Treeable equivalence relations and essential countability

John D. Clemens

Institut für Mathematische Logik und Grundlagenforschung
Fachbereich Mathematik und Informatik der Universität Münster
http://wwwmath.uni-muenster.de/u/jclemens/

Joint work with Dominique Lecomte and Benjamin Miller

University of Copenhagen, 31. October 2013
We consider several questions related to the global structure of the Borel reducibility hierarchy among Borel and analytic equivalence relations.
We consider several questions related to the global structure of the Borel reducibility hierarchy among Borel and analytic equivalence relations.

Three themes
Overview

We consider several questions related to the global structure of the Borel reducibility hierarchy among Borel and analytic equivalence relations.

Three themes

- Descriptive complexity vs. Borel reducibility
We consider several questions related to the global structure of the Borel reducibility hierarchy among Borel and analytic equivalence relations.

Three themes

- Descriptive complexity vs. Borel reducibility
- Treeable analytic equivalence relations
We consider several questions related to the global structure of the Borel reducibility hierarchy among Borel and analytic equivalence relations.

Three themes

- Descriptive complexity vs. Borel reducibility
- Treeable analytic equivalence relations
- Embeddibility of E_1
An equivalence relation E on X is **Borel reducible** to an equivalence relation F on Y, $E \leq_B F$, if there is a Borel $f : X \to Y$ such that $x_1 E x_2$ iff $f(x_1) F f(x_2)$. We write $E \leq_c F$ when f is continuous, and $E \sqsubseteq_c F$ when f is injective.
Potential Wadge class

Definition

An equivalence relation E on X is *Borel reducible* to an equivalence relation F on Y, $E \leq_B F$, if there is a Borel $f : X \to Y$ such that $x_1 E x_2$ iff $f(x_1) F f(x_2)$. We write $E \leq_c F$ when f is continuous, and $E \sqsubseteq_c F$ when f is injective.

Definition

For a Wadge class Γ, we say that a relation R on (X, τ) is *potentially in* Γ, $R \in \text{pot}(\Gamma)$, if there is a topology τ' on X with the same Borel sets such that R is in $\Gamma(X, \tau')$.
Potential Wadge class

Definition
An equivalence relation E on X is *Borel reducible* to an equivalence relation F on Y, $E \leq_B F$, if there is a Borel function $f : X \to Y$ such that $x_1 E x_2$ iff $f(x_1) F f(x_2)$. We write $E \leq_c F$ when f is continuous, and $E \sqsubseteq_c F$ when f is injective.

Definition
For a Wadge class Γ, we say that a relation R on (X, τ) is *potentially in* Γ, $R \in \text{pot}(\Gamma)$, if there is a topology τ' on X with the same Borel sets such that R is in $\Gamma(X, \tau')$.

Fact: An equivalence relation E is potentially Γ iff it is *essentially* Γ, i.e., there is F in Γ such that $E \leq_B F$.
Potential Wadge class

Basic facts

- The diagonal $\Delta(2^\mathbb{N}) = \{(x, x) : x \in 2^\mathbb{N}\}$ is not in $\text{pot}(\Sigma_1^0)$.

Rephrasing of standard dichotomy theorems

For a Borel equivalence relation E:

- $E/\in\text{pot}(\Sigma_1^0)$ iff $\Delta(2^\mathbb{N}) \sqsubseteq^c E$ (Silver).
- $E/\in\text{pot}(\Pi_1^0)$ iff $E_0 \sqsubseteq^c E$ (Harrington-Kechris-Louveau).
Potential Wadge class

Basic facts

- The diagonal $\Delta(2^\mathbb{N}) = \{(x, x) : x \in 2^\mathbb{N}\}$ is not in $\text{pot}(\Sigma^0_1)$.
- Any essentially countable BEQ is in $\text{pot}(\Sigma^0_2)$.
Basic facts

- The diagonal $\Delta(2^\mathbb{N}) = \{(x, x) : x \in 2^\mathbb{N}\}$ is not in $\text{pot}(\Sigma_1^0)$.

- Any essentially countable BEQ is in $\text{pot}(\Sigma_2^0)$.

- For any Wadge class Γ, there is a Borel equivalence relation E such that $E \notin \text{pot}(\Gamma)$. Hence there is no maximal BEQ with respect to \leq_B.

Rephrasing of standard dichotomy theorems

For a Borel equivalence relation E:

- $E/\in \text{pot}(\Sigma_1^0)$ iff $\Delta(2^\mathbb{N}) \subseteq^c E$ (Silver).

- $E/\in \text{pot}(\Pi_2^0)$ iff $E \subseteq^c E_0$ (Harrington-Kechris-Louveau).
Potential Wadge class

Basic facts

- The diagonal $\Delta(2^\mathbb{N}) = \{(x, x) : x \in 2^\mathbb{N}\}$ is not in $\text{pot}(\sum^0_1)$.
- Any essentially countable BEQ is in $\text{pot}(\sum^0_1)$.
- For any Wadge class Γ, there is a Borel equivalence relation E such that $E \notin \text{pot}(\Gamma)$. Hence there is no maximal BEQ with respect to \leq_B.

Rephrasing of standard dichotomy theorems

For a Borel equivalence relation E:
Basic facts

- The diagonal $\Delta(2^\mathbb{N}) = \{(x, x) : x \in 2^\mathbb{N}\}$ is not in $\text{pot}(\Sigma^0_1)$.
- Any essentially countable BEQ is in $\text{pot}(\Sigma^0_2)$.
- For any Wadge class Γ, there is a Borel equivalence relation E such that $E \notin \text{pot}(\Gamma)$. Hence there is no maximal BEQ with respect to \leq_B.

Rephrasing of standard dichotomy theorems

For a Borel equivalence relation E:

- $E \notin \text{pot}(\Sigma^0_1)$ iff $\Delta(2^\mathbb{N}) \sqsubseteq_c E$ (Silver).
Potential Wadge class

Basic facts

- The diagonal $\Delta(2^\mathbb{N}) = \{(x, x) : x \in 2^\mathbb{N}\}$ is not in pot(Σ^0_1).
- Any essentially countable BEQ is in pot(Σ^0_2).
- For any Wadge class Γ, there is a Borel equivalence relation E such that $E \notin$ pot(Γ). Hence there is no maximal BEQ with respect to \leq_B.

Rephrasing of standard dichotomy theorems

For a Borel equivalence relation E:
- $E \notin$ pot(Σ^0_1) iff $\Delta(2^\mathbb{N}) \sqsubseteq_c E$ (Silver).
- $E \notin$ pot(Π^0_2) iff $E_0 \sqsubseteq_c E$ (Harrington-Kechris-Louveau).
Hence for $\Gamma = \Sigma^0_1$ or Π^0_2 there is a minimum non-pot(Γ) Borel equivalence relation.
Hence for $\Gamma = \Sigma^0_1$ or Π^0_2 there is a minimum non-pot(\Gamma) Borel equivalence relation.

Question

Are there minimum non-pot(\Gamma) Borel equivalence relations for higher level Wadge classes \(\Gamma\), e.g., \(\Sigma^0_3\)?
Hence for $\Gamma = \Sigma^0_1$ or Π^0_2 there is a minimum non-pot(Γ) Borel equivalence relation.

Question

Are there minimum non-pot(Γ) Borel equivalence relations for higher level Wadge classes Γ, e.g., Σ^0_3?

Note

Hjorth and Kechris showed that the Π^0_3 equivalence relation $E_3 = E_0^\omega$ is minimal above E_0, i.e., if $E \leq_B E_3$ then either $E \sim_B E_3$ or $E \leq_B E_0$. Hence E_3 would be the only possible candidate for a minimum non-pot(Σ^0_3) BEQ.
A *treeing* of an equivalence relation E on X is an acyclic graph on X whose connected components are the equivalence classes of E. An equivalence relation is *treeable* if there is an analytic treeing \mathcal{T} of E.

Treeings have been primarily studied for countable Borel equivalence relations. Basic facts:

- There are countable BEQs which are not treeable.
- There is a maximum countable treeable BEQ, E^∞_T.
- A treeable BEQ admits a Borel treeing.
- There are non-hyperfinite countable treeable BEQs (e.g., E^∞_T).
Definition

A *treeing* of an equivalence relation E on X is an acyclic graph on X whose connected components are the equivalence classes of E. An equivalence relation is *treeable* if there is an analytic treeing T of E.

Treeings have been primarily studied for countable Borel equivalence relations.
Definition

A treeing of an equivalence relation E on X is an acyclic graph on X whose connected components are the equivalence classes of E. An equivalence relation is treeable if there is an analytic treeing T of E.

Treeings have been primarily studied for countable Borel equivalence relations.

Basic facts
Treeability

Definition

A *treeing* of an equivalence relation E on X is an acyclic graph on X whose connected components are the equivalence classes of E. An equivalence relation is *treeable* if there is an analytic treeing \mathcal{T} of E.

Treeings have been primarily studied for countable Borel equivalence relations.

Basic facts

- There are countable BEQs which are not treeable.
Definition

A *treeing* of an equivalence relation E on X is an acyclic graph on X whose connected components are the equivalence classes of E. An equivalence relation is *treeable* if there is an analytic treeing \mathcal{T} of E.

Treeings have been primarily studied for countable Borel equivalence relations.

Basic facts

- There are countable BEQs which are not treeable.
- There is a maximum countable treeable BEQ, E_{∞}^T.
Treeability

Definition

A *treeing* of an equivalence relation E on X is an acyclic graph on X whose connected components are the equivalence classes of E. An equivalence relation is *treeable* if there is an analytic treeing \mathcal{T} of E.

Treeings have been primarily studied for countable Borel equivalence relations.

Basic facts

- There are countable BEQs which are not treeable.
- There is a maximum countable treeable BEQ, E_∞^T.
- A treeable BEQ admits a Borel treeing.
Definition

A *treeing* of an equivalence relation E on X is an acyclic graph on X whose connected components are the equivalence classes of E. An equivalence relation is *treeable* if there is an analytic treeing \mathcal{T} of E.

Treeings have been primarily studied for countable Borel equivalence relations.

Basic facts

- There are countable BEQs which are not treeable.
- There is a maximum countable treeable BEQ, $E_{\infty T}$.
- A treeable BEQ admits a Borel treeing.
- There are non-hyperfinite countable treeable BEQs (e.g., $E_{\infty T}$).
The class of countable treeable BEQs is closed under \subseteq, \leq_B, and several other operations.

Hjorth showed that there are many countable treeable BEQs: The partial order of inclusion among Borel subsets of Baire space can be embedded into the quasi-order of \leq_B among countable treeable BEQs.

Any orbit equivalence relation $E_{X\mathcal{G}}$ which is treeable is essentially countable (Hjorth).

But little else is known about uncountable treeable Borel equivalence relations.

Question

Is there a maximum treable Borel equivalence relation?
Basic facts continued

- The class of countable treeable BEQs is closed under \subseteq, \leq_B, and several other operations.
- Hjorth showed that there are many countable treeable BEQS: The partial order of inclusion among Borel subsets of Baire space can be embedded into the quasi-order of \leq_B among countable treeable BEQs.
The class of countable treeable BEQs is closed under \subseteq, \leq_B, and several other operations.

Hjorth showed that there are many countable treeable BEQS: The partial order of inclusion among Borel subsets of Baire space can be embedded into the quasi-order of \leq_B among countable treeable BEQs.

Any orbit equivalence relation E^X_G which is treeable is essentially countable (Hjorth).
The class of countable treeable BEQs is closed under \subseteq, \leq_B, and several other operations.

Hjorth showed that there are many countable treeable BEQS: The partial order of inclusion among Borel subsets of Baire space can be embedded into the quasi-order of \leq_B among countable treeable BEQs.

Any orbit equivalence relation E^X_G which is treeable is essentially countable (Hjorth).

But little else is known about uncountable treeable Borel equivalence relations.
Basic facts continued

- The class of countable treeable BEQs is closed under \subseteq, \leq_B, and several other operations.
- Hjorth showed that there are many countable treeable BEQS: The partial order of inclusion among Borel subsets of Baire space can be embedded into the quasi-order of \leq_B among countable treeable BEQs.
- Any orbit equivalence relation E^X_G which is treeable is essentially countable (Hjorth).

But little else is known about uncountable treeable Borel equivalence relations.

Question

Is there a maximum treable Borel equivalence relation?
Definition

The equivalence relation \mathcal{E}_1 is defined on $(2^\mathbb{N})^\mathbb{N}$ by $\bar{x}\mathcal{E}_1\bar{y}$ iff \(\exists m \forall n \geq m(x_n = y_n) \).
Embeddability of \mathbb{E}_1

Definition

The equivalence relation \mathbb{E}_1 is defined on $(2^\mathbb{N})^\mathbb{N}$ by $\bar{x} \mathbb{E}_1 \bar{y}$ iff

$$\exists m \forall n \geq m (x_n = y_n).$$

A fundamental open question is to determine when \mathbb{E}_1 is reducible to a given equivalence relation E.
Definition

The equivalence relation E_1 is defined on $(2^\mathbb{N})^\mathbb{N}$ by $\bar{x}E_1\bar{y}$ iff $\exists m \forall n \geq m (x_n = y_n)$.

A fundamental open question is to determine when E_1 is reducible to a given equivalence relation E.

Basic facts
Embeddability of E_1

Definition

The equivalence relation E_1 is defined on $(2^\mathbb{N})^\mathbb{N}$ by $\bar{x}E_1\bar{y}$ iff $\exists m \forall n \geq m (x_n = y_n)$.

A fundamental open question is to determine when E_1 is reducible to a given equivalence relation E.

Basic facts

- E_1 is *hypersmooth*, i.e., the increasing union of a countable sequence of smooth equivalence relations.
Embeddability of E_1

Definition

The equivalence relation E_1 is defined on $(2^N)^N$ by $\bar{x}E_1\bar{y}$ iff
$\exists m \forall n \geq m(x_n = y_n)$.

A fundamental open question is to determine when E_1 is reducible to a given equivalence relation E.

Basic facts

- E_1 is *hypersmooth*, i.e., the increasing union of a countable sequence of smooth equivalence relations.
- E_1 is maximum among hypersmoth BEQs.
Embeddability of E_1

Definition

The equivalence relation E_1 is defined on $(2^\mathbb{N})^\mathbb{N}$ by $\bar{x} E_1 \bar{y}$ iff

$$\exists m \forall n \geq m (x_n = y_n).$$

A fundamental open question is to determine when E_1 is reducible to a given equivalence relation E.

Basic facts

- E_1 is *hypersmooth*, i.e., the increasing union of a countable sequence of smooth equivalence relations.
- E_1 is maximum among hypersmoth BEQs.
- E_1 is not essentially countable.
Embeddability of E_1

Definition

The equivalence relation E_1 is defined on $(2^\mathbb{N})^\mathbb{N}$ by $\bar{x}E_1\bar{y}$ iff $\exists m \forall n \geq m (x_n = y_n)$.

A fundamental open question is to determine when E_1 is reducible to a given equivalence relation E.

Basic facts

- E_1 is *hypersmooth*, i.e., the increasing union of a countable sequence of smooth equivalence relations.
- E_1 is maximum among hypersmoth BEQs.
- E_1 is not essentially countable.
- E_1 is treeable.
Embeddibility of E_1

There is a dichotomy for hypersmooth equivalence relations:

<table>
<thead>
<tr>
<th>Theorem (Kechris-Louveau)</th>
</tr>
</thead>
</table>
| *Let E be hypersmooth. Then exactly one of:*
| 1. $E \leq_B E_0$, or
| 2. $E_1 \sqsubseteq_c E$. |
There is a dichotomy for hypersmooth equivalence relations:

Theorem (Kechris-Louveau)

Let \(E \) be hypersmooth. Then exactly one of:

1. \(E \leq_{B} E_{0} \), or
2. \(E_{1} \sqsubset_{c} E \).

Kechris and Louveau also showed that \(E_{1} \) is not reducible to any *idealistic* BEQ; in particular it is not reducible to any orbit equivalence relation \(E \bigwedge^{X}_{G} \). They asked if the converse holds:
There is a dichotomy for hypersmooth equivalence relations:

Theorem (Kechris-Louveau)

Let E be hypersmooth. Then exactly one of:

1. $E \leq_B E_0$, or
2. $E_1 \subseteq_c E$.

Kechris and Louveau also showed that E_1 is not reducible to any *idealistic* BEQ; in particular it is not reducible to any orbit equivalence relation E^X_G. They asked if the converse holds:

Question (Kechris-Louveau)

If E is a Borel equivalence relation, is it the case that either E_1 is reducible to E or E is idealistic?
Hjorth asked a specialized version of the previous question for treeable equivalence relations:
Hjorth asked a specialized version of the previous question for treeable equivalence relations:

Question (Hjorth)

If E is a treeable Borel equivalence relation, is it the case that exactly one of:

1. E is essentially countable, or
2. $E_1 \sqsubseteq_c E$?
A particular class of treeable BEQs

We will describe a class of treeable Borel equivalence relations which we call *sparsely treeable*. By analyzing the sparsely treeable BEQs, we can show:

- The collection of treeable BEQs is unbounded in terms of \leq_B and potential Wadge class.
- There is no minimum non-pot (Γ) BEQ for Γ a Borel Wadge class of rank at least 3.
- If E is a BEQ which is not essentially hyperfinite, then there are BEQs of arbitrarily high Wadge class which are \leq_B-incomparable with E.
- Hjorth’s question is true for sparsely treeable BEQs.

A fundamental tool for these results will be a strengthening of the Kechris-Louveau dichotomy for embedding E_1.
We will describe a class of treeable Borel equivalence relations which we call *sparsely treeable*. By analyzing the sparsely treeable BEQs, we can show:

- The collection of treeable BEQs is unbounded in terms of both \leq_B and potential Wadge class.
- There is no minimum non-potential Γ BEQ for Γ a Borel Wadge class of rank at least 3.
- If E is a BEQ which is not essentially hyperfinite, then there are BEQs of arbitrarily high Wadge class which are \leq_B-incomparable with E.
- Hjorth's question is true for sparsely treeable BEQs.

A fundamental tool for these results will be a strengthening of the Kechris-Louveau dichotomy for embedding E_1.
We will describe a class of treeable Borel equivalence relations which we call *sparsely treeable*. By analyzing the sparsely treeable BEQs, we can show:

- The collection of treeable BEQs is unbounded in terms of both \leq_B and potential Wadge class.
A particular class of treeable BEQs

We will describe a class of treeable Borel equivalence relations which we call *sparsely treeable*. By analyzing the sparsely treeable BEQs, we can show:

- The collection of treeable BEQs is unbounded in terms of both \leq_B and potential Wadge class.
- There is no minimum non-pot(Γ) BEQ for Γ a Borel Wadge class of rank at least 3.
We will describe a class of treeable Borel equivalence relations which we call *sparsely treeable*. By analyzing the sparsely treeable BEQs, we can show:

- The collection of treeable BEQs is unbounded in terms of both \leq_B and potential Wadge class.
- There is no minimum non-pot(Γ) BEQ for Γ a Borel Wadge class of rank at least 3.
- If E is a BEQ which is not essentially hyperfinite, then there are BEQs of arbitrarily high Wadge class which are \leq_B-incomparable with E.
- Hjorth’s question is true for sparsely treed BEQs.
We will describe a class of treeable Borel equivalence relations which we call *sparsely treeable*. By analyzing the sparsely treeable BEQs, we can show:

- The collection of treeable BEQs is unbounded in terms of both \leq_B and potential Wadge class.
- There is no minimum non-pot(\(\Gamma\)) BEQ for Γ a Borel Wadge class of rank at least 3.
- If E is a BEQ which is not essentially hyperfinite, then there are BEQs of arbitrarily high Wadge class which are \leq_B-incomparable with E.
- Hjorth’s question is true for sparsely treed BEQs.

A fundamental tool for these results will be a strengthening of the Kechris-Louveau dichotomy for embedding \mathbb{E}_1.

Closed treeings with acyclic levels

Definition

We say a treeing \mathcal{T} of E on X is *closed* if \mathcal{T} is a closed subset of X^2. When $X = 2^\mathbb{N}$ (or $\mathbb{N}^{\mathbb{N}}$) we may find a tree T on 2×2 (or $\mathbb{N} \times \mathbb{N}$) such that $\mathcal{T} = [T]$.
Closed treeings with acyclic levels

Definition
We say a treeing \mathcal{T} of E on X is closed if \mathcal{T} is a closed subset of X^2. When $X = 2^\mathbb{N}$ (or $\mathbb{N}^\mathbb{N}$) we may find a tree T on 2×2 (or $\mathbb{N} \times \mathbb{N}$) such that $\mathcal{T} = [T]$.

Definition
A closed treeing on $2^\mathbb{N}$ (or $\mathbb{N}^\mathbb{N}$) has acyclic levels if the induced graphing of 2^n induced by $T \cap (2 \times 2)^n$ is acyclic for each $n \geq 1$.
Definition

We say a treeing \(\mathcal{T} \) of \(E \) on \(X \) is *closed* if \(\mathcal{T} \) is a closed subset of \(X^2 \). When \(X = 2^\mathbb{N} \) (or \(\mathbb{N}^\mathbb{N} \)) we may find a tree \(T \) on \(2 \times 2 \) (or \(\mathbb{N} \times \mathbb{N} \)) such that \(\mathcal{T} = [T] \).

Definition

A closed treeing on \(2^\mathbb{N} \) (or \(\mathbb{N}^\mathbb{N} \)) has *acyclic levels* if the induced graphing of \(2^n \) induced by \(T \cap (2 \times 2)^n \) is acyclic for each \(n \geq 1 \).

Lemma

Let \(\mathcal{T} \) be a closed treeing with acyclic levels. Then \(\mathcal{T}^n \) is closed for all \(n \), and \(\alpha E_{\mathcal{T}} \beta \) iff \(\lim_{n} d_n(\alpha \restriction n, \beta \restriction n) < \infty \), where \(d_n \) is the induced path distance on \(2^n \).
Example

Let \(T = \bigcup T_n \), where \(T_0 = \emptyset \) and

\[
T_{n+1} = \{(s \bowtie i, t \bowtie i) : (s, t) \in T_n \land i \in 2\}
\cup \{(0^{n+1}, 1^{n+1}), (1^{n+1}, 0^{n+1})\}.
\]

Then \(T = [T] \) induces the equivalence relation \(E \) given by

\[
x E y \iff \forall \infty n(x(n) = y(n) \lor (x(n) = x(n-1) \land y(n) = y(n-1)))
\]

which is the equivalence relation induced by the odometer map.
Closed treeings with acyclic levels

Example

Let $T = \bigcup T_n$, where $T_0 = \emptyset$ and

$$T_{n+1} = \{(s \bowtie i, t \bowtie i) : (s, t) \in T_n \land i \in 2\}$$
$$\cup \{(0^{n+1}, 1^{n+1}), (1^{n+1}, 0^{n+1})\}.$$

Then $\mathcal{T} = [T]$ induces the equivalence relation E given by

$$xEy \iff \forall^\infty n(x(n) = y(n) \lor (x(n) = x(n-1) \land y(n) = y(n-1)))$$

which is the equivalence relation induced by the odometer map.

Example

E_1 is bi-reducible with an E which admits a closed treeing with acyclic levels.
We say a closed treeing T with acyclic levels is \textit{densely splitting} if for each $(s, t) \in T$ we have:

1. $(s \triangleleft i, t \triangleleft i) \in T$ for all $i \in 2$.
2. $\exists r \exists i (s \triangleleft r \triangleleft i, t \triangleleft r \triangleleft (1 - i)) \in T$.

Lemma

If T_1 and T_2 are closed treeings with acyclic levels and T_2 is densely splitting, then $E_{T_1} \subseteq_{c} E_{T_2}$.

If both are densely splitting then E_{T_1} and E_{T_2} are bi-embeddable.

In particular, $E_1 \subseteq_{c} E_T$ for a densely splitting T.

Definition

We say a closed treeing T with acyclic levels is *densely splitting* if for each $(s, t) \in T$ we have:

1. $(s \circ i, t \circ i) \in T$ for all $i \in 2$.
2. $\exists r \exists i(s \circ r \circ i, t \circ r \circ (1 - i)) \in T$.

Lemma

If T_1 and T_2 are closed treeings with acyclic levels and T_2 is densely splitting, then $E_{T_1} \subseteq_c E_{T_2}$.

If both are densely splitting then E_{T_1} and E_{T_2} are bi-embeddable.
Closed treeings with acyclic levels

Definition

We say a closed treeing T with acyclic levels is *densely splitting* if for each $(s, t) \in T$ we have:

1. $(s \triangleleft i, t \triangleleft i) \in T$ for all $i \in 2$.
2. $\exists r \exists i (s \triangleleft r \triangleleft i, t \triangleleft r \triangleleft (1 - i)) \in T$.

Lemma

If T_1 and T_2 are closed treeings with acyclic levels and T_2 is densely splitting, then $E_{T_1} \sqsubseteq_c E_{T_2}$.

If both are densely splitting then E_{T_1} and E_{T_2} are bi-embeddable.

In particular, $E_1 \sqsubseteq_c E_T$ for a densely splitting T.
Lemma

If T is a densely splitting closed treeing with acyclic levels, then $E_1 <_B E_T$.
Lemma

If \mathcal{T} is a densely splitting closed treeing with acyclic levels, then $E_1 \preceq_B E_\mathcal{T}$.

We can now define the class of treeings which we will use.

Definition

We say that a treeing \mathcal{T} is *sparse* if there is a closed treeing \mathcal{T}' with acyclic levels such that $\mathcal{T} \subseteq \mathcal{T}'$.
Lemma

If T is a densely splitting closed treeing with acyclic levels, then $E_1 \leq_B E_T$.

We can now define the class of treeings which we will use.

Definition

We say that a treeing T is sparse if there is a closed treeing T' with acyclic levels such that $T \subseteq T'$.

We need the following technical definition of a particular type of closed treeing with acyclic levels which will allow us to derive potential Wadge class results.
Fix a pairing function $n = \langle (n)_0, (n)_1 \rangle$.
Fix a pairing function $n = \langle (n)_0, (n)_1 \rangle$.

Definition

We say that $E \subseteq (2 \times 2)^{<\mathbb{N}}$ is a frame if:

1. $\forall l \in \mathbb{N} \exists! (s_l, t_l) \in E \cap (2 \times 2)^l$
2. $\forall l, p \in \mathbb{N} \forall t \in 2^{<\mathbb{N}} \exists n ((s_l0t0^n, t_l1t0^n) \in E \land (|s_l0t0^n| - 1)_0 = p)$
3. $\forall l > 0 \exists q < l \exists t (s_l, t_l) = (s_q0t, t_q1t)$
Fix a pairing function $n = \langle (n)_0, (n)_1 \rangle$.

Definition

We say that $E \subseteq (2 \times 2)^{<\mathbb{N}}$ is a frame if:

1. $\forall l \in \mathbb{N} \exists! (s_l, t_l) \in E \cap (2 \times 2)^l$
2. $\forall l, p \in \mathbb{N} \forall t \in 2^{<\mathbb{N}} \exists n \ ((s_l0t0^n, t_l1t0^n) \in E \land (|s_l0t0^n| - 1)_0 = p).$
3. $\forall l > 0 \exists q < l \exists t \ (s_l, t_l) = (s_q0t, t_q1t)$

The tree T generated by a frame E is

$$T = \{ (s, t), (t, s) : s = \emptyset \lor \exists l \exists u(s, t) = (s_l0u, t_l1u) \}.$$
Fix a pairing function $n = \langle (n)_0, (n)_1 \rangle$.

Definition

We say that $E \subseteq (2 \times 2)^{<\mathbb{N}}$ is a *frame* if:

1. $\forall l \in \mathbb{N} \exists! (s_l, t_l) \in E \cap (2 \times 2)^l$
2. $\forall l, p \in \mathbb{N} \forall t \in 2^{<\mathbb{N}} \exists n \left((s_l0t0^n, t_l1t0^n) \in E \land (\|s_l0t0^n\| - 1)_0 = p \right)$.
3. $\forall l > 0 \exists q < l \exists t \ (s_l, t_l) = (s_q0t, t_q1t)$

The tree T generated by a frame E is

$$T = \{(s, t), (t, s) : s = \emptyset \lor \exists l \exists u(s, t) = (s_l0u, t_l1u)\}.$$

Then $T = [T]$ generated by a frame is a closed treeing with acyclic levels which is densely splitting.
Fix a pairing function $n = ((n)_0, (n)_1)$.

Definition

We say that $E \subseteq (2 \times 2)^{<\mathbb{N}}$ is a *frame* if:

1. $\forall l \in \mathbb{N} \exists! (s_l, t_l) \in E \cap (2 \times 2)^l$
2. $\forall l, p \in \mathbb{N} \forall t \in 2^{<\mathbb{N}} \exists n \left((s_l0t0^n, t_l10^n) \in E \land (|s_l0t0^n| - 1)_0 = p \right)$.
3. $\forall l > 0 \exists q < l \exists t \left((s_l, t_l) = (s_q0t, t_q1t) \right)$

The tree T generated by a frame E is

$$T = \{(s, t), (t, s) : s = \emptyset \lor \exists l \exists u(s, t) = (s_l0u, t_l1u)\}.$$

Then $\mathcal{T} = [T]$ generated by a frame is a closed treeing with acyclic levels which is densely splitting.

We let E_f be the equivalence relation induced by \mathcal{T}.

Frames
Let $\mathcal{I} \supseteq \text{FIN}$ be a free Borel ideal on \mathbb{N}.

Definition

$E_\mathcal{I}$ is the equivalence relation on $2^\mathbb{N}$ given by $x E_\mathcal{I} y$ iff $x \Delta y \in \mathcal{I}$.

Lemma

If \mathcal{I} is a free ideal and E_f is generated by a frame, then $E_\mathcal{I} \cap E_f = \langle E_\mathcal{I} \cap T \rangle$, where T is the tree generated by the frame.

Corollary

For a free Borel ideal \mathcal{I}, $E_\mathcal{I} \cap E_f$ is a treeable Borel equivalence relation.
Let $\mathcal{I} \supseteq \text{FIN}$ be a free Borel ideal on \mathbb{N}.

Definition

$E_{\mathcal{I}}$ is the equivalence relation on $2^{\mathbb{N}}$ given by $x E_{\mathcal{I}} y$ iff $x \Delta y \in \mathcal{I}$.
Let $\mathcal{I} \supseteq \text{FIN}$ be a free Borel ideal on \mathbb{N}.

Definition

$E_\mathcal{I}$ is the equivalence relation on $2^\mathbb{N}$ given by $xE_\mathcal{I}y$ iff $x \Delta y \in \mathcal{I}$.

Lemma

If \mathcal{I} is a free ideal and E_f is generated by a frame, then $E_\mathcal{I} \cap E_f = \langle E_\mathcal{I} \cap T \rangle$, where T is the tree generated by the frame.
Let $\mathcal{I} \supseteq \text{FIN}$ be a free Borel ideal on \mathbb{N}.

Definition

$E_\mathcal{I}$ is the equivalence relation on $2^\mathbb{N}$ given by $x E_\mathcal{I} y$ iff $x \Delta y \in \mathcal{I}$.

Lemma

If \mathcal{I} is a free ideal and E_f is generated by a frame, then $E_\mathcal{I} \cap E_f = \langle E_\mathcal{I} \cap T \rangle$, where T is the tree generated by the frame.

Corollary

For a free Borel ideal \mathcal{I}, $E_\mathcal{I} \cap E_f$ is a treeable Borel equivalence relation.
Vertical invariance

Definition

We say that an ideal \mathcal{I} on \mathbb{N} is \textit{vertically invariant} if, whenever $h : \mathbb{N} \to \mathbb{N}$ is an injection such that $(h(n))_0 = (n)_0$ for all n, then $A \in \mathcal{I}$ iff $h[A] \in \mathcal{I}$.
Definition

We say that an ideal \mathcal{I} on \mathbb{N} is *vertically invariant* if, whenever $h : \mathbb{N} \to \mathbb{N}$ is an injection such that $(h(n))_0 = (n)_0$ for all n, then $A \in \mathcal{I}$ iff $h[A] \in \mathcal{I}$.

Lemma

If T_1 and T_2 are the trees from two frames and \mathcal{I} is a vertically invariant ideal, then $E_\mathcal{I} \cap E_{T_1} \subseteq_c E_\mathcal{I} \cap E_{T_2}$.
Definition

We say that an ideal \mathcal{I} on \mathbb{N} is *vertically invariant* if, whenever $h : \mathbb{N} \to \mathbb{N}$ is an injection such that $(h(n))_0 = (n)_0$ for all n, then $A \in \mathcal{I}$ iff $h[A] \in \mathcal{I}$.

Lemma

If T_1 and T_2 are the trees from two frames and \mathcal{I} is a vertically invariant ideal, then $E_{\mathcal{I}} \cap E_{T_1} \subseteq^c E_{\mathcal{I}} \cap E_{T_2}$.

Hence the following is well-defined (up to bi-embeddibility):

Definition

Let $E^*_{\mathcal{I}} = E_{\mathcal{I}} \cap E_f$.

Then $E^*_{\mathcal{I}}$ is sparsely treed by $\mathcal{T}_{\mathcal{I}} = E_{\mathcal{I}} \cap \mathcal{T} \subseteq \mathcal{T}$.
Unboundedness of treeable BEQs

The key fact connecting frames to descriptive complexity is:

Theorem

If \mathcal{I} is a vertically invariant free ideal which is Γ-complete for some Wadge class Γ, then $E^*_\mathcal{I}$ is in Γ but is not in $\text{pot}(\bar{\Gamma})$, where $\bar{\Gamma}$ is the dual class of Γ.

The key fact connecting frames to descriptive complexity is:

Theorem

If \mathcal{I} is a vertically invariant free ideal which is Γ-complete for some Wadge class Γ, then $E^*_\mathcal{I}$ is in Γ but is not in $\text{pot}(\tilde{\Gamma})$, where $\tilde{\Gamma}$ is the dual class of Γ.

Lemma

There are vertically invariant free Borel ideals of arbitrarily high Wadge class.
The key fact connecting frames to descriptive complexity is:

Theorem

If \mathcal{I} is a vertically invariant free ideal which is Γ-complete for some Wadge class Γ, then E^*_I is in Γ but is not in $\text{pot}(\tilde{\Gamma})$, where $\tilde{\Gamma}$ is the dual class of Γ.

Lemma

There are vertically invariant free Borel ideals of arbitrarily high Wadge class.

In fact, we can find an ω_1 length sequence of vertically invariant ideals \mathcal{I}_ξ unbounded in the Borel Wadge classes so that $E^*_{\mathcal{I}_\xi} \preccurlyeq_c E^*_{\mathcal{I}_\eta}$ when $\xi < \eta$.
This yields our first result about potential complexity:

Theorem

*The treeable Borel equivalence relations are unbounded in Wadge class, and hence in \leq_B.***
Unboundedness of treeable BEQs

This yields our first result about potential complexity:

Theorem

The treeable Borel equivalence relations are unbounded in Wadge class, and hence in \leq_B.

In particular, the class of sparsely treed Borel equivalence relations is unbounded in the Borel reducibility hierarchy. But we can ask whether it is cofinal among the treeable BEQs.
Definition

We say that an equivalence relation E is \textit{hyperfinite-on-countable} if $E \upharpoonright B$ is hyperfinite for any Borel set B such that $E \upharpoonright B$ is countable.

Lemma

E is hyperfinite-on-countable iff whenever F is a countable BEQ with $F \leq B$ then F is hyperfinite.

We can extend the definition to analytic equivalence relations in an analogous fashion.

Note

If E is hyperfinite-on-countable, then $E^\infty \not\leq B$.

Definition

We say that an equivalence relation E is \textit{hyperfinite-on-countable} if $E \upharpoonright B$ is hyperfinite for any Borel set B such that $E \upharpoonright B$ is countable.

Lemma

E is hyperfinite-on-countable iff whenever F is a countable BEQ with $F \leq_B E$ then F is hyperfinite.
Definition

We say that an equivalence relation E is *hyperfinite-on-countable* if $E \upharpoonright B$ is hyperfinite for any Borel set B such that $E \upharpoonright B$ is countable.

Lemma

E is hyperfinite-on-countable iff whenever F is a countable BEQ with $F \leq_B E$ then F is hyperfinite.

We can extend the definition to analytic equivalence relations in an analogous fashion.
Hyperfinite-on-countable BEQs

Definition

We say that an equivalence relation E is **hyperfinite-on-countable** if $E \upharpoonright B$ is hyperfinite for any Borel set B such that $E \upharpoonright B$ is countable.

Lemma

E is hyperfinite-on-countable iff whenever F is a countable BEQ with $F \leq_B E$ then F is hyperfinite.

We can extend the definition to analytic equivalence relations in an analogous fashion.

Note

If E is hyperfinite-on-countable, then $E_{\infty} T \not\leq_B E$.

Theorem

Let T be a closed treeing with acyclic levels, and let $T_0 \subseteq T$ be an analytic treeing such that the induced equivalence relation E_{T_0} is countable. Then E_{T_0} is hyperfinite.
Theorem

Let T be a closed treeing with acyclic levels, and let $T_0 \subseteq T$ be an analytic treeing such that the induced equivalence relation E_{T_0} is countable. Then E_{T_0} is hyperfinite.

Corollary

If T is a sparse treeing, then E_T is hyperfinite-on-countable.
Theorem

Let T be a closed treeing with acyclic levels, and let $T_0 \subseteq T$ be an analytic treeing such that the induced equivalence relation E_{T_0} is countable. Then E_{T_0} is hyperfinite.

Corollary

If T is a sparse treeing, then E_T is hyperfinite-on-countable.

Corollary

E^*_I is hyperfinite-on-countable for any free ideal I. In particular, $E^*_\infty T \not\leq_B E^*_I$.
Corollary

The collection of sparsely treed Borel equivalence relations is not cofinal among the treeable Borel equivalence relations under \leq_B.
Corollary

The collection of sparsely treed Borel equivalence relations is not cofinal among the treeable Borel equivalence relations under \leq_B.

Corollary

The collection of $E^*_\mathcal{I}$ for free Borel ideals \mathcal{I} is not cofinal among the treeable Borel equivalence relations under \leq_B.
Corollary

The collection of sparsely treed Borel equivalence relations is not cofinal among the treeable Borel equivalence relations under \leq_B.

Corollary

The collection of $E^*_\mathcal{I}$ for free Borel ideals \mathcal{I} is not cofinal among the treeable Borel equivalence relations under \leq_B.

Corollary

The collection of hyperfinite-on-countable equivalence relations is unbounded in the Borel equivalence relations under \leq_B.
A dichotomy for embedding \mathbb{E}_1

Definition

For $n \in \mathbb{N}$, let F_n denote the equivalence relation on $(2^\mathbb{N})^\mathbb{N}$ given by $x F_n y$ iff $\forall m \geq n \ x(m) = y(m)$. Then $\mathbb{E}_1 = \bigcup_n F_n$.
A dichotomy for embedding E_1

Definition

For $n \in \mathbb{N}$, let F_n denote the equivalence relation on $(2^\mathbb{N})^\mathbb{N}$ given by $x F_n y$ iff $\forall m \geq n \ x(m) = y(m)$.

Then $E_1 = \bigcup_n F_n$.

Our main technical dichotomy is the following:

Theorem

Suppose that X is a Polish space, E is a treeable Borel equivalence relation on X, and G is a Borel treeing of E. Then exactly one of the following holds:

1. The equivalence relation E is essentially countable.
2. There exists a function $f : \mathbb{N} \rightarrow \mathbb{N}$ for which there is a continuous homomorphism $\varphi : (2^\mathbb{N})^\mathbb{N} \rightarrow X$ from $(F_{n+1} \setminus F_n)_{n \in \mathbb{N}}$ to $(G(\leq f(n+1)) \setminus G(\leq f(n)))_{n \in \mathbb{N}}$.
In many situations case (2) does not tell us anything. But there is an important special case:
In many situations case (2) does not tell us anything. But there is an important special case:

Definition

We say that a Borel equivalence relation is *subtreeable-with-F_σ-iterates* if it has a Borel treeing T contained in an acyclic graphing G so that G has all iterates F_σ.
In many situations case (2) does not tell us anything. But there is an important special case:

Definition

We say that a Borel equivalence relation is *subtreeable-with-F_{σ}-iterates* if it has a Borel treeing T contained in an acyclic graphing G so that G has all iterates F_{σ}.

Theorem

Suppose that X is a Polish space, E is a Borel equivalence relation on X which is essentially subtreeable-with-F_{σ}-iterates. Then exactly one of the following holds:

1. The equivalence relation E is essentially countable.
2. There is a continuous embedding of \mathbb{E}_1 into E.
We will not prove the main dichotomy here.
We will not prove the main dichotomy here.

The proof is classical (no effective descriptive set theory).
We will not prove the main dichotomy here.

The proof is classical (no effective descriptive set theory).

Note that we can extend these results to analytic equivalence relations in a straightforward manner.
We will not prove the main dichotomy here.

The proof is classical (no effective descriptive set theory).

Note that we can extend these results to analytic equivalence relations in a straightforward manner.

Sparsely treed equivalence relations are subtreeable-with-F_σ-iterates.
Using that sparsely treed equivalence relations are subtreeable-with-F_σ-iterates as well as hyperfinite-on-countable, we have:

Corollary

Let \mathcal{T} be a sparse treeing, and suppose $E \leq_B E_\mathcal{T}$. Then exactly one of:

1. E is essentially hyperfinite, or
2. $\mathcal{E}_1 \sqsubseteq_c E$.
Using that sparsely treed equivalence relations are subtreeable-with-F_σ-iterates as well as hyperfinite-on-countable, we have:

Corollary

Let T be a sparse treeing, and suppose $E \leq_B E_T$. Then exactly one of:

1. E is essentially hyperfinite, or
2. $E_1 \subseteq_c E$.

As this applies to E_T itself, we see that a strong form of Hjorth’s conjecture holds for sparsely treed Borel equivalence relations.
Since E_1 is not reducible to any orbit equivalence relations:

Corollary

Let E be sparsely treed, and E^X_G a non-essentially hyperfinite orbit equivalence relation. Then $E^X_G \nleq_B E$. In particular, this applies when E is any E^*_I.
Since E_1 is not reducible to any orbit equivalence relations:

Corollary

Let E be sparsely treed, and E^X_G a non-essentially hyperfinite orbit equivalence relation. Then $E^X_G \not\leq_B E$. In particular, this applies when E is any E^*_I.

Finally, using that E_1 is sparsely treed and that any hypersmooth equivalence relation is reducible to E_1, we recover the Kechris-Louveau dichotomy as a special case:

Corollary

Let E be hypersmooth. Then exactly one of:

1. $E \leq_B E_0$, or
2. $E_1 \sqsubseteq_c E$.
No higher level dichotomies

Theorem
Let Γ be a Borel Wadge class such that $\Gamma \supseteq \Sigma \sim_0^2$. Then there is no BEQ Γ such that for any BEQ E exactly one of:

1. $E \in \text{pot}(\Gamma)$, or
2. $E \Gamma \leq B E$.

Proof.
Suppose there were such an $E \Gamma$. We can find a vertically invariant I with $E^*I/ \in \text{pot}(\Gamma)$, so $E \Gamma \leq B E^*I$. So either $E_1 \leq B E \Gamma$ or $E \Gamma$ is essentially hyperfinite. But the latter implies $E \Gamma \in \text{pot}(\Sigma \sim_0^2) \subseteq \text{pot}(\Gamma)$, which can not happen. So $E_1 \leq B E \Gamma$.
Theorem

Let Γ be a Borel Wadge class such that $\Gamma \supseteq \sum^0_2$. Then there is no BEQ E_{Γ} such that for any BEQ E exactly one of:

1. $E \in \text{pot}(\Gamma)$, or
2. $E_{\Gamma} \leq_B E$.
Theorem

Let \(\Gamma \) be a Borel Wadge class such that \(\Gamma \supseteq \sum_0^0 \). Then there is no BEQ \(E_\Gamma \) such that for any BEQ \(E \) exactly one of:

1. \(E \in \text{pot}(\Gamma) \), or
2. \(E_\Gamma \leq_B E \).

Proof.

Suppose there were such an \(E_\Gamma \).
No higher level dichotomies

Theorem

Let Γ be a Borel Wadge class such that $\Gamma \supseteq \Sigma^0_2$. Then there is no BEQ E_Γ such that for any BEQ E exactly one of:

1. $E \in \text{pot}(\Gamma)$, or
2. $E_\Gamma \leq_B E$.

Proof.

Suppose there were such an E_Γ.

- We can find a vertically invariant I with $E^*_I \notin \text{pot}(\Gamma)$, so $E_\Gamma \leq_B E^*_I$.
Theorem

Let Γ be a Borel Wadge class such that $\Gamma \supseteq \Sigma^0_2$. Then there is no BEQ E_Γ such that for any BEQ E exactly one of:

1. $E \in \text{pot}(\Gamma)$, or
2. $E_\Gamma \leq_B E$.

Proof.

Suppose there were such an E_Γ.

- We can find a vertically invariant \mathcal{I} with $E^*_\mathcal{I} \notin \text{pot}(\Gamma)$, so $E_\Gamma \leq_B E^*_\mathcal{I}$.

- So either $\mathbb{E}_1 \leq_B E_\Gamma$ or E_Γ is essentially hyperfinite. But the latter implies $E_\Gamma \in \text{pot}(\Sigma^0_2) \subseteq \text{pot}(\Gamma)$, which can not happen.
No higher level dichotomies

Theorem

Let Γ be a Borel Wadge class such that $\Gamma \supseteq \Sigma^0_2$. Then there is no BEQ E_Γ such that for any BEQ E exactly one of:

1. $E \in \text{pot}(\Gamma)$, or
2. $E_\Gamma \leq_B E$.

Proof.

Suppose there were such an E_Γ.

- We can find a vertically invariant \mathcal{I} with $E^*_\mathcal{I} \notin \text{pot}(\Gamma)$, so $E_\Gamma \leq_B E^*_\mathcal{I}$.
- So either $E_1 \leq_B E_\Gamma$ or E_Γ is essentially hyperfinite. But the latter implies $E_\Gamma \in \text{pot}(\Sigma^0_2) \subseteq \text{pot}(\Gamma)$, which can not happen.
- So $E_1 \leq_B E_\Gamma$.
A result of Harrington shows that there is an orbit equivalence relation with $E_{G}^{X} \notin \text{pot}(\Gamma)$.

Hence there is no such E_{Γ}.
A result of Harrington shows that there is an orbit equivalence relation with $E^X_G \notin \text{pot}(\Gamma)$. So $E_\Gamma \leq_B E^X_G$. Hence there is no such E_Γ.

Proof (cont.).
A result of Harrington shows that there is an orbit equivalence relation with $E^X_G \not\in \text{pot}(\Gamma)$.

So $E_\Gamma \leq_B E^X_G$.

But then $E_1 \leq_B E^X_G$, which is impossible.
A result of Harrington shows that there is an orbit equivalence relation with $E^X_G \notin \text{pot}(\Gamma)$.

So $E_\Gamma \leq_B E^X_G$.

But then $E_1 \leq_B E^X_G$, which is impossible

Hence there is no such E_Γ. \qed
Unbounded incomparability

Theorem

Let E be a Borel equivalence relation which is not essentially hyperfinite. Then the class

\[\mathcal{F} = \{ F : F \text{ is a BEQ with } F \perp_B E \} \]

is unbounded in Wadge class (and hence in \leq_B).
Theorem

Let E be a Borel equivalence relation which is not essentially hyperfinite. Then the class

$$\mathcal{F} = \{ F : F \text{ is a BEQ with } F \perp_B E \}$$

is unbounded in Wadge class (and hence in \leq_B).

Proof.

- If E is not reducible to any E^*_I, then \mathcal{F} contains unbounded such.
Theorem

Let E be a Borel equivalence relation which is not essentially hyperfinite. Then the class

$$\mathcal{F} = \{ F : F \text{ is a BEQ with } F \perp_B E \}$$

is unbounded in Wadge class (and hence in \leq_B).

Proof.

- If E is not reducible to any E^*_I, then \mathcal{F} contains unbounded such.
- Otherwise $E \leq_B E^*_I$ for some I, so $E_1 \leq_B E$ since E is not essentially hyperfinite.
Theorem

Let E be a Borel equivalence relation which is not essentially hyperfinite. Then the class

$$\mathcal{F} = \{ F : F \text{ is a BEQ with } F \perp_B E \}$$

is unbounded in Wadge class (and hence in \leq_B).

Proof.

- If E is not reducible to any E^*_I, then \mathcal{F} contains unbounded such.
- Otherwise $E \leq_B E^*_I$ for some I, so $E_1 \leq_B E$ since E is not essentially hyperfinite.
- Then E is not reducible to any E^X_G, so \mathcal{F} contains unbounded such. □
Questions

Question (Hjorth) If E is a treeable Borel equivalence relation, is it the case that $E \subseteq^c E$ or E is essentially countable?

Question (Louveau) Is there a universal analytic treeable equivalence relation?

Question (Hjorth) Is $E \times G$ hyperfinite-on-countable for any abelian Polish group G when $G = I$ is a Polishable ideal?
Question (Hjorth)

If E is a treeable Borel equivalence relation, is it the case that $E_1 \sqsubseteq_c E$ or E is essentially countable?
Question (Hjorth)

If E is a treeable Borel equivalence relation, is it the case that $E_1 \sqsubseteq_c E$ or E is essentially countable?

Question (Louveau)

Is there a universal analytic treeable equivalence relation?
<table>
<thead>
<tr>
<th>Question (Hjorth)</th>
<th>If E is a treeable Borel equivalence relation, is it the case that $E_1 \sqsubseteq_c E$ or E is essentially countable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question (Louveau)</td>
<td>Is there a universal analytic treeable equivalence relation?</td>
</tr>
<tr>
<td>Question (Hjorth)</td>
<td>Is E^X_G hyperfinite-on-countable for any abelian Polish group G? When $G = \mathcal{I}$ is a Polishable ideal?</td>
</tr>
</tbody>
</table>
Is there a properly \sum^0_3 treeable BEQ?
Questions

Question

Is there a properly Σ^0_3 treeable BEQ?

The final two questions are highly speculative:
Questions

Question

Is there a properly Σ^0_3 treeable BEQ?

The final two questions are highly speculative:

Question

Can every treeable BEQ be decomposed into a sparsely treed BEQ and an essentially countable BEQ?
<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a properly Σ^0_3 treeable BEQ?</td>
</tr>
</tbody>
</table>

The final two questions are highly speculative:

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can every treeable BEQ be decomposed into a sparsely treed BEQ and an essentially countable BEQ?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can every BEQ be composed into one which is reducible to some E^X_G and one which is sparsely treed?</td>
</tr>
</tbody>
</table>