Weakly pointed trees and partial injections

John D. Clemens

Department of Mathematics
Penn State University

AMS Spring Central Section Meeting
Oxford, OH, March 17 2007
Consider the following theorem:

Theorem (Graf and Mauldin)

Let X and Y be analytic spaces, λ a probability measure on X, μ a probability measure on Y, and $R \subseteq X \times Y$ a Borel set such that R_x is uncountable for λ-a.e. $x \in X$ and R^y is uncountable for μ-a.e. $y \in Y$. Then there exists a Borel set $A \subseteq X$ with $\lambda(A) = 1$, a Borel set $B \subseteq Y$ with $\mu(B) = 1$, and a Borel isomorphism f from A onto B whose graph is contained in R.

This says that any sufficiently thick plane set admits an injective partial selector with domain of full measure.

We wish to consider topological and recursion-theoretic analogues of this question.
Consider the following theorem:

Theorem (Graf and Mauldin)

Let X and Y be analytic spaces, λ a probability measure on X, μ a probability measure on Y, and $R \subseteq X \times Y$ a Borel set such that R_x is uncountable for λ-a.e. $x \in X$ and R^y is uncountable for μ-a.e. $y \in Y$. Then there exists a Borel set $A \subseteq X$ with $\lambda(A) = 1$, a Borel set $B \subseteq Y$ with $\mu(B) = 1$, and a Borel isomorphism f from A onto B whose graph is contained in R.

- This says that any sufficiently thick plane set admits an injective partial selector with domain of full measure.
- We wish to consider topological and recursion-theoretic analogues of this question.
Consider the following theorem:

Theorem (Graf and Mauldin)

Let X and Y be analytic spaces, λ a probability measure on X, μ a probability measure on Y, and $R \subseteq X \times Y$ a Borel set such that R_x is uncountable for λ-a.e. $x \in X$ and R_y is uncountable for μ-a.e. $y \in Y$. Then there exists a Borel set $A \subseteq X$ with $\lambda(A) = 1$, a Borel set $B \subseteq Y$ with $\mu(B) = 1$, and a Borel isomorphism f from A onto B whose graph is contained in R.

- This says that any sufficiently thick plane set admits an injective partial selector with domain of full measure.
- We wish to consider topological and recursion-theoretic analogues of this question.
Topological version

We could ask whether the topological analogue is true, namely:

Question

Suppose X and Y are Polish spaces, and $R \subseteq X \times Y$ is a Borel set such that R_x and R^y are uncountable for comeager sets of x and y. Do there exist comeager Borel sets $A \subseteq X$ and $B \subseteq Y$ and a Baire-measurable isomorphism from A onto B whose graph is contained in R?

This turns out to be false (shown independently by C. and Hjorth-Miller). We first consider a recursion-theoretic version of the above question. The techniques for that version can be generalized to settle the topological version.
We could ask whether the topological analogue is true, namely:

Question

Suppose X and Y are Polish spaces, and $R \subseteq X \times Y$ is a Borel set such that R_x and R^y are uncountable for comeager sets of x and y. Do there exist comeager Borel sets $A \subseteq X$ and $B \subseteq Y$ and a Baire-measurable isomorphism from A onto B whose graph is contained in R?

This turns out to be false (shown independently by C. and Hjorth-Miller). We first consider a recursion-theoretic version of the above question. The techniques for that version can be generalized to settle the topological version.
Weakly pointed trees

A tree T is *pruned* if every node in T has a proper extension in T, and T is *perfect* if every node in T has two incompatible proper extensions in T.

We introduce a coding of uniformly branching pruned trees by elements of 3^ω.

Definition

Let $x \in 3^\omega$. Then x encodes the uniformly branching tree

$$T_x = \{ s \in 2^{<\omega} : \forall n < |s| (x(n) \neq 2 \Rightarrow s(n) = x(n)) \}.$$

Note that $T_x \equiv_T x$.

Definition

For $x \in 3^\omega$ and $y \in 2^\omega$ we say y is consistent with x if

$$\forall n \in \omega (x(n) \neq 2 \Rightarrow x(n) = y(n)).$$
A tree T is *pruned* if every node in T has a proper extension in T, and T is *perfect* if every node in T has two incompatible proper extensions in T.

We introduce a coding of uniformly branching pruned trees by elements of 3^ω.

Definition

Let $x \in 3^\omega$. Then x encodes the uniformly branching tree

$$T_x = \{ s \in 2^{<\omega} : \forall n < |s| (x(n) \neq 2 \Rightarrow s(n) = x(n)) \}.$$

Note that $T_x \equiv_T x$.

Definition

For $x \in 3^\omega$ and $y \in 2^\omega$ we say y is consistent with x if

$$\forall n \in \omega (x(n) \neq 2 \Rightarrow x(n) = y(n)).$$
Weakly pointed trees

A tree T is pruned if every node in T has a proper extension in T, and T is perfect if every node in T has two incompatible proper extensions in T.

We introduce a coding of uniformly branching pruned trees by elements of 3^ω.

Definition

Let $x \in 3^\omega$. Then x encodes the uniformly branching tree

$$T_x = \{ s \in 2^{<\omega} : \forall n < |s| (x(n) \neq 2 \Rightarrow s(n) = x(n)) \}.$$

Note that $T_x \equiv_T x$.

Definition

For $x \in 3^\omega$ and $y \in 2^\omega$ we say y is consistent with x if

$$\forall n \in \omega (x(n) \neq 2 \Rightarrow x(n) = y(n)).$$
We use the same notation for finite strings, imposing requirements only for \(n \) less than the length of the shorter string. Note that \(y \) is consistent with \(x \) if and only if \(y \in [T_x] \).

Recall that a pruned tree \(T \) is pointed if \(T \leq_T y \) for every branch \(y \in [T] \). We introduce the following generalization:

Definition

A tree \(T \) is **weakly pointed** if there is some branch \(y \in [T] \) such that \(T \leq_T y \).

For a uniformly branching tree encoded by \(x \in 3^\omega \), this is equivalent to saying that there is a \(y \) consistent with \(x \) such that \(x \leq_T y \). Note that every pointed tree is weakly pointed.
We use the same notation for finite strings, imposing requirements only for n less than the length of the shorter string. Note that y is consistent with x if and only if $y \in [T_x]$.

Recall that a pruned tree T is *pointed* if $T \leq_T y$ for every branch $y \in [T]$. We introduce the following generalization:

Definition

A tree T is *weakly pointed* if there is some branch $y \in [T]$ such that $T \leq_T y$.

For a uniformly branching tree encoded by $x \in 3^\omega$, this is equivalent to saying that there is a y consistent with x such that $x \leq_T y$. Note that every pointed tree is weakly pointed.
We use the same notation for finite strings, imposing requirements only for n less than the length of the shorter string. Note that y is consistent with x if and only if $y \in [T_x]$.

Recall that a pruned tree T is *pointed* if $T \leq_T y$ for every branch $y \in [T]$. We introduce the following generalization:

Definition

A tree T is *weakly pointed* if there is some branch $y \in [T]$ such that $T \leq_T y$.

For a uniformly branching tree encoded by $x \in 3^\omega$, this is equivalent to saying that there is a y consistent with x such that $x \leq_T y$. Note that every pointed tree is weakly pointed.
Weakly pointed trees (cont.)

- We use the same notation for finite strings, imposing requirements only for n less than the length of the shorter string. Note that y is consistent with x if and only if $y \in [T_x]$.

- Recall that a pruned tree T is pointed if $T \leq_T y$ for every branch $y \in [T]$. We introduce the following generalization:

Definition

A tree T is weakly pointed if there is some branch $y \in [T]$ such that $T \leq_T y$.

For a uniformly branching tree encoded by $x \in 3^\omega$, this is equivalent to saying that there is a y consistent with x such that $x \leq_T y$. Note that every pointed tree is weakly pointed.
We wish to characterize topologically the set of weakly pointed trees.

We will show that the set of weakly pointed trees is meager.

We will in fact find the precise level of genericity necessary to prevent a tree from being weakly pointed.
We wish to characterize topologically the set of weakly pointed trees.

We will show that the set of weakly pointed trees is meager.

We will in fact find the precise level of genericity necessary to prevent a tree from being weakly pointed.
We wish to characterize topologically the set of weakly pointed trees.

We will show that the set of weakly pointed trees is meager.

We will in fact find the precise level of genericity necessary to prevent a tree from being weakly pointed.
n-genericity

Definition

An element $x \in 3^\omega$ is n-generic if for every Σ^0_n set $A \subseteq 3^{<\omega}$ there is a string $\sigma \sqsubseteq x$ such that either:

(a) $\sigma \in A$, or

(b) $\forall \tau \sqsupseteq \sigma (\tau \notin A)$.

Definition

We say that x is weakly n-generic if for every dense Σ^0_n set $A \subseteq 3^{<\omega}$ there is $\sigma \sqsubseteq x$ such that $\sigma \in A$.

Note that n-generic implies weakly n-generic, and weakly $(n + 1)$-generic implies n-generic.
n-genericity

Definition

An element $x \in 3^\omega$ is *n-generic* if for every Σ^0_n set $A \subseteq 3^{<\omega}$ there is a string $\sigma \sqsubseteq x$ such that either:

(a) $\sigma \in A$, or
(b) $\forall \tau \sqsubseteq \sigma (\tau \notin A)$.

Definition

We say that x is *weakly n-generic* if for every dense Σ^0_n set $A \subseteq 3^{<\omega}$ there is $\sigma \sqsubseteq x$ such that $\sigma \in A$.

Note that *n-generic* implies weakly *n-generic*, and weakly $(n + 1)$-generic implies *n-generic*.
Definition

An element \(x \in 3^\omega \) is **\(n \)-generic** if for every \(\Sigma^0_n \) set \(A \subseteq 3^{<\omega} \) there is a string \(\sigma \sqsubseteq x \) such that either:

- **(a)** \(\sigma \in A \), or
- **(b)** \(\forall \tau \sqsubseteq \sigma (\tau \notin A) \).

Definition

We say that \(x \) is **weakly \(n \)-generic** if for every dense \(\Sigma^0_n \) set \(A \subseteq 3^{<\omega} \) there is \(\sigma \sqsubseteq x \) such that \(\sigma \in A \).

Note that \(n \)-generic implies weakly \(n \)-generic, and weakly \((n + 1)\)-generic implies \(n \)-generic.
n-genericity

Definition

An element $x \in 3^\omega$ is *n-generic* if for every Σ^0_n set $A \subseteq 3^{<\omega}$ there is a string $\sigma \sqsubseteq x$ such that either:

(a) $\sigma \in A$, or

(b) $\forall \tau \sqsubseteq \sigma (\tau \notin A)$.

Definition

We say that x is *weakly n-generic* if for every dense Σ^0_n set $A \subseteq 3^{<\omega}$ there is $\sigma \sqsubseteq x$ such that $\sigma \in A$.

Note that n-generic implies weakly n-generic, and weakly $(n + 1)$-generic implies n-generic.
We now characterize the amount of genericity necessary to rule out pointedness and weak pointedness. We begin with an easy observation:

Definition

Let $B_x = \{ n \in \omega : x(n) = 2 \}$ be the branching levels of T_x. Note that $B_x \leq_T x$, and for $y \in [T_x]$ we have $x \leq_T y$ if and only if $B_x \leq_T y$.

Lemma

If $x \in 3^\omega$ is weakly 1-generic then B_x is infinite, i.e. T_x is perfect.

Proof.

For $n \in \omega$ let $A_n = \{ \sigma : \sigma$ contains at least n 2’s\}. Then A_n is a dense r.e. set, and any x meeting all of them must contain infinitely many 2’s.
We now characterize the amount of genericity necessary to rule out pointedness and weak pointedness. We begin with an easy observation:

Definition

Let $B_x = \{ n \in \omega : x(n) = 2 \}$ be the branching levels of T_x. Note that $B_x \leq_T x$, and for $y \in [T_x]$ we have $x \leq_T y$ if and only if $B_x \leq_T y$.

Lemma

If $x \in 3^\omega$ is weakly 1-generic then B_x is infinite, i.e. T_x is perfect.

Proof.

For $n \in \omega$ let $A_n = \{ \sigma : \sigma$ contains at least n 2's$\}$. Then A_n is a dense r.e. set, and any x meeting all of them must contain infinitely many 2's.
We now characterize the amount of genericity necessary to rule out pointedness and weak pointedness. We begin with an easy observation:

Definition

Let $B_x = \{n \in \omega : x(n) = 2\}$ be the branching levels of T_x. Note that $B_x \leq_T x$, and for $y \in [T_x]$ we have $x \leq_T y$ if and only if $B_x \leq_T y$.

Lemma

If $x \in 3^\omega$ is weakly 1-generic then B_x is infinite, i.e. T_x is perfect.

Proof.

For $n \in \omega$ let $A_n = \{\sigma : \sigma$ contains at least n 2’s$\}$. Then A_n is a dense r.e. set, and any x meeting all of them must contain infinitely many 2’s.
We now characterize the amount of genericity necessary to rule out pointedness and weak pointedness. We begin with an easy observation:

Definition

Let $B_x = \{n \in \omega : x(n) = 2\}$ be the branching levels of T_x. Note that $B_x \leq_T x$, and for $y \in [T_x]$ we have $x \leq_T y$ if and only if $B_x \leq_T y$.

Lemma

If $x \in 3^\omega$ is weakly 1-generic then B_x is infinite, i.e. T_x is perfect.

Proof.

For $n \in \omega$ let $A_n = \{\sigma : \sigma$ contains at least n 2’s\}. Then A_n is a dense r.e. set, and any x meeting all of them must contain infinitely many 2’s. □
Characterizing genericity for pointed trees

For pointed trees, 1-genericity suffices:

Theorem

If $x \in 3^\omega$ is 1-generic, then T_x is not pointed.

Proof.

We see that the leftmost branch of T_x can not compute T_x. For $e \in \omega$ define the r.e. set

$$A_e = \{ \sigma \in 3^{<\omega} : \exists n < |\sigma| (\sigma(n) \neq 2 \land \{e\}^{\tilde{\sigma}}(n) \downarrow = 1) \}$$

where $\tilde{\sigma}(n) = \sigma(n)$ if $\sigma(n) \neq 2$ and $\tilde{\sigma}(n) = 0$ if $\sigma(n) = 2$.

Let $y = \tilde{x} \in T_x$ be the leftmost branch.

If there is $\sigma \sqsubseteq x$ with $\sigma \in A_e$ then $\{e\}^y \neq B_x$.

If there is $\sigma \sqsubseteq x$ such that $\forall \tau \sqsupseteq x (\tau \notin A_e)$, then $\{e\}^y$ is either not total or it is finite, so $\{e\}^y \neq B_x$ since B_x must be infinite for x 1-generic.

\square
Characterizing genericity for pointed trees

For pointed trees, 1-genericity suffices:

Theorem

If $x \in 3^\omega$ *is 1-generic, then* T_x *is not pointed.*

Proof.

We see that the leftmost branch of T_x cannot compute T_x. For $e \in \omega$ define the r.e. set

$$A_e = \{ \sigma \in 3^{<\omega} : \exists n < |\sigma| (\sigma(n) \neq 2 \land \{e\} \tilde{\sigma}(n) \downarrow = 1) \}$$

where $\tilde{\sigma}(n) = \sigma(n)$ if $\sigma(n) \neq 2$ and $\tilde{\sigma}(n) = 0$ if $\sigma(n) = 2$. Let $y = \tilde{x} \in T_x$ be the leftmost branch.

If there is $\sigma \sqsubseteq x$ with $\sigma \in A_e$ then $\{e\}^y \neq B_x$.

If there is $\sigma \sqsubseteq x$ such that $\forall \tau \sqsupseteq x (\tau \notin A_e)$, then $\{e\}^y$ is either not total or it is finite, so $\{e\}^y \neq B_x$ since B_x must be infinite for x 1-generic.

□
For pointed trees, 1-genericity suffices:

Theorem

If $x \in 3^\omega$ is 1-generic, then T_x is not pointed.

Proof.

We see that the leftmost branch of T_x can not compute T_x. For $e \in \omega$ define the r.e. set

$$A_e = \{ \sigma \in 3^{<\omega} : \exists n < |\sigma| (\sigma(n) \neq 2 \land \{e\} \tilde{\sigma}(n) \downarrow = 1) \}$$

where $\tilde{\sigma}(n) = \sigma(n)$ if $\sigma(n) \neq 2$ and $\tilde{\sigma}(n) = 0$ if $\sigma(n) = 2$.

Let $y = \tilde{x} \in T_x$ be the leftmost branch.

If there is $\sigma \sqsubseteq x$ with $\sigma \in A_e$ then $\{e\}^y \neq B_x$.

If there is $\sigma \sqsubseteq x$ such that $\forall \tau \sqsupseteq x (\tau \notin A_e)$, then $\{e\}^y$ is either not total or it is finite, so $\{e\}^y \neq B_x$ since B_x must be infinite for x 1-generic. □
For pointed trees, 1-genericity suffices:

Theorem

If \(x \in 3^\omega \) is 1-generic, then \(T_x \) is not pointed.

Proof.

We see that the leftmost branch of \(T_x \) can not compute \(T_x \).

For \(e \in \omega \) define the r.e. set

\[
A_e = \{ \sigma \in 3^{<\omega} : \exists n < |\sigma| (\sigma(n) \neq 2 \land \{e\}^{\tilde{\sigma}}(n) \downarrow = 1) \}
\]

where \(\tilde{\sigma}(n) = \sigma(n) \) if \(\sigma(n) \neq 2 \) and \(\tilde{\sigma}(n) = 0 \) if \(\sigma(n) = 2 \).

Let \(y = \tilde{x} \in T_x \) be the leftmost branch.

If there is \(\sigma \sqsupseteq x \) with \(\sigma \in A_e \) then \(\{e\}^y \neq B_x \).

If there is \(\sigma \sqsupseteq x \) such that \(\forall \tau \sqsupseteq x (\tau \notin A_e) \), then \(\{e\}^y \) is either not total or it is finite, so \(\{e\}^y \neq B_x \) since \(B_x \) must be infinite for \(x \) 1-generic. \(\square \)
Characterizing genericity for pointed trees

For pointed trees, 1-genericity suffices:

Theorem

If \(x \in 3^\omega \) is 1-generic, then \(T_x \) is not pointed.

Proof.

We see that the leftmost branch of \(T_x \) can not compute \(T_x \). For \(e \in \omega \) define the r.e. set

\[
A_e = \{ \sigma \in 3^{<\omega} : \exists n < |\sigma| (\sigma(n) \neq 2 \land \{e\}^{\tilde{\sigma}}(n) \downarrow = 1) \}
\]

where \(\tilde{\sigma}(n) = \sigma(n) \) if \(\sigma(n) \neq 2 \) and \(\tilde{\sigma}(n) = 0 \) if \(\sigma(n) = 2 \).

Let \(y = \tilde{x} \in T_x \) be the leftmost branch.

If there is \(\sigma \sqsubseteq x \) with \(\sigma \in A_e \) then \(\{e\}^y \neq B_x \).

If there is \(\sigma \sqsubseteq x \) such that \(\forall \tau \sqsubseteq x (\tau \notin A_e) \), then \(\{e\}^y \) is either not total or it is finite, so \(\{e\}^y \neq B_x \) since \(B_x \) must be infinite for \(x \) 1-generic.
Characterizing genericity for pointed trees

For pointed trees, 1-genericity suffices:

Theorem

If \(x \in 3^\omega \) is 1-generic, then \(T_x \) is not pointed.

Proof.

We see that the leftmost branch of \(T_x \) can not compute \(T_x \).

For \(e \in \omega \) define the r.e. set

\[
A_e = \{ \sigma \in 3^{<\omega} : \exists n < |\sigma| (\sigma(n) \neq 2 \land \{e\} \tilde{\sigma}(n) \downarrow = 1) \}
\]

where \(\tilde{\sigma}(n) = \sigma(n) \) if \(\sigma(n) \neq 2 \) and \(\tilde{\sigma}(n) = 0 \) if \(\sigma(n) = 2 \).

Let \(y = \tilde{x} \in T_x \) be the leftmost branch.

If there is \(\sigma \sqsubseteq x \) with \(\sigma \in A_e \) then \(\{e\}^y \neq B_x \).

If there is \(\sigma \sqsubseteq x \) such that \(\forall \tau \sqsubseteq x (\tau \notin A_e) \), then \(\{e\}^y \) is either not total or it is finite, so \(\{e\}^y \neq B_x \) since \(B_x \) must be infinite for \(x \) 1-generic.
The characterization for weakly pointedness requires more genericity. Weak 2-genericity is necessary:

Theorem

There is a 1-generic $x \in 3^\omega$ such that T_x is weakly pointed.

Proof.

- Build sequences $\langle \sigma_i \rangle_{i \in \omega}$ with $\sigma_i \in 3^{<\omega}$ and $\langle s_i \rangle_{i \in \omega}$ with $s_i \in 2^{<\omega}$.
- We will let $x = \sigma_0 \upharpoonright \sigma_1 \upharpoonright \cdots$ and $y = s_0 \upharpoonright s_1 \upharpoonright \cdots$.
- We want to ensure that y is a a branch in T_x with $x \leq_T y$.
- Start with $\sigma_0 = \langle 2 \rangle$ and $s_0 = \langle \rangle$.
- Given σ_n and s_n, we construct σ_{n+1} to force the n-th r.e. set, and s_{n+1} to encode σ_{n+1}, as follows.
The characterization for weakly pointedness requires more genericity. Weak 2-genericity is necessary:

Theorem

There is a 1-generic \(x \in 3^\omega \) such that \(T_x \) is weakly pointed.

Proof.

- Build sequences \(\langle \sigma_i \rangle_{i \in \omega} \) with \(\sigma_i \in 3^{<\omega} \) and \(\langle s_i \rangle_{i \in \omega} \) with \(s_i \in 2^{<\omega} \).
- We will let \(x = \sigma_0 \upharpoonright \sigma_1 \upharpoonright \cdots \) and \(y = s_0 \upharpoonright s_1 \upharpoonright \cdots \).
- We want to ensure that \(y \) is a branch in \(T_x \) with \(x \leq_T y \).
- Start with \(\sigma_0 = \langle 2 \rangle \) and \(s_0 = \langle \rangle \).
- Given \(\sigma_n \) and \(s_n \), we construct \(\sigma_{n+1} \) to force the \(n \)-th r.e. set, and \(s_{n+1} \) to encode \(\sigma_{n+1} \), as follows.
The characterization for weakly pointedness requires more genericity. Weak 2-genericity is necessary:

Theorem

There is a 1-generic $x \in 3^\omega$ such that T_x is weakly pointed.

Proof.

- Build sequences $\langle \sigma_i \rangle_{i \in \omega}$ with $\sigma_i \in 3^{<\omega}$ and $\langle s_i \rangle_{i \in \omega}$ with $s_i \in 2^{<\omega}$.
- We will let $x = \sigma_0 \sqcup \sigma_1 \sqcup \cdots$ and $y = s_0 \sqcup s_1 \sqcup \cdots$.
- We want to ensure that y is a a branch in T_x with $x \leq_T y$.
- Start with $\sigma_0 = \langle 2 \rangle$ and $s_0 = \langle \rangle$.
- Given σ_n and s_n, we construct σ_{n+1} to force the n-th r.e. set, and s_{n+1} to encode σ_{n+1}, as follows.
The characterization for weakly pointedness requires more genericity. Weak 2-genericity is necessary:

Theorem

There is a 1-generic \(x \in 3^\omega \) *such that* \(T_x \) *is weakly pointed.*

Proof.

- Build sequences \(\langle \sigma_i \rangle_{i \in \omega} \) with \(\sigma_i \in 3^{<\omega} \) and \(\langle s_i \rangle_{i \in \omega} \) with \(s_i \in 2^{<\omega} \).
- We will let \(x = \sigma_0 \sqcup \sigma_1 \sqcup \cdots \) and \(y = s_0 \sqcup s_1 \sqcup \cdots \).
- We want to ensure that \(y \) is a branch in \(T_x \) with \(x \leq_T y \).
- Start with \(\sigma_0 = \langle 2 \rangle \) and \(s_0 = \langle \rangle \).
- Given \(\sigma_n \) and \(s_n \), we construct \(\sigma_{n+1} \) to force the \(n \)-th r.e. set, and \(s_{n+1} \) to encode \(\sigma_{n+1} \), as follows.
The characterization for weakly pointedness requires more genericity. Weak 2-genericity is necessary:

Theorem

There is a 1-generic $x \in 3^\omega$ such that T_x is weakly pointed.

Proof.

- Build sequences $\langle \sigma_i \rangle_{i \in \omega}$ with $\sigma_i \in 3^{<\omega}$ and $\langle s_i \rangle_{i \in \omega}$ with $s_i \in 2^{<\omega}$.
- We will let $x = \sigma_0 \triangleleft \sigma_1 \triangleleft \cdots$ and $y = s_0 \triangleleft s_1 \triangleleft \cdots$.
- We want to ensure that y is a branch in T_x with $x \leq_T y$.
- Start with $\sigma_0 = \langle 2 \rangle$ and $s_0 = \langle \rangle$.
- Given σ_n and s_n, we construct σ_{n+1} to force the n-th r.e. set, and s_{n+1} to encode σ_{n+1}, as follows.
Proof (continued).

- First, check whether there is a $\sigma \sqsupseteq \sigma_0 \bowtie \cdots \bowtie \sigma_n$ with $\sigma \in R_n$, where $R_n = \text{ran}(\varphi_n)$ is the n-th r.e. subset of 3^{ω}.
- If so, let $\langle i, j \rangle$ be the least pair such that $\varphi_{n,i}(j) \downarrow = \sigma \sqsupseteq \sigma_0 \bowtie \cdots \bowtie \sigma_n$.
- We let $\sigma_{n+1} = \sigma \bowtie \langle 2 \rangle$, and we let $s_{n+1} = \langle 1 \rangle \bowtie \tilde{\sigma}$, where $\tilde{\sigma}(n) = \sigma(n)$ if $\sigma(n) \neq 2$ and $\tilde{\sigma}(n) = 0$ if $\sigma(n) = 2$.
- Otherwise, if there is no such σ, we let $\sigma_{n+1} = \langle 2 \rangle$ and we let $s_{n+1} = \langle 0 \rangle$.
- Note that $s_0 \bowtie \cdots \bowtie s_n$ is always one digit shorter than $\sigma_0 \bowtie \cdots \bowtie \sigma_n$.
Characterizing genericity for weakly pointed trees

Proof (continued).

- First, check whether there is a $\sigma \sqsupseteq \sigma_0 \sqsupseteq \cdots \sqsupseteq \sigma_n$ with $\sigma \in R_n$, where $R_n = \text{ran}(\varphi_n)$ is the n-th r.e. subset of $3^{<\omega}$.

- If so, let $\langle i, j \rangle$ be the least pair such that $\varphi_{n,i}(j) \downarrow = \sigma \sqsupseteq \sigma_0 \sqsupseteq \cdots \sqsupseteq \sigma_n$.

- We let $\sigma_{n+1} = \sigma \sqcup \langle 2 \rangle$, and we let $s_{n+1} = \langle 1 \rangle \sqcup \tilde{\sigma}$, where $	ilde{\sigma}(n) = \sigma(n)$ if $\sigma(n) \neq 2$ and $\tilde{\sigma}(n) = 0$ if $\sigma(n) = 2$.

- Otherwise, if there is no such σ, we let $\sigma_{n+1} = \langle 2 \rangle$ and we let $s_{n+1} = \langle 0 \rangle$.

- Note that $s_0 \sqsupseteq \cdots \sqsupseteq s_n$ is always one digit shorter than $\sigma_0 \sqsupseteq \cdots \sqsupseteq \sigma_n$.
Proof (continued).

- First, check whether there is a $\sigma \sqsupseteq \sigma_0 \bowtie \cdots \bowtie \sigma_n$ with $\sigma \in \mathbb{R}_n$, where $\mathbb{R}_n = \text{ran}(\varphi_n)$ is the n-th r.e. subset of $3^{<\omega}$.

- If so, let $\langle i, j \rangle$ be the least pair such that $\varphi_{n,i}(j) \downarrow = \sigma \sqsupseteq \sigma_0 \bowtie \cdots \bowtie \sigma_n$.

- We let $\sigma_{n+1} = \sigma \bowtie \langle 2 \rangle$, and we let $s_{n+1} = \langle 1 \rangle \bowtie \tilde{\sigma}$, where $\tilde{\sigma}(n) = \sigma(n)$ if $\sigma(n) \neq 2$ and $\tilde{\sigma}(n) = 0$ if $\sigma(n) = 2$.

- Otherwise, if there is no such σ, we let $\sigma_{n+1} = \langle 2 \rangle$ and we let $s_{n+1} = \langle 0 \rangle$.

- Note that $s_0 \bowtie \cdots \bowtie s_n$ is always one digit shorter than $\sigma_0 \bowtie \cdots \bowtie \sigma_n$.
First, check whether there is a $\sigma \sqsupseteq \sigma_0 \triangleleft \cdots \triangleleft \sigma_n$ with $\sigma \in R_n$, where $R_n = \text{ran}(\varphi_n)$ is the n-th r.e. subset of $3^{<\omega}$.

If so, let $\langle i, j \rangle$ be the least pair such that $\varphi_n,i(j) \downarrow = \sigma \sqsupseteq \sigma_0 \triangleleft \cdots \triangleleft \sigma_n$.

We let $\sigma_{n+1} = \sigma \triangleleft \langle 2 \rangle$, and we let $s_{n+1} = \langle 1 \rangle \triangleleft \tilde{\sigma}$, where $\tilde{\sigma}(n) = \sigma(n)$ if $\sigma(n) \neq 2$ and $\tilde{\sigma}(n) = 0$ if $\sigma(n) = 2$.

Otherwise, if there is no such σ, we let $\sigma_{n+1} = \langle 2 \rangle$ and we let $s_{n+1} = \langle 0 \rangle$.

Note that $s_0 \triangleleft \cdots \triangleleft s_n$ is always one digit shorter than $\sigma_0 \triangleleft \cdots \triangleleft \sigma_n$.
To check that $x \leq_T y$, we reconstruct the sequence $\langle \sigma_i \rangle_{i \in \omega}$ recursively in y.

Let $\sigma_0 = \langle 2 \rangle$ and $i_0 = y(0)$. Given σ_n and i_n, we find σ_{n+1} and i_{n+1} as follows.

If $i_n = 1$ then we know that there was a $\sigma \sqsupseteq \sigma_0 \cdot \cdots \cdot \sigma_n$ with $\sigma \in R_n$, so we can calculate the least pair such that $\varphi_{n,i}(j) \downarrow = \sigma \sqsupseteq \sigma_0 \cdot \cdots \cdot \sigma_n$ and let $\sigma_{n+1} = \sigma \cdot \langle 2 \rangle$.

Otherwise, if $i_n = 0$ there was no such σ and we let $\sigma_{n+1} = \langle 2 \rangle$. We then let $l = |\sigma_0 \cdot \cdots \cdot \sigma_{n+1}|$ and let $i_{n+1} = y(l - 1)$.

Note that $x <_T 0'$. By adding a second 2 after each stage, we can construct x so that T_x contains a pointed subtree. We do not know whether we can find a branch y such that $x \equiv_T y$.

Proof (continued).

- To check that $x \leq_T y$, we reconstruct the sequence $\langle \sigma_i \rangle_{i \in \omega}$ recursively in y.
- Let $\sigma_0 = \langle 2 \rangle$ and $i_0 = y(0)$. Given σ_n and i_n, we find σ_{n+1} and i_{n+1} as follows.
 - If $i_n = 1$ then we know that there was a $\sigma \sqsupseteq \sigma_0 \bowtie \cdots \bowtie \sigma_n$ with $\sigma \in R_n$, so we can calculate the least pair such that $\varphi_{n,i}(j) \downarrow = \sigma \sqsupseteq \sigma_0 \bowtie \cdots \bowtie \sigma_n$ and let $\sigma_{n+1} = \sigma \bowtie \langle 2 \rangle$.
 - Otherwise, if $i_n = 0$ there was no such σ and we let $\sigma_{n+1} = \langle 2 \rangle$. We then let $l = |\sigma_0 \bowtie \cdots \bowtie \sigma_{n+1}|$ and let $i_{n+1} = y(l - 1)$.

Note that $x <_T 0'$. By adding a second 2 after each stage, we can construct x so that T_x contains a pointed subtree. We do not know whether we can find a branch y such that $x \equiv_T y$.
Proof (continued).

To check that $x \leq_T y$, we reconstruct the sequence $\langle \sigma_i \rangle_{i \in \omega}$ recursively in y.

Let $\sigma_0 = \langle 2 \rangle$ and $i_0 = y(0)$. Given σ_n and i_n, we find σ_{n+1} and i_{n+1} as follows.

If $i_n = 1$ then we know that there was a $\sigma \supseteq \sigma_0 \sqcup \cdots \sqcup \sigma_n$ with $\sigma \in R_n$, so we can calculate the least pair such that $\varphi_{n,i}(j) \downarrow = \sigma \supseteq \sigma_0 \sqcup \cdots \sqcup \sigma_n$ and let $\sigma_{n+1} = \sigma \sqcup \langle 2 \rangle$.

Otherwise, if $i_n = 0$ there was no such σ and we let $\sigma_{n+1} = \langle 2 \rangle$. We then let $l = |\sigma_0 \sqcup \cdots \sqcup \sigma_{n+1}|$ and let $i_{n+1} = y(l - 1)$.

Note that $x <_T 0'$. By adding a second 2 after each stage, we can construct x so that T_x contains a pointed subtree. We do not know whether we can find a branch y such that $x \equiv_T y$.
Proof (continued).

To check that $x \leq_T y$, we reconstruct the sequence $\langle \sigma_i \rangle_{i \in \omega}$ recursively in y.

Let $\sigma_0 = \langle 2 \rangle$ and $i_0 = y(0)$. Given σ_n and i_n, we find σ_{n+1} and i_{n+1} as follows.

- If $i_n = 1$ then we know that there was a $\sigma \supseteq \sigma_0 \supseteq \cdots \supseteq \sigma_n$ with $\sigma \in R_n$, so we can calculate the least pair such that $\varphi_{n,i}(j) \downarrow = \sigma \supseteq \sigma_0 \supseteq \cdots \supseteq \sigma_n$ and let $\sigma_{n+1} = \sigma \supseteq \langle 2 \rangle$.

- Otherwise, if $i_n = 0$ there was no such σ and we let $\sigma_{n+1} = \langle 2 \rangle$. We then let $l = |\sigma_0 \supseteq \cdots \supseteq \sigma_{n+1}|$ and let $i_{n+1} = y(l - 1)$.

Note that $x \prec_T 0'$. By adding a second 2 after each stage, we can construct x so that T_x contains a pointed subtree. We do not know whether we can find a branch y such that $x \equiv_T y$.
Proof (continued).

To check that $x \leq_T y$, we reconstruct the sequence $\langle \sigma_i \rangle_{i \in \omega}$ recursively in y.

Let $\sigma_0 = \langle 2 \rangle$ and $i_0 = y(0)$. Given σ_n and i_n, we find σ_{n+1} and i_{n+1} as follows.

If $i_n = 1$ then we know that there was a $\sigma \sqsupseteq \sigma_0 \sqsubset \cdots \sqsubset \sigma_n$ with $\sigma \in R_n$, so we can calculate the least pair such that $\varphi_{n,i}(j) \downarrow= \sigma \sqsupseteq \sigma_0 \sqsubset \cdots \sqsubset \sigma_n$ and let $\sigma_{n+1} = \sigma \sqsubset \langle 2 \rangle$.

Otherwise, if $i_n = 0$ there was no such σ and we let $\sigma_{n+1} = \langle 2 \rangle$. We then let $l = |\sigma_0 \sqsubset \cdots \sqsubset \sigma_{n+1}|$ and let $i_{n+1} = y(l-1)$.

Note that $x <_T 0'$. By adding a second 2 after each stage, we can construct x so that T_x contains a pointed subtree. We do not know whether we can find a branch y such that $x \equiv_T y$.

Characterizing genericity for weakly pointed trees

We see that weak 2-genericity is sufficient:

Theorem

If \(x \in 3^\omega \) is weakly 2-generic, then \(T_x \) is not weakly pointed.

Proof.

- Let \(x \in 3^\omega \) be weakly 2-generic, and let \(y \in [T_x] \).
- It suffices to show for each \(e \in \omega \) that \(\{ e \}^y \neq B_x \).
- Define the \(\Sigma_2^0 \) set

\[
A_e = \{ \sigma \in 3^{<\omega} : \forall s \in 2^{\vert \sigma \vert} \text{ consistent with } \sigma \\
[(\exists n < \vert \sigma \vert (\sigma(n) \neq 2 \land \{ e \}^s(n) \downarrow = 1)) \lor \\
(\neg \exists t \supseteq s \exists n (\vert s \vert \leq n < \vert t \vert \land \{ e \}^t(n) \downarrow = 1))\}.
\]
We see that weak 2-genericity is sufficient:

Theorem

If \(x \in 3^\omega \) is weakly 2-generic, then \(T_x \) is not weakly pointed.

Proof.

- Let \(x \in 3^\omega \) be weakly 2-generic, and let \(y \in [T_x] \).
- It suffices to show for each \(e \in \omega \) that \(\{e\}^y \neq B_x \).
- Define the \(\Sigma^0_2 \) set

\[
A_e = \{ \sigma \in 3^{<\omega} : \forall s \in 2^{\sigma} \text{ consistent with } \sigma \\
(\exists n < |\sigma| (\sigma(n) \neq 2 \land \{e\}^s(n) \downarrow = 1)) \lor \\
(\neg \exists t \supseteq s \exists n (|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1)) \}.
\]
We see that weak 2-genericity is sufficient:

Theorem

If \(x \in 3^\omega \) is weakly 2-generic, then \(T_x \) is not weakly pointed.

Proof.

- Let \(x \in 3^\omega \) be weakly 2-generic, and let \(y \in [T_x] \).
- It suffices to show for each \(e \in \omega \) that \(\{ e \}^y \neq B_x \).
- Define the \(\Sigma^0_2 \) set

\[
A_e = \{ \sigma \in 3^{<\omega} : \forall s \in 2^{|\sigma|} \text{ consistent with } \sigma
\begin{align*}
&[(\exists n < |\sigma| (\sigma(n) \neq 2 \land \{ e \}^s(n) \downarrow = 1)) \lor \\
&\neg \exists t \supseteq s \exists n (|s| \leq n < |t| \land \{ e \}^t(n) \downarrow = 1))].
\end{align*}
\]
We see that weak 2-genericity is sufficient:

Theorem

If $x \in 3^\omega$ is weakly 2-generic, then T_x is not weakly pointed.

Proof.

- Let $x \in 3^\omega$ be weakly 2-generic, and let $y \in [T_x]$.
- It suffices to show for each $e \in \omega$ that $\{e\}^y \neq B_x$.
- Define the Σ^0_2 set

 $$A_e = \{ \sigma \in 3^{<\omega} : \forall s \in 2^{|\sigma|} \text{ consistent with } \sigma$$

 $$[(\exists n < |\sigma| (\sigma(n) \neq 2 \land \{e\}^s(n) \downarrow = 1)) \lor$$

 $$(\neg \exists t \supset s \exists n (|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1))]\}. $$
We see that weak 2-genericity is sufficient:

Theorem

If \(x \in 3^\omega \) is weakly 2-generic, then \(T_x \) is not weakly pointed.

Proof.

- Let \(x \in 3^\omega \) be weakly 2-generic, and let \(y \in [T_x] \).
- It suffices to show for each \(e \in \omega \) that \(\{e\}^y \neq B_x \).
- Define the \(\Sigma_2^0 \) set

\[
A_e = \{ \sigma \in 3^{<\omega} : \forall s \in 2^{\|\sigma\|} \text{ consistent with } \sigma \\
\quad \quad \quad [(\exists n < \|\sigma\|)(\sigma(n) \neq 2 \land \{e\}^s(n) \downarrow = 1)) \lor \\
\quad \quad \quad (\neg \exists t \supset s \exists n(|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1))\}.
\]
Proof (continued).

- Suppose there is $\sigma \subseteq x$ such that $\sigma \in A_e$.
- Let $s = y \upharpoonright |\sigma|$, so s is consistent with σ.
- If there is $n < |\sigma|$ such that $\sigma(n) = x(n) \neq 2$ and $
\{e\}^s(n) = \{e\}^y(n) \downarrow = 1$, then immediately $\{e\}^y \neq B_x$.
- Otherwise, $\neg \exists t \supseteq s \exists n(|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1)$, so $\neg \exists n \geq |\sigma|((\{e\}^y(n) \downarrow = 1)$.
- Hence if $\{e\}^y$ is total then it must compute a finite set, and since B_x is infinite we again have $\{e\}^y \neq B_x$.
- It remains to check that A_e is dense.
Proof (continued).

- Suppose there is $\sigma \subseteq x$ such that $\sigma \in A_e$.
- Let $s = y \upharpoonright |\sigma|$, so s is consistent with σ.
- If there is $n < |\sigma|$ such that $\sigma(n) = x(n) \neq 2$ and $\{e\}^s(n) = \{e\}^y(n) \downarrow = 1$, then immediately $\{e\}^y \neq B_x$.
- Otherwise, $\neg \exists t \supseteq s \exists n(|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1)$, so $\neg \exists n \geq |\sigma| (\{e\}^y(n) \downarrow = 1)$.
- Hence if $\{e\}^y$ is total then it must compute a finite set, and since B_x is infinite we again have $\{e\}^y \neq B_x$.
- It remains to check that A_e is dense.
Proof (continued).

- Suppose there is $\sigma \subseteq x$ such that $\sigma \in A_e$.
- Let $s = y \upharpoonright |\sigma|$, so s is consistent with σ.
- If there is $n < |\sigma|$ such that $\sigma(n) = x(n) \neq 2$ and
 \[
 \{e\}^s(n) = \{e\}^y(n) \downarrow = 1,
 \]
 then immediately $\{e\}^y \neq B_x$.
- Otherwise, $\neg \exists t \ni s \exists n(|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1)$, so $\neg \exists n \geq |\sigma| \ni (\{e\}^y(n) \downarrow = 1)$.
- Hence if $\{e\}^y$ is total then it must compute a finite set, and since B_x is infinite we again have $\{e\}^y \neq B_x$.
- It remains to check that A_e is dense.
Proof (continued).

- Suppose there is $\sigma \subseteq x$ such that $\sigma \in A_e$.
- Let $s = y \upharpoonright |\sigma|$, so s is consistent with σ.
- If there is $n < |\sigma|$ such that $\sigma(n) = x(n) \neq 2$ and $\{e\}^s(n) = \{e\}^y(n) \downarrow = 1$, then immediately $\{e\}^y \neq B_x$.
- Otherwise, $\neg \exists \ t \supseteq s \exists \ n (|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1)$, so $\neg \exists \ n \geq |\sigma| (\{e\}^y(n) \downarrow = 1)$.
- Hence if $\{e\}^y$ is total then it must compute a finite set, and since B_x is infinite we again have $\{e\}^y \neq B_x$.
- It remains to check that A_e is dense.
Proof (continued).

- Suppose there is $\sigma \sqsubseteq x$ such that $\sigma \in A_e$.
- Let $s = y \upharpoonright |\sigma|$, so s is consistent with σ.
- If there is $n < |\sigma|$ such that $\sigma(n) = x(n) \neq 2$ and $\{e\}^s(n) = \{e\}^y(n) \downarrow = 1$, then immediately $\{e\}^y \neq B_x$.
- Otherwise, $\neg \exists t \sqsupseteq s \exists n(|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1)$, so $\neg \exists n \geq |\sigma|((\{e\}^y(n) \downarrow = 1)$.
- Hence if $\{e\}^y$ is total then it must compute a finite set, and since B_x is infinite we again have $\{e\}^y \neq B_x$.
- It remains to check that A_e is dense.
Proof (continued).

- Suppose there is $\sigma \sqsubseteq x$ such that $\sigma \in A_e$.
- Let $s = y \upharpoonright |\sigma|$, so s is consistent with σ.
- If there is $n < |\sigma|$ such that $\sigma(n) = x(n) \neq 2$ and $\{e\}^s(n) = \{e\}^y(n) \downarrow = 1$, then immediately $\{e\}^y \neq B_x$.
- Otherwise, $\neg \exists t \sqsupseteq s \exists n(|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1)$, so $\neg \exists n \geq |\sigma|(\{e\}^y(n) \downarrow = 1)$.
- Hence if $\{e\}^y$ is total then it must compute a finite set, and since B_x is infinite we again have $\{e\}^y \neq B_x$.
- It remains to check that A_e is dense.
Proof (continued).

- If A_e is not dense, there is σ such that $\forall \tau \equiv \sigma(\tau \notin A_e)$. We show this yields a contradiction.

- We have:

$$\forall \tau \equiv \sigma \exists s \in 2^{||\tau||} \text{ consistent with } \tau$$

$$(\neg \exists n < ||\tau|| (\tau(n) \neq 2 \land \{e\}^{s}(n) \downarrow = 1)) \land (\exists t \equiv s \exists n (|s| \leq n < |t| \land \{e\}^{t}(n) \downarrow = 1)).$$

- Specializing this to $\tau = \sigma \triangle t$ where $t \in 2^{<\omega}$ we then have:

$$\forall t \in 2^{<\omega} \exists s \in 2^{||\sigma||} [s \text{ is consistent with } \sigma \land$$

$$\neg \exists n (|\sigma| \leq n < |\sigma \triangle t| \land \{e\}^{s\triangle t}(n) \downarrow = 1) \land$$

$$\exists t' \equiv t \exists n (|\sigma \triangle t| \leq n < |\sigma \triangle t'| \land \{e\}^{s\triangle t'}(n) \downarrow = 1)]$$
Proof (continued).

- If A_e is not dense, there is σ such that $\forall \tau \sqsupseteq \sigma(\tau \notin A_e)$. We show this yields a contradiction.

- We have:

\[
\forall \tau \sqsupseteq \sigma \exists s \in 2^{|\tau|} \text{ consistent with } \tau
\]

\[
[(\neg \exists n < |\tau|(\tau(n) \neq 2 \land \{e\}^s(n) \downarrow = 1)) \land
(\exists t \sqsupseteq s \exists n(|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1))].
\]

- Specializing this to $\tau = \sigma \triangleleft t$ where $t \in 2^{<\omega}$ we then have:

\[
\forall t \in 2^{<\omega} \exists s \in 2^{|\sigma|}[s \text{ is consistent with } \sigma \land
\neg \exists n(|\sigma| \leq n < |\sigma \triangleleft t| \land \{e\}^{s \triangleleft t}(n) \downarrow = 1) \land
\exists t' \sqsupseteq t \exists n(|\sigma \triangleleft t| \leq n < |\sigma \triangleleft t'| \land \{e\}^{s \triangleleft t'}(n) \downarrow = 1)]
\]
Characterizing genericity for weakly pointed trees

Proof (continued).

- If A_e is not dense, there is σ such that $\forall \tau \supseteq \sigma (\tau \notin A_e)$. We show this yields a contradiction.

- We have:

 $$\forall \tau \supseteq \sigma \exists s \in 2^{\tau} \text{ consistent with } \tau$$

 $$[\lnot \exists n < |\tau| (\tau(n) \neq 2 \land \{e\}^s(n) \downarrow = 1)] \land$$

 $$\exists t \supseteq s \exists n (|s| \leq n < |t| \land \{e\}^t(n) \downarrow = 1)].$$

- Specializing this to $\tau = \sigma \triangle t$ where $t \in 2^{<\omega}$ we then have:

 $$\forall t \in 2^{<\omega} \exists s \in 2^{\sigma} [s \text{ is consistent with } \sigma \land$$

 $$\lnot \exists n (|\sigma| \leq n < |\sigma \triangle t| \land \{e\}^{s \triangle t}(n) \downarrow = 1) \land$$

 $$\exists t' \supseteq t \exists n (|\sigma \triangle t| \leq n < |\sigma \triangle t'| \land \{e\}^{s \triangle t'}(n) \downarrow = 1)].$$
Proof (continued).

- We now form sequences $\langle t_i \rangle_{i \in \omega}$ and $\langle s_i \rangle_{i \in \omega}$ of elements of $2^{<\omega}$.
- For each i we want $t_i \sqsubseteq t_{i+1}$ and $s_i \in 2^{\sigma}$ consistent with σ.
- Let $t_0 = \langle \rangle$.
- Given t_i, by the previous conclusion we can choose $t_{i+1} \sqsupseteq t_i$ and $s_i \in 2^{\sigma}$ consistent with σ such that
 \[
 \neg \exists n(|\sigma| \leq n < |\sigma \cup t_i| \land \{e\}_{s_i}^{t_i}(n) \downarrow = 1)
 \]
 and
 \[
 \exists n(|\sigma \cup t_i| \leq n < |\sigma \cup t_{i+1}| \land \{e\}_{s_i}^{t_{i+1}}(n) \downarrow = 1).
 \]
Proof (continued).

- We now form sequences $\langle t_i \rangle_{i \in \omega}$ and $\langle s_i \rangle_{i \in \omega}$ of elements of $2^{<\omega}$.
- For each i we want $t_i \sqsubseteq t_{i+1}$ and $s_i \in 2^{\mid\sigma\mid}$ consistent with σ.
- Let $t_0 = \langle \rangle$.

Given t_i, by the previous conclusion we can choose $t_{i+1} \sqsupseteq t_i$ and $s_i \in 2^{\mid\sigma\mid}$ consistent with σ such that

$$\neg \exists n (\mid\sigma\mid \leq n < \mid\sigma \upharpoonright t_i\mid \wedge \{e\}^{s_i \upharpoonright t_i}(n) \downarrow = 1)$$

and

$$\exists n (\mid\sigma \upharpoonright t_i\mid \leq n < \mid\sigma \upharpoonright t_{i+1}\mid \wedge \{e\}^{s_i \upharpoonright t_{i+1}}(n) \downarrow = 1).$$
Proof (continued).

- We now form sequences $\langle t_i \rangle_{i \in \omega}$ and $\langle s_i \rangle_{i \in \omega}$ of elements of $2^{<\omega}$.
- For each i we want $t_i \sqsubseteq t_{i+1}$ and $s_i \in 2^{|\sigma|}$ consistent with σ.
- Let $t_0 = \langle \rangle$.
- Given t_i, by the previous conclusion we can choose $t_{i+1} \sqsupseteq t_i$ and $s_i \in 2^{|\sigma|}$ consistent with σ such that

$$\neg \exists n (|\sigma| \leq n < |\sigma \upharpoonright t_i| \land \{ e \}^{s_i \upharpoonright t_i(n)} \downarrow = 1)$$

and

$$\exists n (|\sigma \upharpoonright t_i| \leq n < |\sigma \upharpoonright t_{i+1}| \land \{ e \}^{s_i \upharpoonright t_{i+1}(n)} \downarrow = 1).$$
Proof (continued).

There are only finitely many choices for s_i, so there is a fixed s consistent with σ and an infinite sequence $n_0 < n_1 < \cdots$ such that $s_{n_i} = s$ for all i.

Let $z = s \triangleleft \bigcup_i t_i$. Then for each i we have

$$-\exists n(|\sigma| \leq n < |\sigma \triangleleft t_{n_i}| \land \{e\}^{s \triangleleft t_{n_i}}(n) \downarrow = 1)$$

So $-\exists n \geq |\sigma|((\{e\}^z(n) \downarrow = 1)$, but for each i we have

$$\exists n(|\sigma \triangleleft t_{n_i}| \leq n < |\sigma \triangleleft t_{n_i+1}| \land \{e\}^{s \triangleleft t_{n_i+1}}(n) \downarrow = 1)$$

So $\exists^{\infty} n((\{e\}^z(n) \downarrow = 1)$, a contradiction. \qed
Proof (continued).

- There are only finitely many choices for s_i, so there is a fixed s consistent with σ and an infinite sequence $n_0 < n_1 < \cdots$ such that $s_{n_i} = s$ for all i.

- Let $z = s \smallsetminus \bigcup_i t_i$. Then for each i we have

$$\neg \exists n (|\sigma| \leq n < |\sigma \smallsetminus t_{n_i}| \land \{e\}^{s\smallsetminus t_{n_i}}(n) \downarrow = 1)$$

- So $\neg \exists n \geq |\sigma| (\{e\}^z(n) \downarrow = 1)$, but for each i we have

$$\exists n (|\sigma \smallsetminus t_{n_i}| \leq n < |\sigma \smallsetminus t_{n_i+1}| \land \{e\}^{s\smallsetminus t_{n_i+1}}(n) \downarrow = 1)$$

- So $\exists \infty n (\{e\}^z(n) \downarrow = 1)$, a contradiction. \square
Proof (continued).

- There are only finitely many choices for s_i, so there is a fixed s consistent with σ and an infinite sequence $n_0 < n_1 < \cdots$ such that $s_{n_i} = s$ for all i.
- Let $z = s \upharpoonright \bigcup_i t_i$. Then for each i we have
 \[\neg \exists n(|\sigma| \leq n < |\sigma \upharpoonright t_{n_i}| \land \{e\}^{s \upharpoonright t_{n_i}}(n) \downarrow = 1) \]
 So $\neg \exists n \geq |\sigma|(\{e\}^z(n) \downarrow = 1)$, but for each i we have
 \[\exists n(|\sigma \upharpoonright t_{n_i}| \leq n < |\sigma \upharpoonright t_{n_i+1}| \land \{e\}^{s \upharpoonright t_{n_i+1}}(n) \downarrow = 1) \]
 So $\exists \infty n(\{e\}^z(n) \downarrow = 1)$, a contradiction. \qed
Proof (continued).

- There are only finitely many choices for s_i, so there is a fixed s consistent with σ and an infinite sequence $n_0 < n_1 < \cdots$ such that $s_{n_i} = s$ for all i.

- Let $z = s \upharpoonright \bigcup_i t_i$. Then for each i we have

$$\neg \exists n(|\sigma| \leq n < |\sigma \upharpoonright t_{n_i}| \land \{e\}^{s \upharpoonright t_{n_i}}(n) \downarrow = 1)$$

- So $\neg \exists n \geq |\sigma|(|\{e\}^z(n) \downarrow = 1)$, but for each i we have

$$\exists n(|\sigma \upharpoonright t_{n_i}| \leq n < |\sigma \upharpoonright t_{n_i+1}| \land \{e\}^{s \upharpoonright t_{n_i+1}}(n) \downarrow = 1)$$

- So $\exists \infty n(|\{e\}^z(n) \downarrow = 1)$, a contradiction.
Partial injections

Since the set of weakly 2-generics is comeager, we have:

Corollary

The following set is meager:

\[\{ x \in 3^\omega : \exists y \in 2^\omega (y \geq_T x \land y \text{ is consistent with } x) \} \]

We now return to the original question. The following result has been proved independently by Hjorth and Miller:

Theorem

There is no Baire-measurable partial injection \(F : 3^\omega \rightarrow 2^\omega \) with comeager domain such that

\[\text{Graph}(F) \subseteq \{ (x, y) \in 3^\omega \times 2^\omega : \forall n(x(n) \neq 2 \Rightarrow x(n) = y(n)) \} \].
Since the set of weakly 2-generics is comeager, we have:

Corollary

The following set is meager:

\[
\{ x \in 3^\omega : \exists y \in 2^\omega (y \geq_T x \land y \text{ is consistent with } x) \}
\]

We now return to the original question. The following result has been proved independently by Hjorth and Miller:

Theorem

There is no Baire-measurable partial injection \(F : 3^\omega \to 2^\omega \) with comeager domain such that

\[
\text{Graph}(F) \subseteq \{ (x, y) \in 3^\omega \times 2^\omega : \forall n (x(n) \neq 2 \Rightarrow x(n) = y(n)) \}.
\]
Partial injections

Since the set of weakly 2-generics is comeager, we have:

Corollary

The following set is meager:

\[\{ x \in 3^\omega : \exists y \in 2^\omega (y \geq_T x \land y \text{ is consistent with } x) \} \]

We now return to the original question. The following result has been proved independently by Hjorth and Miller:

Theorem

There is no Baire-measurable partial injection \(F : 3^\omega \to 2^\omega \) with comeager domain such that

\[\text{Graph}(F) \subseteq \{ (x, y) \in 3^\omega \times 2^\omega : \forall n(x(n) \neq 2 \Rightarrow x(n) = y(n)) \} \].
Partial injections

Since the set of weakly 2-generics is comeager, we have:

Corollary

The following set is meager:

\[\{ x \in 3^\omega : \exists y \in 2^\omega (y \geq_T x \land y \text{ is consistent with } x) \} \]

We now return to the original question. The following result has been proved independently by Hjorth and Miller:

Theorem

There is no Baire-measurable partial injection \(F : 3^\omega \to 2^\omega \) with comeager domain such that

\[\text{Graph}(F) \subseteq \{(x, y) \in 3^\omega \times 2^\omega : \forall n(x(n) \neq 2 \Rightarrow x(n) = y(n))\} \].
Idea of the proof.

- The theorem may be proved using a relativized version of the preceding results applied to ξ-generics.
- If there were such an F, then there would be a countable ordinal ξ and a comeager set of x for which there is a y consistent with x with $x \leq_T y^{(\xi)}$ (namely $y = F(x)$).
- We can also give a purely topological proof.
- Suppose there were such an F. We can find a comeager set C such that $F \upharpoonright C$ is continuous (and injective).
- By removing a meager perfect set from C, we can in fact assume that we have a comeager set C and a Borel bijection $f : 3^\omega \to 2^\omega$ such that $f(x)$ is consistent with x for all $x \in C$.

Partial injections
Idea of the proof.

- The theorem may be proved using a relativized version of the preceding results applied to ξ-generics.
- If there were such an F, then there would be a countable ordinal ξ and a comeager set of x for which there is a y consistent with x with $x \leq_T y^{(\xi)}$ (namely $y = F(x)$).
- We can also give a purely topological proof.
- Suppose there were such an F. We can find a comeager set C such that $F \upharpoonright C$ is continuous (and injective).
- By removing a meager perfect set from C, we can in fact assume that we have a comeager set C and a Borel bijection $f : 3^\omega \rightarrow 2^\omega$ such that $f(x)$ is consistent with x for all $x \in C$.
Idea of the proof.

- The theorem may be proved using a relativized version of the preceding results applied to ξ-generics.
- If there were such an F, then there would be a countable ordinal ξ and a comeager set of x for which there is a y consistent with x with $x \leq_T y(\xi)$ (namely $y = F(x)$).
- We can also give a purely topological proof.
- Suppose there were such an F. We can find a comeager set C such that $F \upharpoonright C$ is continuous (and injective).
- By removing a meager perfect set from C, we can in fact assume that we have a comeager set C and a Borel bijection $f : 3^\omega \rightarrow 2^\omega$ such that $f(x)$ is consistent with x for all $x \in C$.
Idea of the proof.

- The theorem may be proved using a relativized version of the preceding results applied to ξ-generics.
- If there were such an F, then there would be a countable ordinal ξ and a comeager set of x for which there is a y consistent with x with $x \leq_T y^{(\xi)}$ (namely $y = F(x)$).
- We can also give a purely topological proof.
 - Suppose there were such an F. We can find a comeager set C such that $F \upharpoonright C$ is continuous (and injective).
 - By removing a meager perfect set from C, we can in fact assume that we have a comeager set C and a Borel bijection $f : 3^\omega \rightarrow 2^\omega$ such that $f(x)$ is consistent with x for all $x \in C$.
Partial injections

Idea of the proof.

- The theorem may be proved using a relativized version of the preceding results applied to ξ-generics.
- If there were such an F, then there would be a countable ordinal ξ and a comeager set of x for which there is a y consistent with x with $x \leq_T y(\xi)$ (namely $y = F(x)$).
- We can also give a purely topological proof.
- Suppose there were such an F. We can find a comeager set C such that $F \upharpoonright C$ is continuous (and injective).
- By removing a meager perfect set from C, we can in fact assume that we have a comeager set C and a Borel bijection $f : 3^\omega \to 2^\omega$ such that $f(x)$ is consistent with x for all $x \in C$.
Idea of the proof.

- The theorem may be proved using a relativized version of the preceding results applied to ξ-generics.
- If there were such an F, then there would be a countable ordinal ξ and a comeager set of x for which there is a y consistent with x with $x \leq_T y^{(\xi)}$ (namely $y = F(x)$).
- We can also give a purely topological proof.
- Suppose there were such an F. We can find a comeager set C such that $F \upharpoonright C$ is continuous (and injective).
- By removing a meager perfect set from C, we can in fact assume that we have a comeager set C and a Borel bijection $f : 3^\omega \to 2^\omega$ such that $f(x)$ is consistent with x for all $x \in C$.
Idea of the proof (continued).

- Define the set $A \subseteq \omega \times 2^\omega$ as
 \[A = \{(n, y) : f^{-1}(y)(n) = 2\}. \]

- Then A is Borel, and for each $x \in C$ we have $n \in B_x$ if and only if $(n, f(x)) \in A$.

- We then show that the analytic set
 \[D = \{x \in 3^\omega : \exists y \in [T_x](\forall n(n \in B_x \iff A(n, y)))\} \]

 is meager, which yields a contradiction.
Idea of the proof (continued).

- Define the set $A \subseteq \omega \times 2^\omega$ as

 $A = \{(n, y) : f^{-1}(y)(n) = 2\}$.

- Then A is Borel, and for each $x \in C$ we have $n \in B_x$ if and only if $(n, f(x)) \in A$.

- We then show that the analytic set

 $$D = \{x \in 3^\omega : \exists y \in [T_x](\forall n (n \in B_x \iff A(n, y)))\}$$

 is meager, which yields a contradiction.
Define the set $A \subseteq \omega \times 2^\omega$ as

$$A = \{(n, y) : f^{-1}(y)(n) = 2\}.$$

Then A is Borel, and for each $x \in C$ we have $n \in B_x$ if and only if $(n, f(x)) \in A$.

We then show that the analytic set

$$D = \{x \in 3^\omega : \exists y \in [T_x](\forall n(n \in B_x \iff A(n, y)))\}$$

is meager, which yields a contradiction.
Open questions

Question

If x *is 1-random, can* T_x *be weakly pointed?*

Question

Is there a 1-generic x *with a branch* $y \in [T_x]$ *with* $x \equiv_T y$?

Question

Must a weakly pointed tree contain a pointed subtree?

Question

If x *is weakly 1-generic, can* T_x *be pointed?*

Question

What about general pruned trees encoded by elements of 3^ω?
Open questions

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>If x is 1-random, can T_x be weakly pointed?</td>
</tr>
<tr>
<td>Is there a 1-generic x with a branch $y \in [T_x]$ with $x \equiv_T y$?</td>
</tr>
<tr>
<td>Must a weakly pointed tree contain a pointed subtree?</td>
</tr>
<tr>
<td>If x is weakly 1-generic, can T_x be pointed?</td>
</tr>
<tr>
<td>What about general pruned trees encoded by elements of 3^ω?</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>If x is 1-random, can T_x be weakly pointed?</td>
</tr>
<tr>
<td>Is there a 1-generic x with a branch $y \in [T_x]$ with $x \equiv_T y$?</td>
</tr>
<tr>
<td>Must a weakly pointed tree contain a pointed subtree?</td>
</tr>
<tr>
<td>If x is weakly 1-generic, can T_x be pointed?</td>
</tr>
<tr>
<td>What about general pruned trees encoded by elements of 3^ω?</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>If x is 1-random, can T_x be weakly pointed?</td>
</tr>
<tr>
<td>Is there a 1-generic x with a branch $y \in [T_x]$ with $x \equiv_T y$?</td>
</tr>
<tr>
<td>Must a weakly pointed tree contain a pointed subtree?</td>
</tr>
<tr>
<td>If x is weakly 1-generic, can T_x be pointed?</td>
</tr>
<tr>
<td>What about general pruned trees encoded by elements of 3^ω?</td>
</tr>
</tbody>
</table>
Open questions

Question

If x is 1-random, can \(T_x \) be weakly pointed?

Question

Is there a 1-generic \(x \) with a branch \(y \in [T_x] \) with \(x \equiv_T y \)?

Question

Must a weakly pointed tree contain a pointed subtree?

Question

If \(x \) is weakly 1-generic, can \(T_x \) be pointed?

Question

What about general pruned trees encoded by elements of \(3^\omega \)?
Open questions

Question

If x is 1-random, can T_x be weakly pointed?

Question

Is there a 1-generic x with a branch $y \in [T_x]$ with $x \equiv_T y$?

Question

Must a weakly pointed tree contain a pointed subtree?

Question

If x is weakly 1-generic, can T_x be pointed?

Question

What about general pruned trees encoded by elements of 3^ω?
References

- J.D. Clemens, Weakly pointed trees and partial injections, *preprint*.