Isomorphism of homogeneous structures

John D. Clemens

Abstract We consider the complexity of the isomorphism relation on countable first-order structures with transitive automorphism groups. We use the theory of Borel reducibility of equivalence relations to show that the isomorphism problem for vertex-transitive graphs is as complicated as the isomorphism problem for arbitrary graphs, and determine for which first-order languages the isomorphism problem for transitive countable structures is as complicated as it is for arbitrary countable structures. We then use these results to characterize the complexity of the isometry relation for certain classes of homogeneous and ultra-homogeneous metric spaces.

In their article [4], Friedman and Stanley considered the question of how difficult it is to classify a collection of countable first-order structures up to isomorphism. To make this precise, they define the space of countable models of a given first-order theory, and consider the isomorphism relation as an equivalence relation on this space. They then use the relation of Borel reducibility of equivalence relations to compare such isomorphism relations, thus characterizing the difficulty of the corresponding isomorphism problem.

Certain first-order languages and theories have an isomorphism problem of maximal complexity, in the sense that any other such isomorphism relation can be reduced to them. Such theories are called Borel-complete. Many of the techniques for showing that a given theory is Borel-complete involve coding other structures into models of the given theory, and this generally involves the use of distinguished points or definable subsets in the models produced. The aim of this article is to consider the extent to which distinguished points can be eliminated, that is, to consider the complexity of the isomorphism problem for structures with no distinguished points.
To that end, we consider structures whose automorphism group acts transitively, so that there are no non-trivial definable subsets. We first show that the isomorphism problem for countable vertex-transitive graphs is Borel-complete, i.e., it is as complicated as the isomorphism problem for arbitrary countable graphs. We then use this result to show that the collection of countable \(\mathcal{L} \)-structures with transitive automorphism groups for a given first-order language \(\mathcal{L} \) is Borel-complete precisely when \(\mathcal{L} \) contains a relation or function symbol of arity at least 2, or contains at least two unary function symbols. We then use the result about vertex-transitive graphs in order to determine the complexity of the isometry relation on certain classes of homogeneous and ultra-homogeneous metric spaces.

In Section 1 we review the coding of countable models and the notion of Borel-completeness. Section 2 presents the proof that the collection of vertex-transitive graphs is Borel-complete, as well as several variants. In Section 3 we characterize the languages whose isomorphism problem for transitive structures is Borel-complete, and we discuss some related results and questions in Section 4. We then use these results to classify the complexity of the isometry relation for homogeneous discrete and locally compact metric spaces in Section 5, and we consider ultra-homogeneous discrete and locally compact metric spaces in Section 6.

1 The space of countable models

We begin by defining the space of countable models for a given first-order language \(\mathcal{L} \). Definitions of any undefined model-theoretic terms may be found, e.g., in Hodges [7]. Results about spaces of countable structures may be found in [4] and Hjorth [6].

Definition 1.1 Let \(\mathcal{L} = \{R_i : i \leq N\} \) be a finite relational language, where \(R_i \) has arity \(n_i \). The *space of countable models of \(\mathcal{L} \), Mod(\(\mathcal{L} \)),* is the set

\[
\prod_{i \leq N} \mathcal{P}(\mathbb{N}^{n_i}),
\]

where \(\mathcal{P}(\mathbb{N}^{n_i}) \) is the set of all subsets of \(\mathbb{N}^{n_i} \). This space is equipped with the product topology obtained by identifying \(\mathcal{P}(\mathbb{N}^{n_i}) \) with \(2^{\mathbb{N}^{n_i}} \).

Thus, a point in the space codes a countable structure \(\mathcal{M} \) whose underlying set is \(\mathbb{N} \), and where the interpretation of \(R_i \) in \(\mathcal{M} \) is given by the corresponding subset of \(\mathbb{N}^{n_i} \). We can extend this coding to handle countably infinite languages and languages with constant or function symbols in a straightforward manner.

Definition 1.2 The *isomorphism relation on Mod(\(\mathcal{L} \)), \(\equiv_{\mathcal{L}} \),* is defined by setting two points equivalent if they code isomorphic \(\mathcal{L} \)-structures.

We can also consider the collection of models of some first-order theory \(T \) (or \(\mathcal{L}_{\omega_1, \omega} \)-sentence) in the language \(\mathcal{L} \), denoted \(\text{Mod}(T) \); this will be a Borel subset of \(\text{Mod}(\mathcal{L}) \). We then identify the isomorphism problem for models of \(T \) with the isomorphism relation \(\equiv_{\mathcal{L}} \) restricted to \(\text{Mod}(T) \), and we use the same terminology for other collections of \(\mathcal{L} \)-structures.

In order to compare the complexity of two isomorphism problems, we use the notion of Borel reducibility of equivalence relations.
Definition 1.3 Let E and F be equivalence relations on the standard Borel spaces X and Y. We say that E is Borel reducible to F, $E \leq_B F$, if there is a Borel function $f : X \to Y$ such that for all $x_1, x_2 \in X$ we have $x_1 E x_2$ if and only if $f(x_1) F f(x_2)$.

Definition 1.4 Let T be a first-order theory. We say that T is Borel-complete if any isomorphism relation $\cong_\mathcal{L}$ is Borel reducible to $\cong_\mathcal{L} \upharpoonright \text{Mod}(T)$. This is equivalent to saying that any orbit equivalence relation induced by an action of the infinite symmetric group S_∞ is Borel reducible to the isomorphism relation for T (see Theorem 2.7.3 of [1]). We similarly say that a language is Borel-complete when the empty theory in that language is Borel-complete, and we say a given class of \mathcal{L}-structures is Borel-complete when any other isomorphism relation is reducible to the isomorphism relation on that class of structures.

To show that a theory is Borel-complete, it suffices to show that some other Borel-complete theory is Borel reducible to it. Friedman and Stanley show, for instance, that the theory of graphs is Borel-complete, so we can show that a theory is Borel-complete by reducing to it the relation of graph isomorphism.

2 Isomorphism of symmetric graphs

We begin by considering isomorphism of transitive graphs. In the theory of graphs there are two common notions of transitivity: vertex-transitivity and edge-transitivity.

Definition 2.1 A graph G is vertex-transitive if the automorphism group of G acts transitively on the set of vertices. A graph is edge-transitive if the automorphism group acts transitively on the set of edges.

It is more usual in model theory to axiomatize graphs so that the underlying set of the structure is the set of vertices of the graph and a symmetric binary relation determines which vertices are connected by an edge. Having a transitive automorphism group in this setting then corresponds to vertex-transitivity. Alternately, if we let the underlying set of the structure correspond to the set of edges and use relations to indicate when two edges meet at a common vertex (which is technically more complicated), then having a transitive automorphism group corresponds to edge-transitivity. When we refer to graphs we will always assume they are axiomatized in the first manner. We say that two vertices are adjacent if they are joined by an edge.

We shall first concern ourselves with the case of countable connected vertex-transitive graphs, and show that their isomorphism problem is Borel-complete. Although the classes of countable structures we consider will not generally be axiomatizable by an $\mathcal{L}_{\omega_1 \omega}$ sentence, we shall use the same terminology. We will use the fact that the empty theory in the language whose signature consists of a single binary relation is Borel complete (see [4]).

Theorem 2.2 Isomorphism of countable connected graphs having vertex-transitive automorphism groups is Borel-complete.

Proof Let \mathcal{L}_0 be the language whose signature contains a single binary relation symbol. We shall reduce isomorphism of countable \mathcal{L}_0-structures to
isomorphism of countable connected vertex-transitive graphs. The main idea of the proof will be that Cayley graphs for countable groups provide canonical vertex-transitive graphs. In fact, any vertex-transitive graph is close to being the Cayley graph of some group; see Sabidussi [10]. Our construction is based closely on Mekler’s proof that the theory of nilpotent class 2 groups of prime exponent is Borel-complete (see Mekler [9]). Mekler begins by constructing a Borel map which assigns to each \(L_0 \)-structure \(A \) a graph \(G(A) \) in an isomorphism-preserving way so that \(A_1 \cong A_2 \) if and only if \(G(A_1) \cong G(A_2) \). The graph \(G(A) \) has the following three properties (of which we will need only the first here):

1. If \(v_1 \neq v_2 \) are two vertices, then there is a vertex \(v_3 \) which is adjacent to \(v_1 \) but not adjacent to \(v_2 \).
2. Any two vertices have at most one common adjacent vertex.
3. If two vertices are adjacent then they have no common adjacent vertex.

We can also require that this graph be infinite.

We start with an \(L_0 \)-structure \(A \) and let \(\{v_i\}_{i \in \mathbb{N}} \) enumerate the vertices of \(G(A) \). Let \(H \) be the group freely generated by the vertices of \(G(A) \), except that we let adjacent vertices commute. That is, if \(\{g_i\}_{i \in \mathbb{N}} \) are generators of the free group on countably many generators, \(\mathbb{F}_\omega \), then

\[
H = \mathbb{F}_\omega / \{g_ig_jg_i^{-1}g_j^{-1} : \text{ } v_i \text{ is adjacent to } v_j \text{ in } G(A)\}.
\]

Let \(G \) be the Cayley graph of \(H \) with the generators \(\{g_i\}_{i \in \mathbb{N}} \). Specifically, let \(N \) be the normal subgroup of \(\mathbb{F}_\omega \) generated by

\[
\{g_ig_jg_i^{-1}g_j^{-1} : \text{ } v_i \text{ is adjacent to } v_j \text{ in } G(A)\}.
\]

Vertices of \(G \) are left cosets of \(N \) in \(\mathbb{F}_\omega \), and two vertices \(w_1N \) and \(w_2N \) are adjacent in \(G \) if there is a generator \(g_i \) such that \(g_1w_1N = w_2N \) or \(g_2w_2N = w_1N \). We can definably produce a code for this structure (that is, represent it as a structure with underlying set \(\mathbb{N} \)) in the following manner. First, fix an enumeration \(\{w_i\}_{i \in \mathbb{N}} \) of the words in \(\mathbb{F}_\omega \) with the generators \(\{g_i\}_{i \in \mathbb{N}} \). For each coset of \(N \), we can then pick the least \(i \) such that \(w_i \) is in the given coset and take this element \(w_i \) as a representative of the coset. Note that it may be undecidable to determine whether two integers index words in the same coset, but that will be irrelevant here. We then can enumerate these representatives, and define the binary relation on \(\mathbb{N} \) which encodes this graph according to whether the corresponding cosets are adjacent in \(G \). Call the code for this graph \(G(A) \).

Observe that the generators \(\{g_i\}_{i \in \mathbb{N}} \) are all in distinct cosets. Also, for later use note that we could instead form the directed Cayley graph, where an edge points from a vertex \(w_1N \) to another vertex \(w_2N \) if there is a generator \(g_i \) with \(g_1w_1N = w_2N \).

We claim that the map \(A \mapsto G(A) \) is the desired reduction of \(\cong_{L_0} \) to the isomorphism relation on vertex-transitive graphs. First, it is easy to check that each graph \(G(A) \) is vertex-transitive, for if we have two vertices \(w_1N \) and \(w_2N \) in \(G(A) \) then the map \(\varphi \) defined by

\[
\varphi(wN) = wNw_1^{-1}w_2 = wNw_1^{-1}w_2N
\]

will be an automorphism of \(G(A) \) sending \(w_1N \) to \(w_2N \).
Next, suppose that we have \mathcal{L}_0-structures A_1 and A_2 with $A_1 \cong A_2$. Then the graphs $G(A_1)$ and $G(A_2)$ given by Mekler's construction are also isomorphic, so let f be an isomorphism between these two graphs. Then f induces a partial map φ from $G(A_1)$ to $G(A_2)$ given by $\varphi(g_i) = g_{f(i)}$ (more precisely, φ acts on the cosets of these elements). We want to extend this map to an isomorphism of the whole graphs. Let N_1 and N_2 be the respective normal subgroups in the constructions of f and φ.

To see this, we define the map $w \mapsto wN_2$, where $w = g_{f(1)} \cdots g_{f(n)}$ for $w = g_{f(1)}^{n_1} \cdots g_{f(n)}^{n_0}$. We see that φ is a bijection, and we check that it is well-defined. Note that the map $w \mapsto \bar{w}$ is an automorphism of $G(A_1)$ and $G(A_2)$. We then let

$$\varphi(wN_1) = \bar{w}N_2,$$

where $\bar{w} = g_{f(1)}^{n_1} \cdots g_{f(n)}^{n_0}$. To see that φ is an isomorphism, suppose that w_1N_1 and w_2N_1 are adjacent in $G(A_1)$, say $g_kw_1N_1 = w_2N_2$. We then have that $(g_kw_1)N_2 = \bar{w}_2N_2$. But $(g_kw_1) = g_{f(k)}w_1$ so we have that $g_{f(k)}\varphi(w_1N_1) = \varphi(w_2N_1)$. The reverse direction is identical, so that we have the vertices w_1N_1 and w_2N_1 adjacent in $G(A_1)$ if and only if the vertices $\varphi(w_1N_1)$ and $\varphi(w_2N_1)$ are adjacent in $G(A_2)$.

Finally, suppose that $G(A_1) \cong G(A_2)$. We will show that $A_1 \cong A_2$ by showing that $G(A_1) \cong G(A_2)$. To see this, it will suffice to see how to recover $G(A)$ (up to isomorphism) from the isomorphism class of $G(A)$. Fix a vertex in $G(A)$. By vertex-transitivity of $G(A)$ it does not matter which vertex we use, so we may assume that it is the vertex corresponding to N. We can then identify the vertices adjacent to this fixed vertex, which will be the vertices $g_k^{\pm 1}N$. These vertices are all distinct, although we will not be able to identify which is which. Let these vertices be enumerated as $\langle u_i \rangle_{i \in \mathbb{N}}$. Consider the binary relation R on this set, where two vertices are R-related if they are at opposite corners of a square (i.e., a cycle of length 4) in $G(A)$. That is,

$$u_i, R u_j \iff u_i \neq u_j \land \exists a \exists b [a \neq b \land (u_i \text{ and } u_j \text{ are each adjacent to both } a \text{ and } b)].$$

This relationship can be determined entirely from the isomorphism class of $G(A)$. We claim that $u_i, R u_j$ if and only if there are k_1 and k_2 in \mathbb{N} and σ_1 and σ_2 in $\{1, -1\}$ with $u_i = g_{k_1}^{\sigma_1}N$ and $u_j = g_{k_2}^{\sigma_2}N$ such that v_{k_1} is adjacent to v_{k_2} in $G(A)$ (although again we are not claiming to be able to reconstruct $G(A)$).

First, if there are such a k_1 and k_2 then g_{k_1} and g_{k_2} commute in H, so that u_i and u_j are opposite vertices in the square which also includes N and $g_{k_1}^{\sigma_1}g_{k_2}^{\sigma_2}N = g_{k_2}^{\sigma_2}g_{k_1}^{\sigma_1}N$. Suppose conversely that $u_i, R u_j$. Let $u_i = g_{k_1}^{\sigma_1}N$ and $u_j = g_{k_2}^{\sigma_2}N$. Let a and b be the other two vertices of the square. There are thus generators $g_{m_1}, g_{m_2}, m_{m_1}$, and g_{m_2} and $\tau_1, \tau_2, \rho_1, \rho_2 \in \{1, -1\}$ witnessing this, i.e.,

$$a = g_{m_1}g_{k_1}^{\sigma_1}N = g_{m_2}g_{k_1}^{\sigma_2}N$$

$$b = g_{m_1}g_{k_1}^{\sigma_1}N = g_{m_2}g_{k_2}^{\sigma_2}N.$$
We therefore have
\[g_k^{−\tau_1} g_m^{\sigma_1} g_n^{\sigma_2} g_{\gamma_2} \in N \text{ and } g_k^{−\tau_1} g_m^{\rho_1} g_n^{\rho_2} g_{\gamma_2} \in N. \]

Words in \(N \) must have the sum of the exponents of each generator equal to 0, so in particular we must have \(k_1 = k_2, k_1 = n_1, \) or \(k_1 = n_2. \) If \(k_1 = k_2, \) then we must have \(\sigma_2 = −\sigma_1, \) since otherwise we would have \(u_i = u_j. \) This would require that \(n_1 = n_2 = k_1 = k_2 \) and that \(\sigma_2 = \sigma_1 + \tau_2 − \tau_1 = 0, \) from which we conclude that \(\tau_1 = −\sigma_1, \) so that \(a = N. \) Similarly, if \(k_1 ≠ k_2 \) and \(k_1 = n_1, \) then we must have \(\tau_1 = −\sigma_1 \) and again we have \(a = N. \)

The last possibility is that \(k_1 ≠ k_2 \) and \(k_1 = n_2. \) Then we also have \(k_2 = n_1, σ_1 = τ_2, \) and \(σ_2 = τ_1. \) Making these substitutions, we find that
\[g_k^{−\tau_1} g_m^{−\sigma_2} g_n^{\rho_1} g_{\gamma_2} \in N. \]

From the definition of \(N, \) this implies that \(g_k \) and \(g_{\gamma_2} \) commute in \(H, \) which means that \(v_k \) was adjacent to \(v_{\gamma_2} \) in \(G(\mathcal{A}). \)

A similar argument applied to \(b \) shows that either \(b = N \) or \(v_k \) is adjacent to \(v_{\gamma_2} \) in \(G(\mathcal{A}). \) Since we know that \(a ≠ b, \) they can not both be equal to \(N \) so that \(v_k \) and \(v_{\gamma_2} \) must be adjacent as we wished to show.

We can now identify pairs \(\{u_i, u_j\} \) of elements such that \(u_i \) is \(R \)-related to the same elements as \(u_j. \) This will identify pairs of the form \(\{g_kN, g_k^{-1}N\}, \) and will not identify any other pairs because property (1) of \(G(\mathcal{A}) \) ensures that for distinct vertices there will be a vertex adjacent to the first but not to the second (and vice-versa). We then form the graph whose vertices are the pairs just described, and we set two pairs adjacent to one another if each of the elements of the first is \(R \)-related to each of the elements of the second.

Our analysis of the relation \(R \) then shows that the graph we have just formed will be isomorphic to \(G(\mathcal{A}). \)

We should note that the groups whose Cayley graphs are constructed here are different than the groups used in Mekler’s result (since the groups here are not nilpotent); it is unclear whether Mekler’s groups can be used directly. The above proof also works for the case of directed graphs (digraphs) if instead of forming the Cayley graph of \(H \) we instead form the directed Cayley graph as described in the above proof. We thus get:

Theorem 2.3 Isomorphism of countable weakly-connected directed graphs with vertex-transitive automorphism groups is Borel-complete.

We now consider graphs with even larger automorphism groups. We consider the following property of a graph which implies both vertex-transitivity and edge-transitivity.

Definition 2.4 We say that a graph \(G \) is symmetric if for any two edges \((u_1, u_2)\) and \((v_1, v_2)\) in \(G \) there is an automorphism \(\varphi \) of \(G \) such that \(\varphi(u_1) = v_1 \) and \(\varphi(u_2) = v_2. \)

Thus, not only can every edge be mapped to any other edge by an automorphism, but we can pick the orientation. This property is in general stronger than either vertex-transitivity or edge-transitivity. The following theorem shows that the isomorphism problem is no simpler, though. This theorem will also be useful to us in the next section.
Theorem 2.5 Isomorphism of countable, symmetric, connected graphs is Borel-complete.

Proof We will reduce isomorphism of the vertex-transitive graphs produced in the proof of Theorem 2.2 to isomorphism of symmetric graphs. We will in fact re-use part of the embedding produced there. Recall that given a countable \(\mathcal{L}_0 \)-structure \(\mathcal{A} \) we produced a vertex-transitive graph \(\mathcal{G}(\mathcal{A}) \) which was the Cayley graph of a countable group. Note that these graphs continue to have property (1) of Mekler’s graphs: If \(v_1 \) and \(v_2 \) are distinct vertices then there is a vertex \(v_3 \) adjacent to \(v_1 \) but not to \(v_2 \). Thus, we can apply the embedding which sent the intermediate graph \(\mathcal{G}(\mathcal{A}) \) to the vertex-transitive graph \(\mathcal{G}(\mathcal{A}) \) to these resulting graphs. If we let \(G \mapsto \mathcal{G} \) be the result of applying this embedding to one of our vertex-transitive graphs \(G \), we will thus have that

\[
G_1 \cong G_2 \iff \mathcal{G}_1 \cong \mathcal{G}_2.
\]

It thus suffices to show that whenever \(G \) is one of our earlier vertex-transitive graphs then its image \(\mathcal{G} \) is symmetric.

We have that \(\mathcal{G} \) is vertex-transitive as before, so to verify symmetry it will suffice to show the following:

If \(v_0 \) is some fixed vertex (say the coset \(N \)) and \(v_1 \) and \(v_2 \) are two vertices adjacent to \(v_0 \) in \(\mathcal{G} \), then there is an automorphism \(\pi \) of \(\mathcal{G} \) such that \(\pi(v_0) = v_0 \) and \(\pi(v_1) = v_2 \).

Let \(v_0 = N \). The vertices adjacent to \(v_0 \) will then be of the form \(g_k^{\pm 1}N \) where \(g_k \) is a generator of \(F_\omega \).

We first consider the case where \(v_1 = g_kN \) and \(v_2 = g_k^{-1}N \), and produce an automorphism \(\pi_1 \) fixing \(v_0 \) and interchanging \(v_1 \) and \(v_2 \). Let \(\pi_1 \) be defined by

\[
\pi_1(wN) = \bar{w}N,
\]

where \(\bar{w} = g_{i_n}^{-\omega} \cdots g_{i_0}^{-\omega} \) for \(w = g_{i_n}^{\omega} \cdots g_{i_0}^{\omega} \). We check that this is well-defined. If \(w_1N = w_2N \) then \(w_1^{-1}w_2 \in N \), so \(w_1^{-1}w_2 \) is a product of conjugates of words of the form \(g_{i_n}g_{i_j}^{-1}g_{j}^{-1} \). Then \(\bar{w}_1^{-1}\bar{w}_2 \) will be of the same form, so that \(\bar{w}_1N = \bar{w}_2N \). The map is clearly a bijection fixing \(v_0 = N \) and interchanging \(v_1 \) and \(v_2 \). Finally, we see that it is a graph automorphism since if \(g_kw_1N = w_2N \) then \(g_k^{-1}\bar{w}_1N = \bar{w}_2N \).

We next exhibit an automorphism \(\pi_2 \) fixing \(v_0 \) and sending \(v_1 = g_kN \) to \(v_2 = g_jN \). Since the graph \(G \) is vertex-transitive, there is an automorphism \(\varphi \) of \(\mathcal{G} \) sending \(v_i \) to \(v_j \). We think of \(\varphi \) as a permutation of the indices of the vertices of \(G \). We then define \(\pi_2 \) by letting

\[
\pi_2(wN) = \bar{w}N,
\]

where \(\bar{w} = \varphi_{\omega}(i_n) \cdots \varphi_{\omega}(i_0) \) for \(w = g_{\omega}(i_n) \cdots g_{\omega}(i_0) \). As before, it is straightforward to check that \(\pi_2 \) is an automorphism of \(\mathcal{G} \) fixing \(v_0 \) and sending \(v_1 \) to \(v_2 \).

Finally, we can combine automorphism of the previous two types to produce an automorphism fixing \(v_0 \) and sending any \(v_1 \) adjacent to it to any other \(v_2 \) adjacent to it, so \(\mathcal{G} \) is symmetric. \(\square \)

Once again, we could instead form the directed Cayley graph with edges from \(wN \) to \(g_kwN \) in our construction. Symmetry in the case of directed graphs
only requires that we move similarly oriented edges to one another. A similar
proof works here also, since we need only produce automorphisms fixing \(N \)
and sending \(g_i N \) to \(g_j N \), and do not need to interchange \(g_k N \) and \(g_k^{-1} N \). We
thus have:

Theorem 2.6 Isomorphism of symmetric weakly-connected countable directed
graphs is Borel-complete.

Let us also note that if we continue to iterate this embedding then we can
get Borel-completeness for classes of graphs with even greater symmetry, for
instance graphs in which every square (4-cycle) can be mapped to any other
square by an automorphism. As we will discuss below, there is an upper limit
to the amount of symmetry we can demand while still having a complicated
isomorphism problem.

To emphasize the complexity retained by transitive graphs, we can restate
our main result as follows:

Corollary 2.7 Classifying countable connected symmetric graphs up to iso-
morphism is as complicated as classifying arbitrary countable graphs.

3 Other transitive countable structures

Besides the theory of graphs, one would like to know other examples of theories
whose class of transitive countable models has a Borel-complete isomorphism
problem. In this section we analyze the simplest theories possible, namely
the empty theory in languages with various signatures, and determine when
they have a Borel-complete isomorphism problem for their classes of countable
models with transitive automorphism groups.

We have already seen one case for which this is true, the language \(L_0 \) whose
signature contains a single binary relation symbol. This is because the theory
of graphs can be axiomatized with a single binary relation symbol, and so
the class of \(L_0 \)-structures with transitive automorphism groups contains the
class of vertex-transitive graphs, whose isomorphism problem we saw to be
Borel-complete in Theorem 2.2. We thus get:

Corollary 3.1 The isomorphism problem for transitive \(L_0 \)-structures is Borel-
complete.

We can conclude more from this. Before proceeding, let us note that we should
only consider signatures without constant symbols. Since a constant symbol
must be interpreted by a single element of a structure, it immediately produces
a definable element. A definable element is fixed by every automorphism, so
the structure cannot have a transitive automorphism group (unless it contains
only that one element). So unless stated otherwise, we shall assume our
signatures contain no constant symbols.

Now, notice that if we add relation or function symbols to a language
whose collection of transitive models is Borel-complete then we will still have
a Borel-complete isomorphism problem because we can restrict our attention
to those structures where the new symbols have trivial interpretations (for
instance, nothing is related under new relation symbols, and new function
symbols uniformly map to the first coordinate). These structures will then
have the same automorphism groups as their reducts to the original language.
Next, notice that a binary relation can be coded into an n-ary relation for $n \geq 3$ by simply having the relation depend only on the first two coordinates. This will not affect the automorphism group. Likewise, an irreflexive (or reflexive) binary relation can be coded into a binary function so as to preserve automorphisms. To do this, interpret f so that $f(x, x) = x$ and so that for $x \neq y$ we have $f(x, y) = x$ if $x R y$ and $f(x, y) = y$ if $x \not{R} y$. Since the binary relation for adjacency in graphs is irreflexive, we can thus code transitive graphs into transitive structures for language with a binary function symbol. We can also encode a binary function in an n-ary function for $n \geq 3$ in an isomorphism-preserving way by again letting the function depend only on the first two coordinates. Summarizing this, we have:

Corollary 3.2 If \mathcal{L} is a language whose signature contains an n-ary relation or function symbol for some $n \geq 2$, then the isomorphism problem for the class of \mathcal{L}-structures with transitive automorphism groups is Borel-complete.

On the other hand, all that we can code in a transitive structure for a language with only unary relations is an element of $2^\mathbb{N}$, since each relation must either be satisfied by everything or by nothing (we are assuming a countably infinite language; in general we can encode an element of $2^{|L|}$). Similarly, if the language contains only a single unary function symbol then there are only countably many isomorphism types for transitive structures, with the isomorphism type only depending on whether the function splits into some number of finite cycles (and the corresponding cycle size) or whether it splits into some number of uniformly branching bi-infinite trees (and the branching number, i.e., the size of the preimage of a point). The isomorphism relation for transitive models of such languages will then be simple in the following sense.

Definition 3.3 An equivalence relation E on X is **concretely classifiable** if it is Borel reducible to the identity relation on some Polish space, i.e., there is a Borel function $f : X \to Y$ for some Polish space Y such that for all $x_1, x_2 \in X$ we have $x_1 E x_2$ if and only if $f(x_1) = f(x_2)$.

We then get:

Proposition 3.4 If \mathcal{L} is a language whose signature contains only unary relation symbols and a single unary function symbol then the isomorphism problem for the transitive countable models of \mathcal{L} is concretely classifiable.

Proof Let \mathcal{L} have the unary function symbol f and the unary relation symbols R_i for $i \in \mathbb{N}$. For a transitive \mathcal{L}-structure \mathcal{M}, define $\varphi(\mathcal{M}) \in \mathbb{N}^\mathbb{N}$ by:

$$
\varphi(\mathcal{M})(0) = \begin{cases}
0 & \text{if the } f \text{-orbits in } \mathcal{M} \text{ are bi-infinite trees with infinite branching} \\
2n & \text{if the } f \text{-orbits in } \mathcal{M} \text{ are bi-infinite trees with branching number } n \\
2n - 1 & \text{if the } f \text{-orbits in } \mathcal{M} \text{ are cycles of size } n
\end{cases}
$$

$$
\varphi(\mathcal{M})(1) = \begin{cases}
0 & \text{if there are infinitely many } f \text{-orbits in } \mathcal{M} \\
m & \text{if there are } m \text{-many } f \text{-orbits in } \mathcal{M}
\end{cases}
$$
\[\varphi(M)(2 + i) = \begin{cases}
0 & \text{if } R_i \text{ is satisfied by no element of } M \\
1 & \text{if } R_i \text{ is satisfied by every element of } M.
\end{cases} \]

Then the above discussion shows that two transitive \(L \)-structures \(M_1 \) and \(M_2 \) will be isomorphic if and only if \(\varphi(M_1) = \varphi(M_2) \), so \(\varphi \) witnesses that the isomorphism relation is concretely classifiable. \(\Box \)

This leaves only the case where we have a language with at least two unary function symbols. We shall show that this is enough to produce a Borel-complete isomorphism problem for the transitive models. Let \(L_{u2} \) be the language whose signature contains only two unary function symbols, \(u_0 \) and \(u_1 \). We now prove:

Proposition 3.5 The isomorphism problem for countable \(L_{u2} \)-structures with transitive automorphism groups is Borel-complete.

Proof We shall reduce isomorphism of the symmetric graphs produced in the proof of Theorem 2.5 to isomorphism of transitive \(L_{u2} \)-structures. By the result of Theorem 2.5 this will be sufficient. Given a symmetric graph \(G \) we will produce an \(L_{u2} \)-structure \(A = A(G) \), where \(f_0 \) and \(f_1 \) will denote the interpretations of \(u_0 \) and \(u_1 \) in \(A \). Recall that the symmetric graph \(G \) is connected, infinite, and each vertex has infinite degree.

We first set out an indexing for the underlying set of \(A \) and define \(f_0 \). This function \(f_0 \) will be defined so that each point has countably many preimages and there are countably many connected components in the graph it induces, so that the structure is partitioned into countably many bi-infinite countably-branching trees. We refer to these as components.

To each point we associate the countable set of its preimages, which we refer to as the block below the point. Thus, two elements \(x \) and \(y \) are in the same component if \(f_0(x) = f_0(y) \), and they are in the same connected component if there are \(n, m \in \mathbb{N} \) with \(f_0^n(x) = f_0^m(y) \).

If we distinguish a node \(a_0 \) in a given component, we can enumerate the elements of the component in the following manner. If we look at the preimages of any node, the preimages of these preimages, and so forth, we have essentially a copy of the Baire space \(\mathbb{N}^\mathbb{N} \) below this distinguished node. Relative to \(a_0 \), we can then label points in the component of \(a_0 \) by pairs \((n, s) \in \mathbb{N} \times \mathbb{N}^{<\mathbb{N}} \), where \(\mathbb{N}^{<\mathbb{N}} \) is the set of finite sequences from \(\mathbb{N} \). Here \(n \) indicates how far “up” we start from \(a_0 \) (i.e., we start from \(f^n(a_0) \)), and \(s \) determines a point in the copy of Baire space below this point \(f^n(a_0) \), with the understanding that \(a_0 \) is along the leftmost branch (the branch with all coordinates 0). This gives some points multiple labels; we identify \((n + 1, 0 \smallfrown s) \) with \((n, s) \) (where \(s \smallfrown t \) is the concatenation of two sequences \(s \) and \(t \)). The node \(a_0 \) is then indexed by \((0, \langle \rangle) \) (as well as by other labels). The function \(f_0 \) is then defined in this component as:

\[f_0(n, s) = \begin{cases}
(n, s \upharpoonright (k - 1)) & \text{if } |s| = k > 0 \\
(n + 1, \langle \rangle) & \text{if } s = \langle \rangle.
\end{cases} \]
Then, starting with a distinguished component, we associate to each node $a_0 = \langle n_0, s_0 \rangle$ (and hence to the block below the node) countably many components which we index $\langle a_0, n \rangle$ for $n \in \mathbb{N}$, where $\langle a_0, 0 \rangle$ is the initial component. Nodes in these new components are then labeled $\langle a_0, n, a_1 \rangle$ for $n \neq 0$ and $a_1 = (n_1, s_1)$ as in the initial component. We continue in a similar manner: For each node $\langle a_0, n_0, a_1 \rangle$ in one of these new components, except for the nodes with $a_1 = (0, \langle \rangle)$, we associate countably many new components and so forth. All of the components are distinct and each is a connected component of f_0 with f_0 behaving as in the initial component.

The underlying set of our structure \mathcal{A} then consists of all the nodes enumerated in this fashion. Thus, points correspond to sequences of the form

$$\langle a_0, n_0, a_1, n_1, \ldots, a_{l-1}, n_{l-1}, a_l \rangle,$$

where each a_i is a pair (k_i, s_i), each $n_i > 0$, and $a_i \neq (0, \langle \rangle)$ for $0 < i < l$. Again, we identify sequences where two a_i’s label the same point. Two nodes are thus in the same component if their sequences agree up to n_{l-1} (modulo this identification). The function f_0 acts on the final pair a_l of a sequence, as indicated above.

To define the function f_1, we first define the index of a node w, $\text{ind}(w)$. A node has index 0 if it is of the form $\langle a_0 \rangle$ or of the form $\langle a_0, n_0, \ldots, a_l \rangle$ with $a_l \neq (0, \langle \rangle)$. These are the nodes from which we formed new components; we call these initial nodes. For a node w of the form $\langle a_0, n_0, \ldots, a_{l-1}, n_{l-1}, a_l \rangle$ with $l \geq 1$ and $a_l = (0, \langle \rangle)$ we let the index of w be n_{l-1}. Note that the initial component has all of its indices equal to 0, whereas each other component has a single node with non-zero index. This will not affect the transitivity of the structure, though, because we will be unable to determine these indices within the structure.

To each non-initial node $\langle a_0, n_0, \ldots, a_{l-1}, n_{l-1}, a_l \rangle$ we associate the initial node $\langle a_0, n_0, \ldots, a_{l-1} \rangle$, and associate each initial node to itself. We let $I(w)$ be the initial node associated to a node w. We refer to the set of nodes associated to a given initial node as a group. We also say that two blocks are in the same group if the nodes above them are in the same group. We will use the blocks below the nodes in a group to code the graph G into the structure \mathcal{A} using f_1. Up to this point our construction has been independent of G.

Let $\langle v_i \rangle_{i \in \mathbb{N}}$ enumerate the vertices in the given symmetric graph G (according to its coding). For each $i \in \mathbb{N}$, let $\langle k^i_n \rangle_{n \in \mathbb{N}}$ enumerate in increasing order the indices of the vertices adjacent to v_i in G, and let $\langle m^i_n \rangle_{n \in \mathbb{N}}$ indicate where v_i occurs in $v_{k^i_n}$’s enumeration, i.e., the m^i_n’s are such that

$$k^i_{m_n^i} = i \text{ for each } i \text{ and } n.$$

We then also have

$$m^i_{k_n^i} = n \text{ for each } i \text{ and } n.$$

This indexing will not have an essential effect because of edge-transitivity.

For a node $w = \langle a_0, n_0, \ldots, n_{l-1}, a_l \rangle$ in \mathcal{A} with $a_l = (n, s)$ we write $w \prec j$ to denote the node $\langle a_0, n_0, \ldots, n_{l-1}, a'_l \rangle$ where $a'_l = (n, s \prec j)$, so that $w \prec j$
is the j^{th} node in the block below w. We now define f_1:

$$f_1(w \sim j) = \begin{cases} \left\langle I(w), k_j^{\text{ind}(w)}(0, \langle \rangle) \right\rangle & \text{if } k_j^{\text{ind}(w)} \neq 0 \\ I(w) \sim m_j^{\text{ind}(w)} & \text{if } k_j^{\text{ind}(w)} = 0. \end{cases}$$

This serves to define f_1 everywhere, since each node is in the block below some unique node w. For simplicity, we shall write

$$f_1(w \sim j) = \left\langle I(w), k_j^{\text{ind}(w)}(0, \langle \rangle) \right\rangle \sim m_j^{\text{ind}(w)},$$

with the understanding that this collapses to $I(w) \sim m_j^{\text{ind}(w)}$ when $k_j^{\text{ind}(w)} = 0$. Note that f_1 is an involution:

$$f_1(f_1(w \sim j)) = f_1(\left\langle I(w), k_j^{\text{ind}(w)}(0, \langle \rangle) \right\rangle \sim m_j^{\text{ind}(w)})$$

$$= f_1(\left\langle I(w), k_j^{\text{ind}(w)}(0, \langle \rangle) \right\rangle \sim m_j^{\text{ind}(w)})$$

$$= \left\langle I(\left\langle I(w), k_j^{\text{ind}(w)}(0, \langle \rangle) \right\rangle, k_j^{\text{ind}(\langle I(w), k_j^{\text{ind}(w)}(0, \langle \rangle) \rangle)} \right\rangle, m_j^{\text{ind}(w)} \right\rangle$$

$$= \left\langle I(w), k_j^{\text{ind}(w)}(0, \langle \rangle) \sim m_j^{\text{ind}(w)} \right\rangle$$

$$= (I(w), \text{ind}(w), (0, \langle \rangle) \sim j)$$

$$= w \sim j.$$

Let us clarify how f_1 behaves. In each group as defined above we have nodes with indices in \mathbb{N}; let the given group have nodes $\langle w_i \rangle_{i \in \mathbb{N}}$ with $\text{ind}(w_i) = i$. If we look at the blocks below these nodes, we will then have that f_1 connects some element in the block below the node w_i to some element in the block below the node w_j if and only if the vertex v_i is adjacent to the vertex v_j in the graph G. The $k_j^{\text{ind}(w)}$’s and $m_j^{\text{ind}(w)}$’s determine which elements in each block are connected (the n^{th} element in the i^{th} block is connected to the $(m_j^{\text{ind}(w)})$th element of the $(k_j^{\text{ind}(w)})$th block), but this is primarily a matter of bookkeeping and not an essential feature of the structure.

This defines f_1 and completes the construction of the \mathcal{L}_{ω^2}-structure $\mathcal{A}(G)$. We now check that this works, i.e., that $\mathcal{A}(G)$ has a transitive automorphism group and that $\mathcal{A}(G_1) \cong \mathcal{A}(G_2)$ if and only if $G_1 \cong G_2$.

First, suppose that we have two graphs G_1 and G_2 with $G_1 \cong G_2$. The key feature of the structure $\mathcal{A}(G)$ is that the only interactions between f_0 and f_1 occur within groups. Aside from this, $\mathcal{A}(G)$ is “freely generated” by f_0 and f_1: we could have progressively defined f_0 and f_1 starting from an initial node in such a way so as to never revisit components. Thus, so long as we define a mapping from $\mathcal{A}(G_1)$ to $\mathcal{A}(G_2)$ which is an isomorphism between groups we will have no problems in extending it progressively to define an isomorphism π from $\mathcal{A}(G_1)$ to $\mathcal{A}(G_2)$ in the same manner.

We start by setting $\pi(0, \langle \rangle) = (0, \langle \rangle)$, thus mapping the distinguished node of $\mathcal{A}(G_1)$ to that of $\mathcal{A}(G_2)$. We shall define π in pieces. There are two important types of extensions we will need to make:
1. If \(\pi \) is defined on a node \(w \), we must extend \(\pi \) to the block containing \(w \) and to the other blocks in the same group as this one.

2. If \(\pi \) is defined on a node \(w \), then we must extend \(\pi \) to the block below \(w \) and to the other blocks in the same group.

Then, as long as we ensure that \(\pi \) respects \(f_0 \) (which will be true if we map blocks to blocks and the node above a given block to the node above the image of that block) and ensure that \(\pi \) respects \(f_1 \) within groups, we can continue to extend \(\pi \) to an isomorphism.

We first consider extensions of type (1). Suppose we have \(w_1 \in \mathcal{A}(G_1) \) with \(\pi(w_1) = w_2 \). We must then have \(\pi(f_0(w_1)) = f_0(w_2) \). Let \(i_1 \) be the index of \(f_0(w_1) \) and \(i_2 \) the index of \(f_0(w_2) \). Let \(n_1 \) be such that \(w_1 \) is the \((n_1)\)th node below \(f_0(w_1) \), i.e., \(w_1 = f_0(w_1) \uparrow n_1 \), and let \(n_2 \) be such that \(w_2 = f_0(w_2) \uparrow n_2 \). We use labels \((i, n)\) to refer to nodes in the group of blocks containing \(w_1 \), where \(i \) is the index of the node’s block and \(n \) is the node’s position within its block, so that for instance \(w_1 \) is labeled \((i_1, n_1)\). We similarly label the nodes in the group of blocks containing \(w_2 \).

We now want to ensure that \(\pi(f_1(i, n)) = f_1(\pi(i, n)) \). We know that \(f_1(i, n) = (k^i_n, m^i_n) \) and that \(\pi(i_1, n_1) = (i_2, n_2) \). By the symmetry of \(G_1 \) and \(G_2 \) we can pick an isomorphism \(\varphi \) from \(G_1 \) to \(G_2 \) sending \(v_1 \) to \(\bar{v}_{\varphi(i)} \) with \(\varphi(i_1) = i_2 \) and \(\varphi(k^i_{n_1}) = \bar{k}^i_{n_2} \), where we use \(v, k, \) and \(m \) to refer to \(G_1 \) and \(\bar{v}, \bar{k}, \) and \(\bar{m} \) to refer to \(G_2 \). We now define

\[
\pi(i, n) = (\varphi(i), \rho(i, n)),
\]

where \(\rho(i, n) \) is the unique \(j \) such that \(\bar{k}^{\varphi(i)}_j = \varphi(k^i_n) \) (such a \(j \) exists since \(\bar{v}_{\varphi(i)} \) is adjacent to \(\bar{v}_{\varphi(k^i_n)} \) in \(G_2 \), as \(v_1 \) is adjacent to \(v_{k^i_n} \) in \(G_1 \)). In particular, \(\rho(i_1, n_1) = n_2 \) since \(\bar{k}^{\varphi(i_1)}_{n_2} = \bar{k}^i_{n_2} \).

We already know \(\varphi(k^i_n) = \bar{k}^{\varphi(i)}_{\rho(i, n)} \) by our definition of \(\rho \), so we need only check that \(\rho(k^i_n, m^i_n) = \bar{m}^{\varphi(i)}_{\rho(i, n)} \), which amounts to showing that

\[
\bar{k}^{\varphi(i)}_{\rho(i, n)} \circ \bar{m}^{\varphi(i)}_{\rho(i, n)} = \varphi(k^i_n).
\]

The right-hand side is equal to \(\varphi(i) \) from the definitions of the \(k^i_n \)'s and \(m^i_n \)'s. But our definition of \(\rho \) implies that the left-hand side is equal to \(\bar{k}^{\varphi(i)}_{\rho(i, n)} = \varphi(i) \) as well. Thus our extension of \(\pi \) respects \(f_1 \).

For extensions of type (2) we proceed in a similar manner, but we have more flexibility. Suppose that \(\pi(u_1) = u_2 \); we then need only ensure that the block below \(u_1 \) maps to the block below \(u_2 \) and that the rest of the blocks in the same group are mapped appropriately. If we set \(w_1 = u_1 \uparrow 0 \) and \(w_2 = u_2 \uparrow 0 \) we may then proceed exactly as in the first type of extension.
We now explain the global construction of our isomorphism. Starting with the definition of π at our initial point, $\pi((0, \langle \rangle)) = (0, \langle \rangle)$, we successively extend π to all blocks and corresponding groups in the initial component of $\mathcal{A}(G_1)$. If we then take the group of some block in the initial component and consider the component of another block in that group, we can extend π to this new component as we did in the initial component. Since we always extend π a group at a time we are ensured of respecting f_1, and our extensions also respect f_0. Continuing in this manner we will eventually reach all components (since the structure is generated from an initial node by f_0 and f_1), so that the domain of π will be all of $\mathcal{A}(G_1)$. The same is true for the range of π, since as we extend the domain to a component of a node already in the domain, the range is extended to the component of the image of that node, and similarly for groups and blocks. Thus, π will be an isomorphism from $\mathcal{A}(G_1)$ to $\mathcal{A}(G_2)$.

For the converse, we explain how to recover G (up to isomorphism) from the isomorphism type of $\mathcal{A}(G)$. We start by picking a node in $\mathcal{A}(G)$: because $\mathcal{A}(G)$ has a transitive automorphism group (which we will show below), the choice of node will have no effect. By looking at the behavior of f_0 we are able to determine which nodes are in the same blocks within the structure. We can also identify which nodes are in the same group: Since the graph G is connected, two nodes u and w are in the same group if and only if there is a sequence $(a_0, b_0, a_1, b_1, \ldots a_n, b_n)$ where $a_0 = u$, $b_n = w$, a_i and b_i are in the same block for each i, and $f_1(a_i) = b_{i+1}$.

We can thus identify the group of our chosen node and form the graph whose vertices are the blocks in this group. We set the vertices corresponding to two of these blocks adjacent if there is an element in the first block which is mapped to an element of the second block by f_1. It is clear from the construction of $\mathcal{A}(G)$ that this graph will be isomorphic to G.

We lastly check that the structure $\mathcal{A}(G)$ has a transitive automorphism group; note that this will not require the above result that the map $G \to \mathcal{A}(G)$ is a reduction (and hence introduces no circularity). This is similar to the verification that we have $\mathcal{A}(G_1) \cong \mathcal{A}(G_2)$ when $G_1 \cong G_2$. Fix two nodes w_1 and w_2 of $\mathcal{A}(G)$; we will produce an automorphism π of $\mathcal{A}(G)$ such that $\pi(w_1) = w_2$.

We start by setting $\pi(w_1) = w_2$. We will then progressively extend π so that it respects f_0 and f_1 at all stages. As before we must see how to extend π from a node to the block containing this node and to the group of this block (as well as to the nodes above), and how to extend π from a node to the block and group below it. Looking at the earlier verification, we see that although we started by mapping the distinguished node of $\mathcal{A}(G_1)$ to that of $\mathcal{A}(G_2)$, nowhere did we rely on this fact; we could have initialized π by mapping any node of $\mathcal{A}(G_1)$ to any node of $\mathcal{A}(G_2)$. If we thus take $G_1 = G_2 = G$ in that argument, we can extend π to an automorphism of $\mathcal{A}(G)$ as desired. \qed

We have thus examined all possible signatures for a countable first-order language. The following theorem summarizes the results of this section.

Theorem 3.6 Let \mathcal{L} be a countable first-order language and let \mathcal{K} denote the class of countable \mathcal{L}-structures which have transitive automorphism groups.
Then the isomorphism problem for \mathcal{K} is Borel-complete if and only if the signature of \mathcal{L} contains no constant symbols and contains either an n-ary relation or function symbol for some $n \geq 2$ or contains at least two unary function symbols. In all other cases the isomorphism problem for \mathcal{K} is concretely classifiable.

4 Additional comments on transitive structures

We note a few differences between the problem we have just considered and the question of whether a given first-order language is Borel-complete when we consider all countable structures and not just the transitive ones. First, in that case having constant symbols in the signature has no effect on the complexity. Second, unary relations have more power. Although finitely many unary relations still do not allow us to code more than a real into the structure, countably many do. With countably many unary relations $(R_i)_{i \in \mathbb{N}}$ we can code a sequence $x \in 2^{\mathbb{N}}$ into an element a of the structure by setting

$$R_i(a) \iff x(i) = 1.$$

Our structure can thus code a countable set of reals, one for each element in the structure. The isomorphism problem then turns out to be bi-reducible with the equivalence relation F_2 of equality of countable sets of reals (which we will define in Section 6 below).

The most striking difference is in the case of a single unary function symbol. Friedman and Stanley show (in [4]) that the isomorphism problem for countable structures in the language with a single unary function symbol is Borel-complete, by showing that the theory of trees (which can be axiomatized with a single unary function symbol) is Borel-complete. For the collection of transitive structures for a language with a single unary function symbol, though, we saw that the isomorphism problem is concretely classifiable. This allows us to draw the following conclusion: The theory of graphs can not be axiomatized in a language with only one unary function symbol in a way that preserves automorphism groups (in the sense that the automorphism group when considered as an \mathcal{L}-structure is the same as for the original graph).

Another observation we should make is that it is necessary to produce graphs with infinite degree for each vertex in the proof of Theorem 2.2. This is the case because the isomorphism problem for countable connected locally-finite vertex-transitive graphs is in fact concretely-classifiable. This can be shown by a direct argument, but it is also a simple consequence of Corollary 5.8 of Gao and Kechris [5], which says that isometry of homogeneous pseudo-connected locally compact Polish metric spaces is concretely-classifiable. A locally-finite graph when given the graph metric becomes a pseudo-connected locally compact Polish metric space, and its isometry group is the automorphism group of the graph.

It seems an interesting problem to determine which theories, like that of graphs, continue to have complicated isomorphism problems when we restrict them to the collection of transitive models. We can ask:

Question 4.1 What other first-order theories have an isomorphism problem for their transitive models which is as complicated as that for all of their countable models? Are there other natural examples where the isomorphism problem
for transitive models is Borel-complete? Can this happen for a complete theory T?

Many natural theories are immediately ruled out because their structures have definable sets or elements. As noted earlier, having any non-trivial definable sets prevents a structure from having a transitive automorphism group. Thus structures such as trees, groups, and most algebraic structures with complicated isomorphism problems are eliminated. The theory of linear orders, on the other hand, avoids this problem, and seems a natural candidate for this question.

Another question concerns structures with larger automorphism groups. A structure is said to be n-transitive if its automorphism group acts transitively on n-tuples of distinct elements (so being 1-transitive is the same as having a transitive automorphism group). We can then ask the analogous question to Theorem 3.6 for n-transitive structures:

Question 4.2 For which countable first-order languages is the isomorphism problem for the class of n-transitive structures Borel-complete, for a given n?

The strongest property we could consider along these lines would be having an n-transitive automorphism group for all $n \in \mathbb{N}$. Here, though, we note that a structure having this property has an \aleph_0-categorical theory, since Ryll-Nardzewski’s Theorem tells us that a theory is \aleph_0-categorical if and only if its countable models have oligomorphic automorphism groups, i.e., for each n there are only finitely many orbits on n-tuples. Isomorphism of such structures is thus concretely classifiable, since the first-order theory of the structure will completely determine it up to isomorphism, and this theory may be coded as a real. An alternative type of symmetry we could consider is that of n-homogeneity (in the model-theoretic sense), as opposed to transitivity. Let us note that structures with strong homogeneity will be easier to classify, though, since their isomorphism class will be determined by a countable set of reals.

5 Homogeneous locally compact spaces

We now use the above results about isomorphism of vertex-transitive graphs to derive some corollaries concerning the complexity of the isometry relation on certain classes of metric spaces. The relevant definitions may be found in Clemens [2], [5], or Clemens, Gao, and Kechris [3] (where several of the following results were announced).

Recall that a metric space is said to be homogeneous if its isometry group acts transitively on points. This usage should be distinguished from the model-theoretic usage (which is a generally stronger property). When we refer to model-theoretic structures we shall continue to use the term transitive to indicate that the automorphism group acts transitively on the underlying set of the structure.

We start by relating the isometry of homogeneous discrete metric spaces to the isomorphism of countable graphs with vertex-transitive automorphism groups.
Theorem 5.1 The isomorphism relation on countable vertex-transitive connected graphs is Borel reducible to the isometry relation on homogeneous discrete metric spaces.

Proof The proof is essentially the same as showing that graph isomorphism is reducible to isometry of discrete metric spaces. Given a countable connected graph, we form the discrete metric space whose elements are the vertices of the graph and equip it with the graph metric, where the distance between two points is the length of the shortest path connecting them in the graph. Now we simply note that automorphisms of the graph induce isometries in the graph metric space, so that when the automorphism group of the original graph acts transitively, so too does the isometry group of the graph metric space.

We showed in Section 2 that isomorphism of countable vertex-transitive graphs is bi-reducible with graph isomorphism (Theorem 2.2). Since isometry of general discrete metric spaces is Borel reducible to graph isomorphism, we thus have:

Corollary 5.2 Isometry of homogeneous discrete metric spaces is Borel bi-reducible with graph isomorphism.

This yields an exact classification in the case of homogeneous discrete spaces. Since discrete spaces are locally compact, we have the following lower bound:

Corollary 5.3 Graph isomorphism is Borel reducible to isometry of homogeneous locally compact Polish metric spaces.

This bound is probably sharp, but as with the case of general locally compact spaces we do not have an exact upper bound.

6 Ultra-homogeneous locally compact spaces

We end by considering discrete and locally compact metric spaces with even richer isometry groups. The techniques in this section will not involve countable structures, but will rely directly on metric space techniques. Recall that a metric space is ultra-homogeneous if any partial isometry between finite subsets of the space can be extended to an isometry of the whole space. We will use the following alternate characterization:

Definition 6.1 A metric space is said to have the one-point extension property if, whenever we are given two finite sets \(\{x_1, \ldots, x_n\} \) and \(\{y_1, \ldots, y_n\} \), a partial isometry \(\varphi \) between them such that \(\varphi(x_i) = y_i \) for \(1 \leq i \leq n \), and another point \(x_{n+1} \), there is a point \(y_{n+1} \) such that \(\varphi \) extends to a partial isometry with \(\varphi(x_{n+1}) = y_{n+1} \).

Ultra-homogeneity clearly implies the one-point extension property for Polish metric spaces, and a straightforward back-and-forth argument shows that if a space has this property then it is ultra-homogeneous.

We begin with the collection of discrete spaces. We first recall the equivalence relation \(F_2 \) of equality of countable sets of reals, which is defined on the space \(\mathbb{R}^\mathbb{N} \) by setting

\[
\langle x_n \rangle_{n \in \mathbb{N}} F_2 \langle y_n \rangle_{n \in \mathbb{N}} \iff \{ x_n : n \in \mathbb{N} \} = \{ y_n : n \in \mathbb{N} \}.
\]
This equivalence relation is strictly simpler than graph isomorphism in terms of Borel reducibility. The complexity characterization here is then:

Theorem 6.2 Isometry of ultra-homogeneous discrete metric spaces is bi-reducible with F_2.

Proof The reduction of isometry of ultra-homogeneous discrete spaces to F_2 is simple. Observe that two ultra-homogeneous Polish metric spaces are isometric precisely when they have the same sets of n-point distance configurations for all $n \geq 2$. A discrete metric space is countable, so it contains only countably many n-point distance configurations for each n. These configurations are easily coded as reals, so that each set of n-point configurations can be coded by a countable set of reals. Then, the sequence of these codes for $n \geq 2$ can be coded by a countable set of reals so that two spaces are isometric if and only if these two countable sets are equal.

To reduce F_2 to isometry of ultra-homogeneous discrete spaces we modify Katětov’s construction of the Urysohn space in Katětov [8]. The Urysohn space is an ultra-homogeneous Polish metric space into which every Polish metric space can be embedded isometrically. First, we fix a homeomorphism ρ of \mathbb{R} with the open interval $(1,2)$:

$$\rho(x) = \frac{3}{2} + \frac{1}{2} \cdot \frac{x}{1 + |x|}.$$

Now let A be a countable set of reals. We will define the metric space (X_A, d_A). First, we set

$$A' = \{1\} \cup \rho[A] \subseteq [1,2].$$

We now define a sequence of metric spaces. We let (X_0, d_0) be the one-point space. Given (X_n, d_n) for some $n \in \mathbb{N}$, we define (X_{n+1}, d_{n+1}) as follows. First, we set

$$X_{n+1} = X_n \sqcup E_A(X_n),$$

where

$$E_A(X) = \{ f : X \to A' \text{ such that for all but finite many } x \in X \text{ we have } f(x) = 1 \},$$

where we can omit the usual condition that f satisfy a triangle inequality since the range of f is contained in $[1,2]$. We then define d_{n+1} by setting

$$d_{n+1}(x_1, x_2) = d_n(x_1, x_2) \quad \text{for } x_1, x_2 \in X_n,$$

$$d_{n+1}(f, x) = f(x) \quad \text{for } f \in E_A(X_n) \text{ and } x \in X_n,$$

$$d_{n+1}(f_1, f_2) = 1 \quad \text{for } f_1, f_2 \in E_A(X_n) \text{ with } f_1 \neq f_2.$$

As is the construction of the Urysohn space, this defines a metric space; verification of the triangle inequality is immediate because all distances are in the interval $[1,2]$. Since each of the functions in $E_A(X_n)$ has finite support and A' is countable, we have that X_{n+1} is countable (and hence separable). Moreover, since all the distances are in the interval $[1,2]$, we have that the space (X_{n+1}, d_{n+1}) is discrete (hence complete). We also have that (X_n, d_n)
is a subspace of \((X_{n+1}, d_{n+1})\) for each \(n\). We conclude by setting
\[
(X_A, d_A) = \bigcup_{n \in \mathbb{N}} (X_n, d_n).
\]
This is then a discrete Polish metric space. Note that the construction (up to isometry) is independent of the enumeration of \(A\), so that the mapping \(A \mapsto (X_A, d_A)\) is well-defined. That is, if \(A_1 = A_2\) then \((X_{A_1}, d_{A_1}) \cong (X_{A_2}, d_{A_2})\). For the converse, note that the set of distances in \((X_A, d_A)\) is equal to \(\{0\} \cup A'\), and that \(A'_1 = A'_2\) if and only if \(A_1 = A_2\). Hence, if \(A_1 \neq A_2\) then the distance sets of the two spaces will be different, and hence \((X_{A_1}, d_{A_1}) \not\cong (X_{A_2}, d_{A_2})\). Thus, our map is a reduction of \(F_2\) to isometry, as desired.

We must lastly check that the spaces produced are ultra-homogeneous. For this, we will show that the spaces have the one-point extension property. The construction of \((X_A, d_A)\) makes this property easy to verify. Given points \(x_1, \ldots, x_n, x_{n+1}\) and \(y_1, \ldots, y_n\) and a partial isometry, there will be some \(k\) with all of these points in \(X_k\). There will then be an \(f\) in \(X_{k+1}\) which has the same distances relative to the \(y_n\)'s as \(x_{n+1}\) does to the \(x_n\)'s, and we can take \(y_{n+1}\) to be such an \(f\) □

Once again, we have that \(F_2\) is a lower bound for the isometry relation on locally compact ultra-homogeneous Polish metric spaces. Here we are able to show that this is a precise characterization, by showing that \(F_2\) is also an upper bound in the locally compact case. We begin with some preliminaries.

We recall from [5] the definition of a pseudo-component of a locally compact space. For a point \(x\) in a locally compact space \(X\), we let \(\rho(x)\) denote the radius of compactness of \(x\), i.e.,
\[
\rho(x) = \sup\{r : B_r^c(x) \text{ is compact}\},
\]
where \(B_r^c(x)\) is the closed ball of radius \(r\) around the point \(x\). Since the space is locally compact, we have \(\rho(x) > 0\) for all \(x\). Note that in a homogeneous space (and hence in an ultra-homogeneous space) the radius of compactness must be the same for all points, so that it makes sense here to refer to the radius of compactness of the space \(X\) as \(\rho(X)\) (although we will not need to use this in what follows). We now define the binary relation \(R\) on \(X\) by
\[
x R y \iff d(x, y) < \rho(x),
\]
and let \(R^*\) be the transitive closure of \(R\). We then define the equivalence relation \(E\) on \(X\) by
\[
x \in E y \iff x = y \lor (x R^* y \land y R^* x).
\]
The pseudo-components of \(X\) are then the equivalence classes of \(E\). As shown in [5], the map \(x \mapsto \rho(x)\) is Lipschitz and each pseudo-component is clopen, so there are at most countably many pseudo-components. A space with only one pseudo-component is said to be pseudo-connected. We also observe that
\[
\rho(x) = \sup\{r : \overline{B_r(x)} \text{ is compact}\}.
\]
To see this, note that \(\overline{B_r(x)} \subseteq B_r^c(x)\) so that if \(B_r^c(x)\) is compact then so is \(\overline{B_r(x)}\). On the other hand, if \(\overline{B_r(x)}\) is compact, then for each \(\epsilon > 0\) we have
Lemma 6.3 Assume that this space is locally compact.

Lemma 6.4 \((\forall \epsilon > 0)(\exists x \in X)(\exists y \in X) (d(x, y) < \epsilon) \iff (\exists \delta > 0) [B(x, \delta) \text{ is compact}]\). Also note that if \(D \subseteq X\) is dense then \(\bar{B}(x, \delta) = \bar{D} \cap \bar{B}(x, \delta)\) since points in \(B(x, \delta)\) will have arbitrarily close points in \(D \cap B(x, \delta)\). These observations will be useful to the calculations below.

Let the array \((d_{i,j})_{i,j \in \mathbb{N}}\) code the Polish metric space \(\{x_i : i \in \mathbb{N}\}\), where \(\{x_i : i \in \mathbb{N}\}\) is a countable dense subset and \(d(x_i, x_j) = d_{i,j}\) for \(i, j \in \mathbb{N}\). We assume that this space is locally compact.

Lemma 6.3 For \(\delta > 0\) and \(i \in \mathbb{N}\), the set \(\bar{B}(x_i)\) is compact if and only if the following holds:

\[
(\forall q \in \mathbb{Q}^+) (\exists s \in [\mathbb{N}]^{<\mathbb{N}}) \left[(\forall k < |s|) [d_{i,s(k)} < \delta] \land \right.
\]

\[
\forall j \; [d_{i,j} < \delta \implies (\exists k < |s|) [d_{j,s(k)} < q]]\right],
\]

where \(\mathbb{Q}^+\) is the set of positive rationals and \([\mathbb{N}]^{<\mathbb{N}}\) is the set of increasing finite sequences from \(\mathbb{N}\).

Proof Fix a \(\delta > 0\) and first suppose that \(\bar{B}(x_i)\) is compact. Given \(q \in \mathbb{Q}^+\), by total boundedness there are \(y_0, \ldots, y_{n-1}\) in \(\bar{B}(x_i)\) such that

\[
(\forall y \in \bar{B}(x_i)) (\exists k < n) \left[d(y, y_k) < \frac{q}{2} \right].
\]

Also, for each \(y_k\) there is an \(x_{i_k}\) in \(B(x_i)\) such that \(d(y_k, x_{i_k}) < \frac{q}{2}\). Now let \(s\) be a sequence of length \(n\) such that \(s(k) = i_k\) for \(k < n\). We thus have \(d_{i,s(k)} < \delta\). If \(j\) is such that \(d_{i,j} < \delta\), then \(x_j \in B(x_i)\) so there must be some \(k\) with \(d(x_j, y_k) < \frac{q}{2}\), and hence \(d_{j,s(k)} < q\).

Conversely, suppose the given property holds. We will show that \(\bar{B}(x_i)\) is totally bounded. Given \(\epsilon > 0\), let \(q \in \mathbb{Q}^+\) be such that \(q < \frac{\epsilon}{2}\), and let \(s \in [\mathbb{N}]^{<\mathbb{N}}\) be a witness for \(q\), so that for all \(k < |s|\) we have \(d_{i,s(k)} < \delta\) and for all \(j\) with \(d_{i,j} < \delta\) we have some \(k < |s|\) with \(d_{j,s(k)} < q\). Then for any \(y \in \bar{B}(x_i)\) there is an \(x_j\) with \(d(y, x_j) < q\), and there is a \(k < |s|\) with \(d(x_j, x_{s(k)}) < q\), so that \(d(y, x_{s(k)}) < \epsilon\). Thus, the set \(\{x_{s(0)}, \ldots, x_{s(|s|-1)}\}\) witnesses total boundedness for \(\epsilon\).

Lemma 6.4 We have that \(x_i\) and \(x_j\) are in the same pseudo-component if and only if the following holds:

\[
(\exists i_0, \ldots, i_n) [i_0 = i \land i_n = j \land (\forall k < n) [d_{i_k, i_{k+1}} < \rho(x_i)]] \land \n
(\exists j_0, \ldots, j_m) [j_0 = j \land j_m = i \land (\forall k < m) [d_{j_k, j_{k+1}} < \rho(x_j)]].
\]

Proof If this condition holds then \(x_i\) and \(x_j\) are clearly in the same pseudo-component. Suppose conversely that \(x_i\) and \(x_j\) are in the same pseudo-component. Since \(x_i\) \(R^\ast\) \(x_j\), we have a sequence of points \(y_0, \ldots, y_m\) in the space with \(y_0 = x_i, y_m = x_j\), and \(d(y_k, y_{k+1}) < \rho(y_k)\) for each \(k < n\). We wish to replace this sequence by a similar sequence where we use only \(x_i\)'s. We can
set $i_0 = i$ and $i_n = j$. Then let:

$$\delta_0 = \rho(y_0) - d(y_0, y_1) > 0$$
$$\delta_1 = \rho(y_1) - d(y_1, y_2) > 0.$$

Choose $\epsilon < \min(\delta_0, \frac{\delta_1}{2})$ and choose i_1 such that $d(y_1, x_{i_1}) < \epsilon$. We will then have that

$$d(x_{i_0}, x_{i_1}) < \rho(x_{i_0})$$
$$d(x_{i_1}, y_2) < \rho(x_{i_1}),$$

so that we may replace y_1 by x_{i_1} in our sequence. We may similarly find i_2, \ldots, i_{n-1} as needed. The same argument handles the witnesses that $x_j R^* x_i$.

We are now ready to prove the main definability lemma we will need.

Lemma 6.5 There is a Borel-measurable function mapping an array $\langle d_{i,j} \rangle_{i,j}$ to another array $\langle d_{n,i}, (m,j) \rangle_{n,i,m,j}$ such that if $\langle d_{i,j} \rangle$ codes the space $X = \{x_i : i \in \mathbb{N}\}$ then $\langle d_{n,i}, (m,j) \rangle$ also codes this space, $X = \{x_{n,i} : n, i \in \mathbb{N}\}$, and for each n we have that the space $X_n = \{x_{n,i} : i \in \mathbb{N}\}$ is a pseudo-component of X. In the case that X has infinitely many pseudo-components, we can also require that each one is enumerated only once.

Proof This follows directly from the two previous lemmas, which show that we can calculate the radius of compactness and determine when two elements are in the same pseudo-component in a Borel manner, along with the observation that $d_{i,j} < \rho(x_k)$ if and only if there is a $q \in \mathbb{Q}^+$ such that $d_{i,j} < q$ and $B_q(x_k)$ is compact. It is then simply a matter of rearranging the indices to group together elements which are in the same pseudo-components. This suffices for spaces with infinitely many pseudo-components; otherwise we enumerate one of them infinitely often.

We are now ready to prove our characterization.

Theorem 6.6 Isometry of ultra-homogeneous locally compact Polish metric spaces is bi-reducible with F_2.

Proof We need to show that isometry is reducible to F_2. By a result of Hjorth (see [5]), isometry of locally compact Polish metric spaces with only finitely many pseudo-components is essentially countable, that is, it is reducible to a countable Borel equivalence relation. Every countable Borel equivalence relation is reducible to F_2 by sending an element to its equivalence class, which is a countable set. We can thus fix a sequence of functions $\langle \rho_n \rangle_{n \in \mathbb{N}}$ such that ρ_n reduces isometry of spaces with n pseudo-components to F_2 and moreover satisfies

$$X_1 \cong_i X_2 \iff \rho_n(X_1) = \rho_n(X_2)$$
$$\iff \rho_n(X_1) \cap \rho_n(X_2) \neq \emptyset$$

for X_1 and X_2 with n pseudo-components (where we also use $\rho_n(X)$ to denote the countable set it codes). For convenience, we also choose the sequence so that each ρ_n produces a subset of the interval $[n, n+1)$.

Now, given an ultra-homogeneous locally compact space coded by the array \(\langle \alpha_{i,j} \rangle_{i,j \in \mathbb{N}} \), let \((X_n)_{n \in \mathbb{N}} \) be its pseudo-components as enumerated by the function from Lemma 6.5. We will assume that \(X \) has infinitely many pseudo-components; this can be determined in a Borel way and it is straightforward to handle spaces with only finitely many pseudo-components. For \(n \in \mathbb{N} \) let

\[
\sigma_n(X) = \bigcup \{ \rho_{n+1}(X_{i_0} \sqcup X_{i_1} \sqcup \cdots \sqcup X_{i_n}) : i_0 < i_1 < \cdots < i_n \},
\]

where we are again identifying a countable sequence with the countable set it enumerates. By inter-weaving sequences we can produce a sequence enumerating the elements of \(\sigma_n(X) \). Note that \(\sigma_n(X) \) is a countable subset of \([n+1, n+2)\) and contains codes for all possible subspaces of \(X \) with \(n+1 \) pseudo-components. We then define our reducing function \(f \) by setting

\[
f(X) = \bigcup_{n \in \mathbb{N}} \sigma_n(X).
\]

So \(f(X) \) is a countable set of reals, and again we can produce a countable sequence rather than the countable set we have described. We claim that \(X \cong Y \) if and only if \(f(X) = f(Y) \), which establishes the theorem.

If \(X \cong Y \), then (up to isometry and permutation of indexing) \(X \) and \(Y \) have the same set of subspaces with finitely many pseudo-components, so we have \(\sigma_n(X) = \sigma_n(Y) \) for each \(n \) and hence \(f(X) = f(Y) \). Suppose conversely that \(f(X) = f(Y) \). Since the ranges of the \(\sigma_n \)'s are disjoint, we have that \(\sigma_n(X) = \sigma_n(Y) \) for each \(n \). Thus:

\[
\bigcup \{ \rho_{n+1}(X_{i_0} \sqcup \cdots \sqcup X_{i_n}) : i_0 < \cdots < i_n \} = \bigcup \{ \rho_{n+1}(Y_{i_0} \sqcup \cdots \sqcup Y_{i_n}) : i_0 < \cdots < i_n \}.
\]

But recall that our functions \(\rho_n \) have the property that if

\[
\rho_{n+1}(X_{i_0} \sqcup X_{i_1} \sqcup \cdots \sqcup X_{i_n}) \cap \rho_{n+1}(Y_{j_0} \sqcup Y_{j_1} \sqcup \cdots \sqcup Y_{j_n}) \neq \emptyset
\]

then in fact

\[
\rho_{n+1}(X_{i_0} \sqcup X_{i_1} \sqcup \cdots \sqcup X_{i_n}) = \rho_{n+1}(Y_{j_0} \sqcup Y_{j_1} \sqcup \cdots \sqcup Y_{j_n}).
\]

We therefore have that for each \(n \),

\[
\{ \rho_{n+1}(X_{i_0} \sqcup \cdots \sqcup X_{i_n}) : i_0 < \cdots < i_n \} = \{ \rho_{n+1}(Y_{i_0} \sqcup \cdots \sqcup Y_{i_n}) : i_0 < \cdots < i_n \}.
\]

Thus, in particular, for each \(n \) there are \(i_0^n, \ldots, i_n^n \) and \(j_0^n, \ldots, j_n^n \) such that

\[
\rho_n(X_0 \sqcup \cdots \sqcup X_n) = \rho_n(Y_0 \sqcup \cdots \sqcup Y_n)
\]

\[
\rho_n(Y_0 \sqcup \cdots \sqcup Y_n) = \rho_n(X_{j_0^n} \sqcup \cdots \sqcup X_{j_n^n}).
\]

Hence:

\[
X_0 \sqcup \cdots \sqcup X_n \cong Y_0 \sqcup \cdots \sqcup Y_n
\]

\[
Y_0 \sqcup \cdots \sqcup Y_n \cong X_{j_0^n} \sqcup \cdots \sqcup X_{j_n^n}.
\]

Since each finite configuration of points in \(X \) (resp. \(Y \)) will occur in some \(X_0 \sqcup \cdots \sqcup X_n \) (resp. \(Y_0 \sqcup \cdots \sqcup Y_n \)), we see that the same configuration occurs (up to isometry) in \(Y \) (resp. \(X \)). Thus, \(X \) and \(Y \) have the same \(n \)-point distance configurations for each \(n \), and since they are ultra-homogeneous this suffices to establish that they are isometric. \(\square \)
Isomorphism of homogeneous structures

References

Acknowledgments

I would like to thank the referee for suggesting several helpful clarifications and questions.

Department of Mathematics
Penn State University
University Park, PA 16802, USA
http://www.math.psu.edu/clemens
clemens@math.psu.edu