ordered


and call k((Γ)) the generalized power series field or Hahn field over k with exponents
in Γ. We define a valuation v on k((Γ)) by setting

v(
∑
γ∈Γ

aγt
γ) = min{γ : aγ 6= 0}

for
∑
γ∈Γ aγt

γ ∈ k((Γ)). Check that (k((Γ)), v) is a henselian valued field.

4. Galois Theory of Valued Fields

4.1. Infinite Galois Theory. Assumption Throughout this subsection, let K be a
field and Ksep a fixed separable closure of K. Moreover, all finite Galois extensions
of K which occur are embedded as subfields into Ksep.

Definition 4.1. The absolute Galois group of K is defined as

GK := Aut(Ksep/K).

We now treat some infinite Galois Theory which is needed for the construction of
the henselization of a valued field. A more comprehensive introduction to infinite
Galois Theory can be found in [FJ08, Chapter 1]. We start by discussing the
structure of Galois groups as inverse limits.

Proposition 4.2. There is a canonical isomorphism

GK ∼= {(σi)i∈I ∈ (Gal(Li/K))i∈I : Li/K is finite Galois and

if Li ⊆ Lj then σj |Li = σi}.

In other words, GK = lim←−Gal(L/K), where L ranges over all finite Galois exten-
sions of K, with connecting homomorphisms for M ⊇ L ⊇ K given by the canonical
restriction maps

resL : Gal(M/K) � Gal(L/K).

Proof. If σ ∈ GK then we have σ(L) = L (setwise) for all L/K finite Galois:
any σ ∈ GK maps any element a ∈ Ksep onto some element which has the same
minimal polynomial as a over K. Thus, σ induces a compatible sequence of (σi)i∈I
as described above.

Conversely, given a compatible sequence (σi)i∈I , since each x ∈ Ksep is contained
in some finite Galois extension Li/K, we can define σ(x) = σi(x). The compatibility
condition ensures that this definition does not depend on the choice of Li containing
x. �

The canonical isomorphism in Proposition 4.2 above defines a topology on GK :
consider every finite Gal(L/K) with the discrete topology and their product

∏
i∈I Gal(Li/K)

with the product topology, then we can endow GK ≤
∏

Gal(Li/K) with the sub-
space topology (in fact, GK is a closed subset and hence compact see [FJ08, Lemma
1.1.2]).

Like any profinite group, GK is actually Hausdorff, compact, and totally discon-
nected as a topological group ([RZ00, Theorem 2.1.3]).
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Example 4.3. Fix any prime p; we want to describe GFp
. For every n ∈ N, there

exists a unique extension of Fp of degree n, namely Fpn . Because finite fields are
perfect, these extensions are all separable, and in fact they are all normal. These
are percisely the finite Galois extensions of Fp. As we have

Gal(Fpn/Fp) ∼= Z/nZ
for each n ∈ N and Fpn ⊆ Fpm just in case n divides m, we get

GFp
∼= lim
←
Z/nZ =: Ẑ.

Note that all of the above definitions and statements work for any Gal(L/K)
with L/K Galois, not just GK = Gal(Ksep).

Theorem 4.4 (Galois correspondence, [FJ08, Propostion 1.3.1]). Suppose L/K is
Galois (not necessarily finite). There is a 1-1 correspondence

{closed subgroups of Gal(L/K)} 1:1←→ {intermediate fields K ⊆M ⊆ L},

given by

H 7−→ Fix(H)

Gal(L/M) 7−→M.

4.2. Henselizations. We are now approaching our final aim, namely to show that
each valued field has a ‘smallest’ extension which is henselian. We fix the following
notation: Let (K, v) be a valued field, Ksep a separable closure of K, and let w
denote some fixed prolongation of v to Ksep.

Definition 4.5. We define the decomposition group of w over v as

Dw/v := {σ ∈ GK : σ(Ow) = Ow}.

Again, this definition works for any Galois extension L of K with L ⊆ Ksep.
Recall that we already encountered a decomposition group in the proof of Hensel’s
Lemma (Theorem 3.10).

Lemma 4.6. Dw/v is a closed subgroup of GK . If w̃ is another prolongation of v
to Ksep, then Dw̃/v and Dw/v are conjugate in GK .

Proof. Given σ /∈ Dw/v, take α ∈ Ow with α /∈ σ(Ow). Let K ⊆ N ⊆ Ksep with
N/K finite Galois and α ∈ N . Then, we have Ow ∩ N 6= σ(Ow) ∩ N . Thus, for
any τ ∈ GK with τ |N = σ|N , we have τ /∈ Dw/v. Note that the singleton subset
{σ|N} ⊆ Gal(N/K) is open. As GK is equipped with the product topology, the
canonical projection GK → Gal(N/K) is continuous. In particular, the preimage

Aσ := {τ ∈ GK : τ |N = σ|N}
is open in GK . Hence, we have shown that for any σ /∈ Dw/v there is some open
Aσ ⊆ GK with σ ∈ Aσ and Aσ ∩Dw/v = ∅. Thus, Dw/v is closed.

By the Conjugation Theorem (Theorem 2.13), we have Ow̃ = σ(Ow) for some
σ ∈ GK , and hence Dw̃/v = σ ◦Dw/v ◦ σ−1 holds. �

Using the decomposition group, we can now define the henselization.

Definition 4.7. Define (Kh, vh) = (Fix(Dw/v), w|Fix(Dw/v)), and call it the henseliza-

tion of (K, v).
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Note that if w and w̃ are different prolongations of v to Ksep, Lemma 4.6 implies
that the corresponding henselizations are isormorphic. Thus, the henselization of
a valued field is unique up to isomorphism.

We now show that the henselizsation indeed has the properties which make it
the ‘smallest henselian extension’.

Theorem 4.8 (Universal Property of the Henselization). The henselization (Kh, vh)
of (K, v) has the following characterization:

(1) (Kh, vh) is henselian and
(2) if (L,w) is a henselian valued extension of (K, v), then there exists a unique

K-embedding i : (Kh, vh) ↪→ (L,w), i.e., i : Kh ↪→ L is an embedding of
fields with i(Ovh) = Ow ∩ i(Kh) and i|K = idK .

Proof. We first show that (Kh, vh) satisfies both properties (1) and (2).

(1) By Galois correspondence (Theorem 4.4), we have

Gal(Ksep/Kh) = Dw/v = {σ ∈ GK : σ(Ow) = Ow}.

Hence, applying the Conjugation Theorem (Theorem 2.13), we see that vh

extends uniquely to Ksep.
(2) Assume that (L,w) ⊇ (K, v) is henselian. Then, by Hensel’s Lemma (use

condition (4) of Theorem 3.10), the subfield (Kalg ∩ L,w|Kalg∩L) is also
henselian as it is relatively algebraically closed. Moreover, by Proposition
2.10, (Ksep ∩ L,w|Ksep∩L) is again henselian. Thus, we may assume that
L/K is a separable algebraic extension.

Let w̃ (respectively ṽ) be the (by henselianity) unique extension of w
(respectively vh) to Ksep. As w extends uniquely to Ksep, we have that
Gal(Ksep/L) ⊆ Dw̃/w or, equivalently, Fix(Dw̃/w) ⊆ L holds. Note that
w̃ is also a prolongation of v to Ksep. Thus, by the infinite version of the
Conjugation Theorem (Fact 2.14), there is some σ ∈ GK with σ(Oṽ) = Ow̃
and hence σ(Kh) = Fix(Dw̃/v).

Claim: The embedding σ is uniquely determined.

Proof of claim: Suppose that ρ : Kh → L is a homomorphism with
ρ|K = idK and ρ(Ovh) = Ow̃ ∩ ρ(Kh). Extend ρ to any K-automorphism
ρ̃ of Ksep: clearly, there is an extension of ρ to any finite separable exten-
sion M of Kh. Using Zorn’s lemma, there is a maximal homomorphism ρ̃
extending ρ, it is straightforward to check that ρ̃ is an automorphism of
Ksep. Then, we have

ρ̃(Oṽ) ∩ ρ̃(Kh) = ρ̃(Oṽ ∩Kh) = ρ̃(Ovh) = Ow̃ ∩ ρ̃(Kh).

As ρ̃(Ovh) is a henselian valuation ring on ρ̃(Kh), we get ρ̃(Oṽ) = Ow̃.
Thus, we have ρ̃−1 ◦ σ(Oṽ) = Oṽ and hence ρ̃−1 ◦ σ ∈ Dṽ/v. Therefore, we
get ρ̃|Kh = σ|Kh . This proves the claim.

By the claim, (Kh, vh) satisfies (2) as required.

Finally, if (K0, v0) is another extension of (K, v) satisfying (1) and (2), we imme-
diately get embeddings i1 : (Kh, vh) ↪→ (K0, v0) and i2 : (K0, v0) ↪→ (Kh, vh) and
hence an isomorphism (Kh, vh) ∼= (K0, v0). �

As an immediate consequence, we get the following corollaries.
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Corollary 4.9. A field (K, v) is henselian if and only if (K, v) = (Kh, vh).

Corollary 4.10. For any K ⊆ L ⊆ Ksep, we have Kh = Fix(Dw/v) ⊆ L if and
only if (L,w|L) is henselian.

We now show that decomposition groups behave well in towers.

Proposition 4.11. Let (K, v) be a valued field and ṽ a prolongation of v to some
Galois extension F ⊆ Ksep. For any intermediate field K ⊆ L ⊆ F with L/K
Galois and induced valuation ring Ow = Oṽ ∩ L, the restriction map induces a
canonical surjection:

Dṽ/v = {σ̃ ∈ Gal(F/K) : σ̃(Oṽ) = Oṽ} −→ Dw/v = {σ ∈ Gal(L/K) : σ(Ow) = Ow}
σ̃ 7−→ σ̃|L

Proof. We first show that for any σ̃ ∈ Dṽ/v, its restriction σ := σ̃L to L is indeed
contained in Dw/v. Note that, as F/K is Galois, we have σ ∈ Gal(L/K). Moerover,
Ow = Oṽ ∩ L implies

σ(Ow) ⊆ σ̃(Oṽ) ∩ σ̃(L) = Oṽ ∩ L.

Now, using Proposition 2.10, we get Ow = σ(Ow).
Conversely, take any σ ∈ Dw/v and extend it to some σ̃ ∈ Gal(F/K). By

the Conjugation Theorem (Theorem 2.14), there is some τ ∈ Gal(F sep/F ) =
Gal(Ksep/F ) with τ(σ̃(Oṽ)) = Oṽ. Thus, we have τ ◦σ̃ ∈ Dṽ/v and, as (τ ◦σ̃)|L = σ
holds, τ ◦ σ̃ is indeed in the preimage of σ. �

Proposition 4.11 gives rise to the notion of a relative henselization, as it implies
Fix(Dw/v) ⊆ Fix(Dṽ/v) for any Galois extension (K, v) ⊆ (L,w) ⊆ (Ksep, ṽ).

Observation 4.12. Let (K, v) ⊆ (L,w) be such that L/K Galois and define Dw/v

as before. Consider the intermediate field given by

(M,u) := (Fix(Dw/v), w|Fix(Dw/v)).

Then, (M,u) is the relative henselization of (K, v) with respect to (L,w), i.e., u
extends uniquely to L and (M,u) embeds into any intermediate valued field (K, v) ⊆
(F, ν) ⊆ (L,w) with this property.

Finally, we show that the henselization of a valued field (K, v) is not only ‘small’
in the sense that it embeds into any henselian extension, but also has the same
value group and residue field as (K, v).

Theorem 4.13. The henselization (Kh, vh) is an immediate extension of (K, v),
i.e., we have Khvh = Kv and vhKh = vK.

Proof. Fix some prolongation ṽ of v to Ksep. By Proposition 4.11, it suffices to show
that for any finite Galois extensionK ⊆ N ⊆ Ksep with valuation ringOu = Oṽ∩N ,
we have that L := Fix(Du/v) with its induced valuation ring Ow := Ou ∩ L is an

immediate extension of K. As any element in Kh is contained in some finite Galois
extension of K, this implies Khvh = Kv.

We first show Lw = Kv. Take any x ∈ O×w ; we want to show that we have
x ∈ Kv. Let w = w1, . . . , wr be the prolongations of v to L. Note that we may
assume r > 1: Otherwise, (K, v) is already relatively henselian in (N, u), so we
have L = K and trivially x ∈ Kv.
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Consider the subring of L given by R :=
⋂r
i=1Owi

. By the Weak Approximation
Theorem (Theorem 2.12), we can choose some y ∈ R with y ∈ (x+mw1

)∩
⋂r
i=2 mwi

.
Let y, σ1(y), . . . , σs(y) be the distinct conjugates of y over K in N . Since we have
chosen y ∈ L = Fix(Dw/v), we get σ1, . . . , σs /∈ Dw/v. This implies for every

1 ≤ j ≤ s that σ−1
j (mw) = mwi

holds for some i 6= 1. We conclude σj(y) ∈ mw for
every 1 ≤ j ≤ s. Thus, we can write

x = y + σ1(y) + . . .+ σs(y).

But the sum of the conjugates of y over K (i.e., the right hand side without the
bar) is a coefficient in the minimum polynomial of y over K, and hence its residue
is in Kv. Thus, we have x ∈ Kv and hence Lw = Kv.

We now show that we have wL = vK. Choose any x ∈ L; we want to show that
w(x) ∈ vK holds. Once more, let w = w1, . . . , wr denote the prolongations of v
to L, we may assume r > 1 as before. Using the Weak Approximation Theorem
(Theorem 2.12) once more, we can choose y ∈ (1 +mw)∩

⋂r
i=2 mw2 . Then, there is

some n ∈ N such that we have

w(xyn) = w(x) 6= wi(xy
n)

for i ≥ 2 (note that for every i ≥ 2, w(x) = wi(xy
n) holds for at most one n ∈ N).

Let xyn, σ1(xyn), . . . , σs(xy
n) be the dictinct conjugates of xyn over K.

As once more σj /∈ Dw/v holds for 1 ≤ j ≤ s, we have σj(xy
n) ∈ mw1 as before.

Consider the minimal polynomial f of xyn over K given by

f(X) =

s∏
j=0

X − σj(xyn) = Xs+1 + csX
s + . . .+ c0

(setting σ0 = id). Then, xyn is the unique zero of f with w(xyn) = w1(x). Without
loss of generality, the σj ’s are ordered such that

w(σj(xy
n)) < w(x) for 1 ≤ j ≤ k

and

w(σj(xy
n)) > w(x) for j > k

holds; we cannot have equality of these valuations since j = 0 is the unique element
with equality. Note that for each j ≥ 0, if we set l = s− j + 1, we have

cj = ±
∑

0≤j1<...<jl≤r

σj1(xyn) . . . σjl(xy
n).

Now, by the choice of k, we have

w(cs−k+1) = w

 ∑
0≤j1<...<jk≤r

σj1(xyn) . . . σjk(xyn)

 = w

 k∏
j=1

σj(xy
n)

 ∈ vK
and

w(cs−k) = w

 k∏
j=0

σj(xy
n)

 ∈ vK
and hence

w(xyn) = w(cs−k+1/cs−k) = w(cs−k+1)− w(cs−k) ∈ vK.
Thus, we get w(x) = w(xyn) ∈ vK, so wL = vK. �
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Overall, we have shown that any valued field (K, v) admits a henselization
(Kh, vh) (which is unique up to isomorphism): this is an immediate and separably
algebraic extension which embeds into any henselian extenion of (K, v).

References

[EP05] Antonio Engler and Alexander Prestel. Valued Fields. Springer Monographs in Math-
ematics. Springer, 2005.

[FJ08] Michael D. Fried and Moshe Jarden. Field Arithmetic. Ergebnisse der Mathematik III

11. 3rd edition, revised by M. Jarden. Springer, 2008.
[RZ00] Luis Ribes and Pavel Zalesskii. Profinite Groups. Springer, 2000.

Institut für Mathematische Logik und Grundlagenforschung, University of Münster,

Einsteinstr. 62, 48149 Münster, Germany

E-mail address: franziska.jahnke@wwu.de


