Übungen zur Vorlesung GEOMETRIE

Blatt 10Wintersemester 10/11 M. Joachim, F. Springer Abgabe Montag, den 24.1.2010

Aufgabe 1 (Isom(\mathbb{R}^2)). Zeigen Sie, dass sich jede Isometrie $\phi \in \text{Isom}(\mathbb{R}^2)$ in der Form $\phi = \tau \circ \psi$ schreiben lässt, wobei τ eine Translation ist und $\psi \in O(2)$.

TIPP: Betrachten Sie das Bild der Punkte $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ und suchen Sie geeignete Abbildungen τ und ψ .

Aufgabe 2 (Isometrien des Dreiecks). Bestimmen Sie alle Isometrien, die das Dreieck \triangle ABC mit $A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $B = \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$, $C = \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$ auf sich selbst abbilden.

Es handelt sich dabei um die Menge der Symmetrieabbildungen des Dreiecks. Die Menge, die diese Abbildungen enthält bezeichnen wir deshalb mit $Sym(\Delta)$.

Aufgabe 3 $(Sym(\Delta))$. Zeigen Sie, dass $Sym(\Delta)$ mit der Hintereinanderausführung von Abbildungen eine Untergruppe von Isom(\mathbb{R}^2) ist.

Geben Sie eine Verknüpfungstabelle für diese Gruppe an, d.h. geben Sie die Ergebnisse aller möglichen Kombinationen der Komposition von zwei Elementen an.

Aufgabe 4 (Symmetriegruppen). Finden Sie eine Menge $X \subset \mathbb{R}^2$ für die Sym(X) die triviale Gruppe ist.

Bemerkung: Schreiben Sie Ihre Lösungen immer so auf, dass alle Rechen- oder Denkschritte nachvollziehbar sind.