Übungen zur Vorlesung Topologie II

Blatt 7 J. Ebert

Abgabetermin: 4.12., in den Übungen.

Frageaufgabe 1. Formulieren Sie drei sinnvolle Fragen zum Inhalt der Vorlesung.

Aufgabe 2 (Was der Satz von Whitehead *nicht* sagt 1). Zeigen Sie, dass die beiden CW-Komplexe $\mathbb{CP}^{\infty} \times S^3$ und S^2 isomorphe Homotopiegruppen haben, aber nicht homotopiegruivalent sind.

Aufgabe 3 (Was der Satz von Whitehead *nicht* sagt 2). Man versehe S^n mit der üblichen CW-Struktur (je eine 0- und n-Zelle) und betrachte $X = S^n \times S^n$. Es gilt dann $X/X^{(n)} \cong S^{2n}$, und es sei ein solcher Homomorphismus gewählt. Zeigen Sie, dass die Quotientenabbildung

$$q: S^n \times S^n \to S^{2n}$$

die Nullabbildung auf Homotopiegruppen induziert, aber nicht nullhomotop ist. Hinweis: Blatt 1 und CW-Homologie.

Aufgabe 4. Es sei M eine 0-zusammenhängende n-dimensionale Mannigfaltigkeit, es sei (a) $\pi_1(M)$ unendlich und es gelte (b) $\pi_k(M) = 0$ für alle $2 \le k \le n-1$. Zeigen Sie, dass M asphärisch ist. Hinweis: was wissen Sie aus Topologie über $H_n(N^n)$ einer Mannigfaltigkeit? Bemerkung: die Bedingung (b) ist für n = 2 trivialerweise erfüllt. Zusammen mit der Klassifikation der Flächen zeigt die Aufgabe, dass jede kompakte 2-Mannigfaltigkeit, mit Ausnahme von S^2 und \mathbb{RP}^2 , asphärisch ist.

Aufgabe 5. Es sei X ein n-dimensionaler und (n-1)-zusammenhängender CW-Komplex, wobei $n \geq 2$ vorausgesetzt sei. Zeigen Sie, dass eine Menge I existiert und eine Homotopieäquivalenz $\bigvee_{i \in I} S^n \to X$. Hinweis: welche a priori-Information über $H_n(X)$ folgt aus der Betrachtung des zellulären Kettenkomplexes? Satz von Hurewicz. Bemerkung: die Aussage stimmt auch für n=1, aber man muss den Satz von Seifert-van Kampen benutzen.