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0.1 Introduction

These are the lecture notes for a first course on geometric group theory, taught
at Universität Münster in Wintersemester 2022/23. The main focus is the Bass-
Serre theory of actions of groups on simplicial trees. We take a leisurely route
towards it, first considering free groups, free and amalgamated products, and
HNN extensions, before proving the main theorems of Bass-Serre theory in full
generality. As applications, we consider Kurosh’s theorem and the theory of FA
groups, ending with the proof that SL3(Z) is not a non-trivial amalgam.

0.2 Sources

We mostly follow [Ser03], with some material adapted from [Bog08]. We follow
[Chi79] for the proof that the universal cover of a graph of groups is a tree. The
overall structure and choice of topics, especially in the earlier sections, owes
much to lecture notes of Katrin Tent.

1 Groups and actions

1.1 Elementary notions

A group is a set equipped with an associative binary operation (which we write
as a · b or ab or, when the group is commutative, a+ b) with a 2-sided identity
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element (1 or e or, when commutative, 0), such that every element has a 2-
sided inverse (x−1 or, when commutative, −x). We often write 1 for the trivial
subgroup {1}.

A left action of a group G on a set X is a binary operation G ×X → X
(we write g ∗ x or just gx) satisfying (gh)x = g(hx) and 1x = x.

In other words, a left action is a homomorphism G→ Sym(X); here Sym(X)
is the group of all permutations of X, with the group operation σ · τ := σ ◦ τ .

A right action is defined analogously; the axiom becomes x(gh) = (xg)h.
Given a right action, we can define a corresponding left action by gx := xg−1

(indeed, then (gh)x = x(gh)−1 = (xh−1)g−1 = g(hx)).
We often write G 	 X to denote an action of G on X.

Definition 1.1. Let G 	 X be a group action.

• The orbit of x ∈ X is Gx = {gx : g ∈ G} ⊆ X.

• The stabiliser of x ∈ X is Gx = {g ∈ G : gx = x} ≤ G.

• The kernel of the action is the kernel of the homomorphismG→ Sym(X),
namely {g ∈ G : ∀x ∈ X. gx = x} =

⋂
x∈X Gx E G.

The action is called

• transitive if Gx = X for some (equivalently all) x ∈ X;

• faithful if the kernel is trivial, i.e. ∀g, h ∈ G. (∀x ∈ X. gx = hx⇒ g = h);

• free if Gx = 1 for all x ∈ X, i.e. no g ∈ G \ {1} fixes any x ∈ X;

• regular if it is transitive and free.

Example 1.2.

• Let X be a set. The group Sym(X) acts naturally on X on the left.

Up to isomorphism, Sym(X) depends only on |X|; we write Sn for Sym(X)
when |X| = n.

• Let G be a group. The left regular action of G on G is defined by
g ∗ x := g · x.

This is a regular action, and up to isomorphism every regular left action
is of this form.

• Let G be a group. The (right) conjugation action of G on G is defined
by x ∗ g := xg = g−1xg.

This is a right action: xgh = (xg)h.

The orbit gG of g ∈ G is the conjugacy class of g.

The stabiliser of g ∈ G is its centraliser C(g) = {h : hg = gh}.
The kernel of the action is the centre Z(G) = {g : ∀h ∈ G. hg = gh}.

• Let H ≤ G be a subgroup of a group G. Let G/H be the set of left cosets
{gH : g ∈ G}.
Then G acts on G/H by g ∗ xH := gxH.

The kernel of this action is
⋂
g∈GH

g, since GxH = Hx−1

, since

gxH = xH ⇔ gx ∈ H ⇔ g ∈ Hx−1

.
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Lemma 1.3 (Orbit-Stabiliser Theorem). The map

G/Gx → Gx; gGx 7→ gx

is a bijection. In particular, |Gx| = |G : Gx|.

Proof. Well-defined and injective: gx = hx ⇔ (h−1g)x = x ⇔ h−1g ∈ Gx ⇔
gGx = hGx.
Surjective: clear.

Lemma 1.4. (Gx)g = Gg−1x for g ∈ G and x ∈ X.

Proof. h ∈ Gx ⇔ hx = x⇔ g−1hgg−1x = g−1x⇔ hg ∈ Gg−1x.

1.1.1 Quotients

Definition 1.5.

• Recall: a subgroup N ≤ G is normal in G, written N E G, if ∀g ∈
G. Ng = N . Then G/N has the induced structure of a group, and we call
it the quotient of G by N .

• Given H ≤ G and N E G, we write H/N for {h/N : h ∈ H} = (NH)/N ≤
G/N .

• A group G is simple if it has no proper non-trivial normal subgroup
1 � N ./ G.

Lemma 1.6 (“Isomorphism Theorems”). Let G be a group.

(1) G/ ker θ ∼= im θ for θ : G→ H a homomorphism.

(2) H/N = (NH)/N ∼= H/(N ∩H) for N E G and H ≤ G.

(3) (G/M)/(N/M) ∼= G/N for M ≤ N ≤ G with M,N E G.

1.2 Solvability

Definition 1.7. Let G be a group.

• The commutator of g ∈ G and h ∈ G is [g, h] := g−1h−1gh = g−1gh =
(h−1)gh.

• The commutator subgroup (or derived subgroup) of G is the sub-
group generated by the commutators, G′ := 〈[g, h] : g, h ∈ G〉 E G.

• G is perfect if G = G′.

Remark 1.8. [g, h] = 1 ⇔ gh = hg, so a group G is abelian if and only if G′ is
trivial.

Lemma 1.9. G/G′ is abelian, and it is the “Abelianisation” of G, which means
that any homomorphism θ : G → A with A abelian factorises uniquely through
the quotient map π : G→ G/G′, i.e. θ = φ ◦ π for some unique homomorphism
φ : G/G′ → A.
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Proof. G/G′ is abelian, since [x/G′, y/G′] = [x, y]/G′ = 1.
Given θ : G → A with A abelian, we have G′ ≤ ker θ, since θ([x, y]) =

[θ(x), θ(y)] = 1, and so φ : G/G′ → A; x/G′ 7→ θ(x) is well-defined, and is as
required.

Definition 1.10. Let G be a group.

• We inductively define for n ∈ N: G(0) := G, G(n+1) := (G(n))′.

• G is solvable if G(n) = 1 for some n ∈ N.

Lemma 1.11.

(i) Every quotient of a solvable group is solvable.

(ii) Every quotient of a perfect group is perfect.

Proof. (i) Let N E G. Then

(G/N)′ = 〈[g/N, h/N ] : g, h ∈ G〉 = 〈[g, h]/N : g, h ∈ G〉 = G′/N.

Then by induction: (G/N)(i) = G(i)/N for i ≥ 0. So if G(n) is trivial,
then also (G/N)(n) trivial.

(ii) Similar: if G is perfect, then (G/N)′ = G′/N = G/N , so G/N is perfect.

1.3 Direct and semidirect products

Let G and H be groups. Their direct product is the group G×H with group
operation (g, h) · (g′, h′) := (gg′, hh′).

More generally, the direct product of a family of groups (Gi)i∈I is the group∏
i∈I Gi with group operation (gi)i∈I · (hi)i∈I := (gihi)i∈I .

Lemma 1.12. Let G be a group and let N,M E G be normal subgroups, and
suppose NM = G and N ∩M = 1. Then θ : N ×M → G; (n,m) 7→ nm is an
isomorphism.

Proof.

• Injectivity:

nm = n′m′ ⇒ (n′)−1n = m′m−1

⇒ (n′)−1n = 1 = m′m−1

⇒ (n,m) = (n′,m′).

• Surjectivity: NM = G.

• Homomorphicity: N and M commute, since for n ∈ N and m ∈ M ,
n−1nm = [n,m] = (m−1)nm, so by normality [n,m] ∈ N ∩M = 1.

Hence θ((n,m)(n′,m′)) = nn′mm′ = nmn′m′ = θ(n,m)θ(n′,m′).
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Now let N and H be groups, and suppose H acts on the left on N by
automorphisms, i.e. n 7→ h ∗ n is an automorphism of N for any h ∈ H. The
semidirect product of N and H with respect to this action is the group NoH
with underlying set N ×H and group operation

(m, g)(n, h) = (m(g ∗ n), gh).

The identity element is (1, 1), and (m, g)−1 = (g−1 ∗ m−1, g−1), and the
operation is associative:

((l, f)(m, g))(n, h) = (l(f ∗m), fg)(n, h)

= (l(f ∗m)(fg ∗ n), fgh)

= (l, f)(m(g ∗ n), gh)

= (l, f)((m, g)(n, h)).

Remark 1.13. N ∼= (N, 1) E N oH and (N oH)/(N, 1) ∼= H.

Lemma 1.14. Let G be a group, suppose N E G and H ≤ G, with NH = G
and N ∩H = 1.

Then θ : N oH → G; (n, h) 7→ nh is an isomorphism, where N oH is the

semidirect product with respect to the left conjugation action h ∗ n := nh
−1

=
hnh−1.

Proof. Bijectivity: as in the previous lemma.
Homomorphicity: θ((m, g)(n, h)) = m(g ∗ n)gh = mgnh = θ(m, g)θ(n, h).

Lemma 1.15. Let G 	 X be a left action and N E G a normal subgroup, and
suppose the induced action N 	 X is regular. Let x ∈ X. Then G ∼= N o Gx
with respect to left conjugation.

Proof. We apply Lemma 1.14.

• N ∩Gx = 1 since N acts freely on X.

• NGx = G: Let g ∈ G. Since N acts transitively on X, we have ngx = x
for some n ∈ N . Then ng ∈ Gx, so g ∈ NGx.

Example 1.16. Let K be a field. Let A be the group of affine linear transforma-
tions of K,

A := {x 7→ ax+ b : a ∈ K∗ := K \ {0}, b ∈ K}.

Then the subgroup of translations N := {x 7→ x + b : b ∈ K} E A acts
regularly on K, and is normal:

(x 7→ x+ b)x 7→cx+d = x 7→ (c−1((cx+ d) + b)− dc−1) = x+ c−1b.

Now N is isomorphic to the additive group K+, and the stabiliser G0 =
{x 7→ ax : a ∈ K∗} ≤ A is isomorphic to the multiplicative group K∗.

So by Lemma 1.15, A ∼= K+ oK∗ with the multiplication action.

Remark 1.17. Let G = A o B be a semidirect product, where A and B are
abelian (e.g. K+ oK∗.) Then G′ ≤ A and G′′ = 1, so G is solvable.
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1.4 Primitive actions and Iwasawa’s Criterion

Definition 1.18. Given an action G 	 X, an equivalence relation ∼ on X is
G-equivariant if

∀g ∈ G. (x ∼ y ⇔ gx ∼ gy)

(so then G induces an action on the set X/ ∼ of equivalence classes).
The trivial equivalence relations on a set are equality and the equivalence

relation with only one equivalence class.
An action G 	 X is primitive if it is transitive and every G-equivariant

equivalence relation is trivial.1

Lemma 1.19. A transitive action G 	 X is primitive if and only some (equiv-
alently any) stabiliser Gx ≤ G is a maximal subgroup, i.e. there is no Gx �
K � G.

Proof.

⇒: Suppose Gx � K � G. Then gx ∼ hx ⇔ gK = hK defines a non-trivial
G-equivariant equivalence relation (it is well-defined since: gx = g′x ⇔
gGx = g′Gx ⇒ gK = g′K)).

⇐: If ∼ is a non-trivial G-equivariant equivalence relation, then {x} ( (x/ ∼
) ( X holds for some (and hence by transitivity every) x, and then by
transitivity Gx � Gx/∼ � G.

Remark 1.20. Only the trivial group is both solvable and perfect.

Theorem 1.21 (Iwasawa’s Criterion). Let G 	 X be faithful and primitive,
and suppose G is perfect. Let x ∈ X, and suppose A E Gx is solvable with
G = 〈Ag : g ∈ G〉.

Then G is simple.

Proof. Suppose (for a contradiction) 1 � N ./ G.
If N ≤ Gx, then N ≤ Gy for all y ∈ X since G is transitive and N E G. So

N lies in the kernel of the action, contradicting faithfulness.
So N 6≤ Gx. But Gx is maximal by Lemma 1.19, so GxN = G. It follows

that NA E G; indeed, for j ∈ Gx and n ∈ N we have

(NA)jn = NAn (N E G, A E Gx)

= Nn−1An = NAn = ANn = AN = NA (N E G).

Then G = 〈Ag : g ∈ G〉 ≤ 〈(NA)g : g ∈ G〉 = NA, so NA = G.
By Lemma 1.11, G/N = NA/N ∼= A/(A ∩ N) is perfect (since G is) and

solvable (since A is), hence trivial by Remark 1.20, contradicting N 6= G.

Example 1.22. An is simple for n ≥ 5, and PSL2(K) is simple for K a field with
|K| ≥ 4.

Proof. Apply Iwasawa’s criterion to appropriate actions. See exercises.
1In fact, transitivity follows from the second condition. Indeed, suppose the action is not

transitive. The orbit equivalence relation Gx = Gy is G-equivariant, so it must be equality.
Then G acts trivially, g ∗ x = x for all g, x, so any equivalence relation is G-equivariant and
hence trivial. Then we must have |X| ≤ 1, because otherwise we could define a non-trivial
equivalence relation. But this contradicts non-transitivity.
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2 Graphs

Definition 2.1.

• A graph (in the sense of Serre) X consists of

– two sets, X0 and X1,

– a map α : X1 → X0, and

– a map · : X1 → X1 such that e = e 6= e for all e ∈ X1.

Then

– X0 is the set of vertices of the graph,

– X1 is the set of edges,

– e is the inverse of e ∈ X1,

– α(e) is the initial vertex of e,

– ω(e) := α(e) is the terminal vertex of e.

• An oriented graph is a graph with a distinguished subset X+ ⊆ X1 of
edges, called positive edges, such that · : X+ → X− := X1 \ X+ is a
bijection.

Remark 2.2. We can draw a (finite) graph by drawing the vertices and an arc
for each pair {e, e} of edges.

We can indicate an orientation of a graph by drawing arrows on the edges.

Formally, the realisation of a graph X is the topological space real(X)
which is the quotient of X0∪̇(X1 × [0, 1]), where X0 and X1 have the discrete
topology, by the finest equivalence relation such that (e, 0) ∼ α(e), (e, 1) ∼ ω(e),
and (e, t) ∼ (e, 1− t). (This is a CW-complex of dimension ≤ 1.)

Remark 2.3. To define an oriented graph, it suffices to specify the sets X0 and
X+ and maps α, ω : X+ → X0; this extends uniquely up to isomorphism to an
oriented graph:

• let · : X+ → X− be a bijection with a disjoint set,

• set X1 := X+ ∪X−,

• set e := e and α(e) := ω(e) for e ∈ X+.

Example 2.4. For n ∈ N, we define an oriented graph Cn by (Cn)0 := {0, . . . , n−
1} and (Cn)+ := {0, . . . , n− 1} with α(i) := i and ω(i) := i+ 1 mod n.

Similarly, C∞ is the oriented graph with C0
∞ := Z and (C∞)+ := Z with

α(i) := i and ω(i) := i+ 1.
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Definition 2.5.

• A morphism of graphs p : X → Y consists of maps X0 → Y 0 and
X1 → Y 1 (both denoted by p) such that p(e) = p(e) and α(p(e)) = p(α(e))
for all e ∈ X1.

• As usual, a morphism is an isomorphism if it has an inverse morphism;
equivalently, if it is bijective.

• A subgraph of a graph X is a graph Y with Y 0 ⊆ X0 and Y 1 ⊆ X1 such
that the inclusion is a morphism.

In other words, Y 0 ⊆ X0 and Y 1 ⊆ X1 form a subgraph if and only if
α(Y 1) ⊆ Y 0 and Y 1 = Y 1.

2.1 Actions on graphs

Definition 2.6. A left action G 	 X of a group G on a graph X consists of
left actions on X0 and X1 such that ge = ge and α(ge) = gα(e) (hence also
ω(ge) = gω(e)) for all g ∈ G and e ∈ X1.

The action is non-inversive if ge 6= e for all e ∈ X1 and g ∈ G.

Remark 2.7. An action is non-inversive if and only if it preserves some orienta-
tion.

Definition 2.8. The quotient graph of a graph X under a non-inversive
action G 	 X is the graph G\X with

(G\X)0 := G\X0 = {Gx : x ∈ X0}
(G\X)1 := G\X1 = {Ge : e ∈ X1}

Ge := Ge (note Ge 6= Ge since the action is non-inversive)

α(Ge) := Gα(e).

The natural morphism p : X → G\X (defined by x 7→ Gx for x ∈ X0 ∪X1)
is the quotient morphism.

If X is oriented and the action preserves the orientation, i.e. GX+ = X+,
then G\X has the natural orientation (G\X)+ := G\X+ .

Example 2.9. Z acts non-inversively on Cn by m∗i := i+m mod n for i ∈ (Cn)0

or i ∈ (Cn)+, and correspondingly on (Cn)−.

Then Z\Cn ∼= C1, and e.g. 2Z\C6 ∼= C2:
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2.2 Barycentric subdivision

Definition 2.10. The barycentric subdivision of a graph X is the graph
B(X) obtained by dividing each edge in two. Formally:

B(X)0 := X0∪̇{{e, e} : e ∈ X1}
B(X)1 := X1 × {0, 1}

α((e, 0)) := α(e)

α((e, 1)) := {e, e}

(e, t) := (e, 1− t).

Remark 2.11. Topologically, this has no effect: real(B(X)) is homeomorphic to
real(X).

Remark 2.12. Any action G 	 X induces a non-inversive action G 	 B(X):

g{e, e} := {ge, ge}
g(e, t) := (ge, t).

This is non-inversive, since g(e, t) = g(e, 1− t) = (ge, 1− t) 6= (e, t).

The upshot is that non-inversiveness is not such a restrictive condition: we
can always ensure it by barycentrically subdividing.

2.3 Cayley graphs

Definition 2.13. Let G be a group, and let S ⊆ G.
Then Γ(G,S) is the oriented graph with:

Γ(G,S)0 := G

Γ(G,S)+ := G× S
α(g, s) := g

ω(g, s) := gs.

If S is a generating set for G (i.e. 〈S〉 = G), Γ(G,S) is called the Cayley
graph of G with respect to S.

Example 2.14.

• Γ(Z/nZ, {1}) ∼= Cn (for n ≥ 1),

• Γ(Z, {1}) ∼= C∞.

• Γ(Z/4Z, {1, 2}) is the following oriented graph:

Remark 2.15. Cayley graphs are connected.
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Definition 2.16. The natural left action of G on Γ(G,S) is defined by:

g ∗ h := gh

g ∗ (h, s) := (gh, s).

Remark 2.17. This action is non-inversive, and G\Γ(G,S) is the oriented graph
with one vertex and a positive edge for each element of S.

The following lemma provides a characterisation which allows us to recognise
graphs as being of the form Γ(G,S).

Lemma 2.18. Let X be an oriented non-empty graph and G 	 X an orientation-
preserving action with G 	 X0 regular.

Suppose:

(∗) for all x, y ∈ X0, there is at most one positive edge from x to y.

Then X ∼= Γ(G,S) as oriented graphs, where |S| = |(G\X)+|.

Proof. By regularity, we may assume X0 = G and the action on X0 is the left
regular action (indeed, let x0 ∈ X0, then gx0 7→ g defines a suitable bijection
X0 → G).

Let S := {α(e)−1ω(e) : e ∈ X+} ⊆ G. Note

α(e)−1ω(e) = α(e′)−1ω(e′)⇔ α(e′)α(e)−1 = ω(e′)ω(e)−1

⇔ ∃g ∈ G. (α(e′), ω(e′)) = (gα(e), gω(e))

⇔ ∃g ∈ G. e′ = ge (by (∗))
⇔ e′ ∈ Ge,

so |S| = |(G\X)+|.
Define p : X → Γ(G,S) by:

p(g) := g for g ∈ G = X0

p(e) := (α(e), α(e)−1ω(e)) for e ∈ X+.

Then p is a morphism, since ω(p(e)) = α(e)α(e)−1ω(e) = ω(e) = ω(p(e)).
To show that p is an isomorphism, it remains to see that p : X+ → Γ(G,S)+

is a bijection.

• Injectivity:

p(e) = p(e′)⇒ α(e) = α(e′) and α(e)−1ω(e) = α(e′)−1ω(e′)

⇒ (α(e), ω(e)) = (α(e′), ω(e′))

⇒ e = e′ (by (∗)).

• Surjectivity: (g, α(e)−1ω(e)) = p(gα(e)−1e).
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2.4 Trees

Definition 2.19.

• Given a graph and a vertex x, a path of length n ∈ N from x is a sequence
of edges (ei)i<n such that ω(ei) = α(ei+1) for i < n − 1 and, if n > 0,
α(e0) = x. The path is to ω(en−1) if n > 0, and to x if n = 0.

The path is reduced if ei 6= ei+1 for any i < n− 1.

The path is trivial if n = 0.

• A graph is connected if for any vertices x and y, there is a path from x
to y.

• A graph is acyclic if any reduced path from a vertex to itself has length
0.

• A tree is a connected non-empty acyclic graph.

Lemma 2.20. Let T be a tree. Given x, y ∈ T 0, there is a unique reduced path
from x to y.

Definition 2.21. This path is called the geodesic from x to y in T .
Its length is the distance d(x, y) between x and y in T .

Proof.

• Existence: By connectedness, there is some path from x to y, and by
eliminating any subsequences of the form (e, e), we obtain a reduced path
from x to y.

• Uniqueness: If (e0, . . . , en−1) and (f0, . . . , fm−1) are two reduced paths
from x to y, then (e0, . . . , en−1, fm−1, . . . , f0) is a path from x to x, so
either it has length 0, in which case n = 0 = m and we are done, or it is
not reduced.

But then we must have en−1 = fm−1 = fm−1, so (e0, . . . , en−2) and
(f0, . . . , fm−2) are reduced paths from x to the same vertex, so induc-
tively they must be equal, and we conclude.

2.4.1 Maximal subtrees

Lemma 2.22. Any subtree of a graph extends to a subtree which is maximal
with respect to inclusion.

In particular, any non-empty graph contains a maximal subtree.

Proof. The union of a chain of subtrees is also a subtree, so the first statement
follows from Zorn’s lemma.

Any non-empty graph contains a vertex, which forms a subtree and so ex-
tends to a maximal subtree.

Lemma 2.23. Any maximal subtree of a connected graph contains every vertex.
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Proof. Let T be a maximal subtree of a connected graph X, and suppose x ∈
X0 \ T 0. Now T 0 6= ∅, so by connectedness there is a path from x to a vertex
of T , some edge e of which is from some y ∈ X0 \ T 0 to a vertex of T .

But then T † := T ∪{e, e, y} is a subtree properly containing T , contradicting
maximality of T .

2.4.2 Lifting trees

Definition 2.24.

• The star of a vertex x of a graph X is the set of edges with initial vertex
x

starX(x) := {e ∈ X1 : α(e) = x}.

• A morphism p : X → Y is locally injective, resp. locally surjective,
if for each x ∈ X the restriction p|starX(x) : starX(x) → starY (p(x)) is
injective, resp. surjective.

Lemma 2.25. If p : X → T is a locally injective map from a connected graph
to a tree, then p is injective and X is a tree.

Proof. Exercise.

Lemma 2.26. The quotient morphism of a non-inversive action G 	 X is
locally surjective.

Proof. Let x ∈ X0 and let Ge ∈ (G\X)1 with α(Ge) = Gx. Then α(e) ∈ Gx, so
α(ge) = x for some g ∈ G.

Lemma 2.27. Let p : X → Y be a surjective, locally surjective morphism of
graphs, and let T ′ ⊆ Y be a subtree. Then there exists a subtree T ⊆ X such
that p restricts to an isomorphism p|T : T → T ′.

Definition 2.28. T is then called a lift of T ′ (along p).

Proof. Let T be maximal among the subtrees of X such that p(T ) ⊆ T ′ and
p|T : T → T ′ is injective; some such subtree exists since p is surjective, and
then a maximal such exists by Zorn’s lemma. We conclude by showing that
p(T ) = T ′.

Suppose not. By considering a geodesic from a vertex in p(T ) to a vertex
outside, we find an edge e′ ∈ (T ′)1 \ p(T )1 with α(e′) ∈ p(T )0.

Suppose ω(e′) ∈ p(T )0. Then there is a reduced path from α(e′) to ω(e′)
in p(T ) (the image of a geodesic in T ), but then appending e′ yields a reduced
path from α(e′) to itself which contradicts acyclicity of T ′. So ω(e′) /∈ p(T )0.

By local surjectivity, there is e ∈ X1 with p(e) = e′ and α(e) ∈ T 0. Then
ω(e) /∈ T 0, since p(ω(e)) = ω(e′) /∈ p(T )0, and so T † := T ∪ {e, e, ω(e)} is a tree
properly extending T , contradicting maximality of T .

Definition 2.29. A tree of representatives for a non-inversive action G 	 X
on a non-empty connected graph is an arbitrary lift along the quotient morphism
of an arbitrary maximal tree in G\X .

(A maximal tree exists by Lemma 2.22, and a lift exists by Lemma 2.26 and
Lemma 2.27.)
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Example 2.30. For the action 3Z 	 C6 of Example 2.9, any subtree of C6 with

3 vertices is a tree of representatives:

2.4.3 B1

Definition 2.31. The first Betti number of a non-empty finite connected
graph X is

B1(X) := 1 +
1

2
|X1| − |X0|.

Lemma 2.32. Let X be a non-empty finite connected graph.
Let T be a maximal subtree. Then

B1(X) =
1

2
|X1 \ T 1|.

In particular, B1(X) ≥ 0, and B1(X) = 0 iff X is a tree.

Proof. First, we prove B1(T ) = 0 for any finite tree T by induction on |T 1|.
If |T 1| = 0, then |T 0| = 1 so B1(T ) = 0. If |T 1| > 0, let e0, . . . , en−1 be a
geodesic of maximal length. Then T ′ := T \ {ω(en−1), en−1, en−1} is connected:
otherwise some reduced path must include but not end with en−1, and we could
extend the geodesic, contradicting its maximality. So T ′ is a tree, so B1(T ′) = 0
by induction. Then B1(T ) = B1(T ′) + 2

2 − 1 = B1(T ′) = 0.
Now let X and T be as in the statement. We have X0 = T 0 by Lemma 2.23,

so

B1(X) = 1+
1

2
|X1|−|X0| = 1+

1

2
|T 1|+1

2
|X1\T 1|−|T 0| = B1(T )+

1

2
|X1\T 1| = 1

2
|X1\T 1|.

2.4.4 Contracting subtrees

Definition 2.33. Let X be a graph, and let Y ⊆ X be the union Y =
⋃
i∈I Ti

of disjoint subtrees Ti ⊆ X.
We define the graph X/Y resulting from contracting the trees in Y as

follows.
Let ∼ be the equivalence relation on X0 whose equivalence classes are: T 0

i

for i ∈ I, and {x} for x ∈ X0 \ Y 0. Then:

(X/Y )0 := X0

/∼

(X/Y )1 := X1 \ Y 1

αX/Y (e) := α(e)/∼

eX/Y := e

Lemma 2.34. Let X be a finite connected graph, and let Y ⊆ X be a union of
disjoint subtrees. Then B1(X) = B1(X/Y ).
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Proof. Inductively, it suffices to consider the case that Y is a single subtree.
Then

B1(X/Y ) = 1 +
1

2
|(X/Y )1| − |(X/Y )0|

= 1 +
1

2
(|X1| − |Y 1|)− (|X0| − |Y 0|+ 1)

= B1(X)−B1(Y ) = B1(X).

Lemma 2.35. A non-empty graph X is a tree if and only if X =
⋃
i∈I Ti for

some collection (Ti)i∈I of finite subtrees forming a directed system, meaning
that for any Ti and Tj there exists Tk with Ti, Tj ⊆ Tk.

Proof. If X is a tree, the collection of all finite subtrees is directed, by connect-
edness of X.

Conversely,
⋃
i Ti is connected since, by directedness, any two points are

contained in a tree, and acyclic because, again by directedness, any finite path
is contained in a tree.

Lemma 2.36. Let T be a tree, and let Y ⊆ T be a union of disjoint subtrees.
Then T/Y is a tree.

Proof. For finite T , this follows from Lemma 2.34 and Lemma 2.32.
For an arbitrary tree T , we apply Lemma 2.35: write T as the union of a

directed system of finite subtrees T =
⋃
i Ti; then (Ti/(Y ∩ Ti))i∈I is a directed

system of finite subtrees of T/Y with union T/Y , so T/Y is a tree.
More explicitly: here we consider Ti/(Y ∩ Ti) as a subgraph of T/Y by

restricting the equivalence relation in the definition of the contraction to Ti;
this does agree with the equivalence relation in the definition of Ti/(Y ∩ Ti),
since each tree in Y corresponds to at most one tree in Y ∩Ti – this is because the
intersection of two subtrees of a tree is connected, by uniqueness of geodesics.
The directedness follows from directedness of the Ti.

Remark 2.37. If X is a finite connected graph and T is a maximal subtree, then
real(X/T ) is a bouquet of B1(X) circles.

3 Free groups

Definition 3.1. Let X be a subset of a group F . Then F is free with basis X
if for any group G, any map f : X → G extends uniquely to a homomorphism
f∗ : F → G.

Lemma 3.2. If F is free with basis X ⊆ F then F = 〈X〉.

Proof. The identity embedding ι : X → 〈X〉 extends to a homomorphism ι∗ :
F → 〈X〉. Then the composition with the inclusion of 〈X〉 is a homomorphism
F → F with image 〈X〉. But this must coincide with the identity map F → F ,
since both extend the identity embedding X → F . So 〈X〉 = F .

Lemma 3.3. If F is free with basis X and F ′ is free with basis X ′, then any
bijection X → X ′ extends to a unique isomorphism F → F ′.
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Proof. Let f : X → X ′ be a bijection and let g : X ′ → X be its inverse. Let
f∗ : F → F ′ and g∗ : F ′ → F be the unique extensions to homomorphisms.

Then g∗◦f∗ : F → F extends idX : X → X, but so does idF , so g∗◦f∗ = idF .
Similarly, f∗ ◦ g∗ = idF ′ . So f∗ is an isomorphism.

So a free group with a given basis is uniquely determined up to unique
isomorphism over that basis.

We will now show how to construct, for any set X, a free group F (X) ⊇ X
with basis X. By the uniqueness of Lemma 3.3, we will be justified in calling
F (X) “the” free group with basis X.

Definition 3.4. Let X be a set.

• Let X± be the union of X and a disjoint set X−1 which is in bijection
with X via a map ·−1 : X → X−1.

We extend ·−1 to an involution ·−1 : X± → X± by defining (x−1)−1 := x
for x ∈ X.

In other words, X± is obtained by adjoining to X a disjoint set of “formal
inverses” of the elements of X.

• A group word in X is a finite sequence of elements of X±.

We denote a word by concatenating these elements, so an arbitrary word of
length n ∈ N is written w = x0

ε0 . . . xn−1
εn−1 with xi ∈ X and εi ∈ {1,−1}

(where x1 := x). We also write this word as
∏
i<n xi

εi .

(We often abbreviate “group word” to “word”, despite the potential am-
biguity.)

• A group word is reduced if it contains no subword of the form aa−1

for a ∈ X±. In other words,
∏
i<n xi

εi is reduced if xi = xi+1 implies
εi = εi+1 (for all i).

• An elementary reduction of a word w is a word which results from
deleting from w a subword of the form aa−1 for some a ∈ X±.

• A reduction of a group word w is a reduced word w′ obtained by succes-
sive elementary reductions, i.e. such that there is a chain w = w0, w1, . . . , wn =
w′ of words (n ∈ N) where each wi+1 is an elementary reduction of wi.

Example 3.5. The group word ab−1aa−1ba in {a, b} has reduction aa.

Lemma 3.6. Any group word has a unique reduction.

Proof. Existence: since words are finite and elementary reductions decrease the
length, any word reduces to a reduced word.

For uniqueness, we first prove:

Claim 3.7. Let w1 and w2 be elementary reductions of a group word w. Then
w1 and w2 have a common reduction.

Proof. Say wi is formed by deleting a subword aia
−1
i from w (i = 1, 2).

If the subwords are disjoint in w, then we obtain a common subword w′

by deleting a2a
−1
2 from w1 and a1a

−1
1 from w2. Then any reduction of w′ is a

common reduction of the wi.



3 FREE GROUPS 17

Otherwise, either they are the same subword, or a2 = a−1
1 and the union of

the subwords is a subword a1a
−1
1 a1 or a2a

−1
2 a2. In these cases, w1 = w2, and

any reduction is a common reduction. 3 .7

Now suppose w is a word of minimal length with two distinct reductions
w′1 and w′2. Then w has elementary reductions w1 and w2 such that w′i is a
reduction of wi. But by the claim, w1 and w2 have a common reduction w′, and
then by the minimality of w we have

w′1 = w′ = w′2.

Definition 3.8. Let X be a set. Then F (X) is the group on the set of reduced
words in X with group operation:

ww′ := the reduction of the concatenation of w and w′.

Remark 3.9. This does define a group. Associativity follows from uniqueness
of reductions: (w1w2)w3 = w1(w2w3) because the order in which we reduce the
concatenation of the wi doesn’t affect the reduction. The identity element is
the empty word, and

(x0
ε0 . . . xn−1

εn−1)−1 = xn−1
−εn−1 . . . x0

−ε0 .

Note that our notation is coherent: a word
∏
i<n xi

εi is equal to the corre-
sponding product in F (X).

Theorem 3.10. F (X) is free with basis X.

Proof. Given a map f : X → G, we can extend f to a homomorphism f∗ :
F (X)→ G by

f∗(
∏
i<n

xi
εi) :=

∏
i<n

f(xi).

Since any homomorphism extending f must satisfy this equality, f∗ is unique.

Lemma 3.11. Let X ⊆ G be a subset of a group. Let ι∗ : F (X) → G be the
homomorphism extending the inclusion ι : X → G.

(i) ι∗ is the “evaluation homomorphism” which maps a reduced word
∏
i<n xi

εi ∈
F (X) to the element of G obtained by computing this product in G. The
image of ι∗ is 〈X〉 ≤ G.

(ii) G is free with basis X if and only if ι∗ : F (X)→ G is an isomorphism.

Proof. (i) Immediate.

(ii) ⇐ : Immediate from freeness of F (X).

⇒ : By Lemma 3.3, ι extends to an isomorphism F (X) → G, which
must be ι∗ by uniqueness of the latter.

Proposition 3.12. Any group is a quotient of a free group.
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Proof. Let G be a group, and let X ⊆ G be any generating set (e.g. X := G).
Then the identity embedding ι : X → G extends to an epimorphism ι∗ : F (X)→
G.

Theorem 3.13. Any two bases for a given free group F have the same cardi-
nality.

Definition 3.14. This cardinality is the rank of the free group, rk(F ).

Proof. Let Hom(F,Z/2Z) be the set of homomorphisms F → Z/2Z.
Let X ⊆ F be a basis. Then any map X → Z/2Z extends uniquely to a

homomorphism F → Z/2Z. By the uniqueness, any homomorphism F → Z/2Z
is determined by its restriction to X. So |Hom(F,Z/2Z)| = 2|X|.

So if Y is another basis, then 2|X| = 2|Y |. So if either X or Y is finite, then
|X| = |Y |.

If X and Y are infinite, then |X| = |F | = |Y | by the following claim.

Claim 3.15. Let X be an infinite set. Then |F (X)| = |X|.

Proof.

|X| ≤ |F (X)|
= |reduced words in X|
≤ |words in X|

=

∣∣∣∣∣⋃
n

{words of length n in X}

∣∣∣∣∣
= sup

n

∣∣(X±)n
∣∣

= sup
n
|X|

= |X|.

3 .15

Proposition 3.16. For each cardinal κ there exists a free group of rank κ, and
it is unique up to isomorphism.

Definition 3.17. For n ∈ N, we write Fn for “the” free group of rank n.

Proof. Existence is by Theorem 3.10. Uniqueness is by Lemma 3.3.

3.1 Cayley graphs and free groups

Example 3.18. The Cayley graph of F2 with respect to a basis can be drawn as

follows: Γ(F ({a, b}), {a, b}) =
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Theorem 3.19. Let S ⊆ G be a subset of a group. Then Γ(G,S) is a tree if
and only if G is free with basis S.

Proof. Let ι∗ : F (S) → G be the homomorphism extending the inclusion ι :
S → G.

Claim 3.20. There is a bijection π from F (S) to the set of reduced paths in
Γ(G,S) from 1, such that for any w ∈ F (S), π(w) is a path from 1 to ι∗(w).

Proof. Let π(
∏
i<n si

εi)) be the path e0 . . . en−1 from 1, where

ek :=

{
(gk, sk) if εk = 1

(gk+1, sk) if εk = −1.

and gk := ι∗(
∏
i<k si

εi). Inductively, e0 . . . ek−1 is a reduced path from 1 to gk
for k ≤ n.

π is a bijection since any reduced path from 1 uniquely determines a corre-
sponding word via (g, s) 7→ s and (g, s) 7→ s−1. 3 .20

Since G acts transitively on (Γ(G,S))0, Γ(G,S) is acyclic iff there is no
non-trivial reduced path from 1 to 1, iff (by the claim) ker ι∗ = 1.

Similarly, Γ(G,S) is connected iff 1 is connected to every vertex, iff im ι∗ =
G.

So Γ(G,S) is a tree iff ι∗ : F (S)→ G is an isomorphism, iff (by Lemma 3.11(ii))
G is free with basis S.

3.2 Free actions on trees

Definition 3.21. An action G 	 X on a graph is free if the corresponding
action G 	 X0 on the vertices is free.

Theorem 3.22. Let G 	 X be a free non-inversive action of a group on a tree.
Then G is free. If G\X is finite, then rk(G) = B1(G\X).

Proof. Equip X with an orientation preserved by G (such exists by Remark 2.7).
Let T be a tree of representatives for the action G 	 X. Consider an image gT
of T under the action of g ∈ G. Then gT is also a tree.

Now T contains exactly one vertex of each orbit of G 	 X0 (using that X
and hence G\X is connected, so a maximal subtree contains every vertex). So
GT :=

⋃
g∈G gT contains every vertex of X, and these trees are disjoint: if gT

shares a vertex x with g′T , then g−1x = g′−1x is the unique vertex of T in the
orbit Gx, so g′g−1x = x, so g′ = g by freeness.

Let Y := X/(GT ), the graph obtained by contracting each tree gT to a point
gT/∼. So since (GT )0 = X0, we have

Y 0 = { gT/∼ : g ∈ G}
Y 1 = X1 \ (GT )1.

So the orientation X+ of X induces an orientation X+ \ (GT 1) of Y , and the
action of G on X induces an orientation-preserving action on Y which on vertices
is the regular action h ∗ ( gT/∼) = hgT/∼.
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By Lemma 2.36, Y is a tree. In particular, by acyclicity, for any x, y ∈ Y 0

there is at most one positive edge from x to y.
So by Lemma 2.18, Y ∼= Γ(G,S) where |S| = |(G\Y )+| = 1

2 |(G\Y )1|.
So Γ(G,S) is a tree, and we conclude by Theorem 3.19 that G is free with

basis S.
Now suppose G\X is finite. Let T ′ := G\T , the maximal tree in G\X of which

T is a lift. Then

(G\Y )1 = G\Y 1 = G\X1\(GT )1 = (G\X)1 \ (T ′)1,

so

rkG = |S| = 1

2
|(G\Y )1| = 1

2
|(G\X)1 \ (T ′)1| = B1(G\X)

by Lemma 2.32.

Corollary 3.23 (The Nielson-Schreier Theorem). Any subgroup of a free group
is free.

Proof. Let F be free with basis S, and let G ≤ F be a subgroup. The natural
action of F on Γ(F, S) is free and non-inversive, so also the induced action of G
is. But Γ(F, S) is a tree by Theorem 3.19, so G is free by Theorem 3.22.

Corollary 3.24 (Schreier’s formula). If F is free of finite rank and G ≤ F has
finite index, then rk(G)− 1 = [F : G](rk(F )− 1).

Proof. Let S ⊆ F be a basis, so |S| = rk(F ), and let Y := G\Γ(F,S). Then
Y 0 = G\F , the set of right cosets of G, and Y + = G\F × S.

Then Y is finite, and so by Theorem 3.22,

rk(G) = B1(Y ) = 1 + |Y +| − |Y 0| = 1 + [F : G](rk(F )− 1).

4 Group presentations

Definition 4.1.

• If G is a group and R ⊆ G, the normal closure of R is the subgroup

〈〈R〉〉 = 〈〈R〉〉G :=
〈
RG
〉

= 〈{rg : r ∈ R, g ∈ G}〉 E G,

the smallest normal subgroup of G containing R.

• Given X and a set R ⊆ F (X) of reduced words in X, the group generated
by X with relators R is

〈X | R〉 := F (X)/ 〈〈R〉〉 .

We often write 〈x1, . . . , xn | r1, . . . , rm〉 as shorthand for 〈{x1, . . . , xn} | {r1, . . . , rm}〉.

• We call 〈X | R〉 a presentation, and we call an isomorphism G ∼= 〈X | R〉
a presentation of G. The presentation is finitely generated if X is
finite, and finite if both X and R are finite.
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Remark 4.2. Every group has a presentation, by Proposition 3.12.

Example 4.3.

• 〈X | 〉 = 〈X | ∅〉 = F (X)

• If X ∩ Y = ∅, then 〈X ∪ Y | Y 〉 ∼= F (X).

• For n ∈ N, 〈x | xn〉 ∼= Z/nZ.

•
〈
x, y

∣∣ xy, yx2
〉 ∼= 1.

One way to see this: x = ((xy)x)−1(yx2) and y = x−1(xy).

Another: if φ : F (X) →
〈
x, y

∣∣ xy, yx2
〉

is the quotient homomorphism,
then φ(xy) = 1 = φ(yx2), so φ(y) = φ(x)−1 and 1 = φ(yx2) = φ(x), so
φ(x) = 1 = φ(y), so φ(F (X)) = 1.

Notation 4.4.

• When writing a presentation, we often write a relation r = s as alterna-
tive notation for the corresponding relator rs−1. In particular, a relator r
corresponds to the relation r = 1.

• We often denote an element g ∈ 〈X | R〉 by a word w ∈ F (X) whose image
under the quotient map F (X)→ 〈X | R〉 is g.

The following generalises the defining property of a free group.

Lemma 4.5. Let 〈X | R〉 be a presentation and G be a group, and let f : X → G
be a map which respects the relations, meaning that for any relator πi<nxi

εi ∈ R,
we have πi<nf(xi)

εi = 1.
Then f extends uniquely to a homomorphism 〈X | R〉 → G.

Proof. f extends to f∗ : F (X) → G. By the assumption, f∗(〈〈R〉〉) = 1, so
f∗ induces a well-defined homomorphism 〈X | R〉 → G. The uniqueness follows
from the fact that (the image of) X generates 〈X | R〉.

Example 4.6. For n,m ∈ N, x 7→ x extends to a homomorphism 〈x | xn〉 →
〈x | xm〉 if and only if m|n.

Remark 4.7. If w1 = w2 is a relation in 〈X | R〉 (i.e. wi ∈ F (X) and w1w
−1
2 ∈

〈〈R〉〉), then we can substitute w2 for w1 within words in 〈X | R〉, i.e. uw1v =
uw2v in 〈X | R〉 for any u, v ∈ F (X).

Indeed uw1v(uw2v)−1 = uw1w
−1
2 u−1 = (w1w

−1
2 )u

−1 ∈ 〈〈R〉〉.
In other words: if φ : F (X) → 〈X | R〉 is the quotient map, then φ(w1) =

φ(w2), so since φ is a homomorphism, φ(uw1v) = φ(uw2v).

Example 4.8. FA(X) := 〈X | {xy = yx : x, y ∈ X}〉 = 〈X | {[x, y] : x, y ∈ X}〉
is the abelianisation of F (X). Indeed,

• FA(X) is abelian: by induction on their lengths, any two words in X
commute in FA(X).

More explicitly: for any x ∈ X, any word w is in the centraliser of x by
induction on the length of w, so x is central. But the centre is a subgroup,
and X generates FA(X), so FA(X) is abelian.
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• FA(X) satisfies the universal property of the abelianisation (defined in
Lemma 1.9) by Lemma 4.5.

Since abelianisations are unique (by the usual arguments), FA(X) ∼= F (X)/F (X)′.
One can also see directly that 〈〈{[x, y] : x, y ∈ X}〉〉 = F (X)′:

≤ : [x, y]w = [xw, yw] ∈ F (X)′.

≥ : Any commutator [w, v] has trivial image in the abelian quotient FA(X) =
F (X)/ 〈〈{[x, y] : x, y ∈ X}〉〉.

FA(X) is the free abelian group (or free Z-module) on generators X. If X is
finite, FA(X) ∼= Z|X|.

In particular, Z2 ∼= 〈x, y | [x, y]〉.
Example 4.9. S3 has the presentation P :=

〈
x, y

∣∣ x2, y2, (xy)3
〉
.

Indeed, x 7→ (12), y 7→ (23) respects the relations so extends to a homomor-
phism θ : P → S3, which is surjective since 〈(12), (23)〉 = S3, and by applying
the relations one sees that P = {1, x, y, xy, yx, xyx}, so θ is an isomorphism on
cardinality grounds.

Proposition 4.10. A finite index subgroup of a finitely presented (resp. finitely
generated) group is finitely presented (resp. finitely generated).

Proof. Suppose X is a finite set, R ⊆ F (X), and H ≤ 〈X | R〉 has finite index.
Let G := π−1H ≤ F (X) where π : F (X) → 〈X | R〉 = F (X)/ 〈〈R〉〉 is the
quotient map.

Now [F (X) : G] = [〈X | R〉 : H] is finite (since ab−1 ∈ π−1H ⇔ π(a)π(b)−1 ∈
H). So say F (X)/G = {tG : t ∈ T} where T ⊆ F (X) is finite.

Claim 4.11. Let RT := {rt : r ∈ R, t ∈ T}. Then 〈〈R〉〉F (X)
=
〈〈
RT
〉〉G

.

Proof. (Note RT ⊆ 〈〈R〉〉F (X)
= kerπ ⊆ π−1(H) = G, so the right hand side

does make sense.)

⊇ : Immediate.

⊆ : If r ∈ R and f ∈ F (X), say f = tg with t ∈ T and g ∈ G, then

rf = rtg = (rt)g ∈
〈〈
RT
〉〉G

. Since the 〈〈R〉〉F (X)
is generated by such

rf , we conclude.

4 .11

By Corollary 3.24, G is free of finite rank. Let Y ⊆ G be a finite basis, and
let τ : G→ F (Y ) be the corresponding isomorphism. Then by the claim,

H ∼= G/ kerπ = G/
〈〈
RT
〉〉G ∼= 〈Y ∣∣ τ(RT )

〉
.

So H is finitely generated, and finitely presented if R is finite.
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4.1 Tietze transformations

Lemma 4.12. Let 〈X | R〉 be a presentation.

(i) If r ∈ 〈〈R〉〉, then 〈X | R〉 ∼= 〈X | R ∪ {r}〉.

(ii) If w ∈ F (X) and y /∈ X, then 〈X | R〉 ∼= 〈X ∪ {y} | R ∪ {y = w}〉.

Proof. (i) 〈〈R ∪ {r}〉〉 = 〈〈R〉〉.

(ii) By Lemma 4.5, f := idX ∪ {y 7→ w} and g := idX extend to homo-
morphisms f∗ : 〈X ∪ {y} | R ∪ {y = w}〉 → 〈X | R〉 and g∗ : 〈X | R〉 →
〈X ∪ {y} | R ∪ {y = w}〉.
Now (f∗ ◦ g∗)|X = id and (g∗ ◦ f∗)|X∪{y} = id (since g∗(f∗(y)) = g∗(w) =
w = y), so f∗ ◦ g∗ = id and g∗ ◦ f∗ = id, so f∗ and g∗ are inverse
isomorphisms.

Definition 4.13. The two operations on presentations in Lemma 4.12, along
with their inverses, are the Tietze transformations. We call (i) and its inverse
adding/deleting a relation, and (ii) and its inverse adding/deleting a generator.

Example 4.14.

S3
∼=
〈
x, y

∣∣ x2, y2, (xy)3
〉

∼=
〈
x, y

∣∣ x2, y2, (xy)3, (yx)3
〉

[(yx)3 = ((xy)3)x]

∼=
〈
x, y

∣∣ x2, y2, (yx)3
〉

∼=
〈
x, y, z

∣∣ x2, y2, (yx)3, z = yx
〉

∼=
〈
x, y, z

∣∣ x2, y2, (yx)3, z = yx, z3, x = yz, (yz)2
〉

∼=
〈
x, y, z

∣∣ y2, z3, x = yz, (yz)2
〉

∼=
〈
y, z

∣∣ y2, z3, (yz)2
〉

∼=
〈
y, z

∣∣ y2, z3, y−1zy = z−1
〉

∼= D3.

Theorem 4.15. Finite presentations 〈X | R〉 and 〈Y | S〉 are isomorphic if and
only if a finite sequence of Tietze transformations transforms one into the other.

Proof.

⇐ : Immediate.

⇒ : It suffices to prove this in the case X ∩ Y = ∅ (the general case then
follows by going via a third disjoint presentation).

Fix an isomorphism θ : 〈X | R〉
∼=−→ 〈Y | S〉. Then for x ∈ X, say θ(x) =

wx/ 〈〈S〉〉 and θ−1(y) = wy/ 〈〈R〉〉, where wx ∈ F (Y ) and wy ∈ F (X).

Then we transform 〈X | R〉 to 〈X ∪ Y | R ∪ {y = wy : y ∈ Y }〉 by adding
generators, then transform this to 〈X ∪ Y | R ∪ S ∪ {x = wx : x ∈ X} ∪ {y = wy : y ∈ Y }〉
by adding relations: Indeed, since θ is an isomorphism, if we expand an
element of S as a word in X by substituting wy for y, we obtain an
element of 〈〈R〉〉; similarly for x−1wx. So S ∪ {x = wx : x ∈ X} ⊆
〈〈R ∪ {y = wy : y ∈ Y }〉〉.
We conclude by symmetry.



4 GROUP PRESENTATIONS 24

4.2 Aside: algorithmic problems

4.2.1 The word problem for finitely generated groups

If G is a finitely generated group, the word problem for G is the algorithmic
problem of deciding, given a finite set of generators X, which group words in X
are trivial in G.

More precisely, G has decidable word problem if for some (equivalently
any) finitely generated presentation G ∼= 〈X | R〉, there exists an algorithm
which takes as input a word w ∈ F (X) and returns True if w ∈ 〈〈R〉〉, and
returns False otherwise.

One might hope that any finitely presented group has decidable word prob-
lem. This turns out to be false. Nor must a group with decidable word problem
be finitely presented2, although it must embed in a finitely presented group.

These facts can be proven using the Higman Embedding Theorem, which
says that a finitely generated group G embeds in some finitely presented group
if and only if G is recursively presented, meaning G ∼= 〈X | R〉 where there is
an algorithm to determine membership of R.

4.2.2 The isomorphism problem for finitely presented groups

The isomorphism problem asks for an algorithm which would take as input
two finite presentations 〈X | R〉 and 〈Y | S〉, and would determine whether
〈X | R〉 ∼= 〈Y | S〉.

Again, it turns out that no such algorithm exists: a result of Adian and
Rabin implies that even the special case of testing triviality, i.e. determining
whether 〈X | R〉 ∼= 1, is unsolvable.

So even though 〈X | R〉 ∼= 〈Y | S〉 is guaranteed to be witnessed by a se-
quence of Tietze transformations, there is no algorithm to produce such a se-
quence.

4.3 The fundamental group of a graph

Definition 4.16. Let X be a graph. Let F (X) :=
〈
X1

∣∣ {e = e−1 : e ∈ X1}
〉
.

• Let x ∈ X0. The fundamental group of X with base-point x is the
group

π1(X,x) := {e0 . . . en−1 : (e0, . . . , en−1) is a path from x to x} ≤ F (X).

• If X is connected and non-empty, and T ⊆ X is a maximal subtree, the
fundamental group of X with respect to T is

π1(X,T ) := F (X)/
〈〈
T 1
〉〉

=
〈
X1

∣∣ {e = e−1 : e ∈ X1} ∪ T 1
〉
.

Remark 4.17. One can see that this definition of π1(X,x) agrees with the usual
topological definition, i.e. π1(X,x) ∼= π1(real(X), x). Homotopic paths yield the
same element of π1(X,x).

2The lamplighter group provides a counterexample.
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Remark 4.18. π1(X,T ) is free of rank 1
2 |X

1\T 1|. Indeed, if X+ is an orientation,
deleting generators3 shows

π1(X,T ) ∼=
〈
X1 \ T 1

∣∣ {e = e−1 : e ∈ X1 \ T 1}
〉 ∼= F (X+ \ T 1).

Theorem 4.19. Let X be a connected non-empty graph, let x ∈ X0, and let
T ⊆ X be a maximal subtree. Then π1(X,x) ∼= π1(X,T ).

In particular, if X is finite, π1(X,x) ∼= FB1(X).

Proof. For y ∈ X0 = T 0, let γy := e0 . . . en−1 ∈ F (X) where (e0, . . . , en−1) is
the geodesic in T from x to y.

Setting f(e) := γα(e)eγ
−1
ω(e) ∈ π1(X,x) for e ∈ X1, we have f(e) = 1 for

e ∈ T 1, and f(e) = f(e)−1 for e ∈ X1, so f respects the relations of π1(X,T )
and so extends uniquely to a homomorphism f∗ : π1(X,T )→ π1(X,x).

Let p : π1(X,x)→ π1(X,T ) be the restriction of the quotient map F (X)→
π1(X,T ).

Then p(f(e)) = e for e ∈ X1, so p ◦ f∗ = id, and if (e0, . . . , en−1) is a path
from x to x, then f∗(p(e0 . . . en−1)) = γα(e0)e0γ

−1
ω(e0)γα(e1)e1 . . . en−1γω(en−1) =

e0 . . . en−1 (since α(e0) = x = ω(en−1) and ω(ei) = α(ei+1)).
So p and f∗ are mutually inverse homomorphisms, so they are isomorphisms.
The “in particular” clause follows from Remark 4.18 and Lemma 2.32.

Proposition 4.20. If G is a free group with basis S and H ≤ G is a subgroup,
then π1(H\Γ(G,S), H) ∼= H.

(This gives an alternative route to the Nielson-Schreier Theorem (Corol-
lary 3.23) and the Schreier formula (Corollary 3.24).)

Proof. Let X := Γ(G,S) and Y := H\X . Recall that X0 = G and X+ = G×S,
and Y 0 = H\G and Y + = H\G × S.

Let φX : F (X) → G be (by Lemma 4.5) the unique homomorphism such
that φX((g, s)) = s (and φX((g, s)) = s−1), and similarly let φY : F (Y ) → G
be the homomorphism such that φY ((Hg, s)) = s.

Now any reduced path (e0, . . . , en−1) in Y from H to H lifts uniquely to a
reduced path (e′0, . . . , e

′
n−1) in X from 1 with ei = H\e′i . Then

φY (e0 . . . en−1) = φX(e′0, . . . , e
′
n−1) = ω(e′n−1) ∈ ω(en−1) = H.

Since X is a tree, there is a unique such path in X for any h ∈ H, so we
conclude that φY restricts to a bijection π1(Y,H)→ H.

5 Colimits of groups

We show that the category of groups has colimits. We assume no prior famil-
iarity with category theory4.

Definition 5.1.

3Possibly infinitely many, so this isn’t really a matter of applying a sequence of Tietze
transformations, but Lemma 4.12(ii) goes through with an infinite set of new generators.

4Those who are familiar with the standard category theory definitions may note that
we’ve taken a shortcut in the definition of diagram, but can confirm that this doesn’t affect
the resulting notion of colimit.
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• A diagram of groups consists of a family (Gi)i∈I of groups and, for each
pair (i, j), a (possibly empty) set Fij of homomorphisms : Gi → Gj .

• A co-cone of such a diagram consists of a group G and morphisms gi :
Gi → G, such that for all (i, j) and f ∈ Fij , gj ◦ f = gi.

• A co-cone (G, (gi)i) is a colimit of the diagram if it satisfies the following
universal property:
for any co-cone (H, (hi)i) there exists a unique homomorphism α : G→ H
such that hi ◦ α = gi for all i.

Lemma 5.2. Any diagram has a colimit.
Moreover, it is unique up to unique isomorphism over the diagram: if (G, (gi)i)

and (H, (hi)i) are colimits, then there exists a unique isomorphism θ : G → H
such that hi ◦ θ = gi for all i.

Proof. Say Gi ∼= 〈Xi | Ri〉 with the Xi disjoint. Then

G :=

〈⋃
i

Xi

∣∣∣∣∣ ⋃
i

Ri ∪ {x = f(x) : f ∈ Fij , x ∈ Xi}

〉

(where f(x) denotes the corresponding word in Xj), along with the homomor-
phisms induced by the inclusions Xi ⊆

⋃
iXi, is a colimit.

Indeed, if (H, (hi)i) is another co-cone, then the map
⋃
iXi → H defined

by hi on Xi respects the relations, so it extends uniquely to a homomorphism
G→ H. This is what the colimit condition requires.

The uniqueness can be verified as in Lemma 3.3: given two colimits, we
obtain unique homomorphisms between them, and their compositions must be
the identity homomorphisms by uniqueness.

Notation 5.3. We typically write G = lim−→i
Gi to denote the colimit, suppress-

ing the morphisms in the diagram and the limit from the notation.

Example 5.4. To illustrate the notion of colimit, we sketch a couple of special
cases.

• Let I be a linear order, let (Gi)i∈I , and let (fij : Gi → Gj)i<j be a
commuting system of embeddings. Let G be the colimit lim−→i

Gi of this

diagram, and let gi : Gi → G be the associated maps. (In this case, G is
also called the direct limit of the diagram.)

Then each gi is an embedding, and (gi(Gi))i is a chain of subgroups of G,
and G =

⋃
i gi(Gi).

One way to see this is to define a group G built as the union of copies of Gi
embedded according to the fij , and check that it satisfies the properties
of the colimit.

• Given two homomorphisms f1, f2 : G→ H, the colimit of this diagram is
the quotient H/

〈〈
{f1(g)f2(g)−1 : g ∈ G}

〉〉
(called the coequaliser of f1

and f2). This can be seen by considering presentations.
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5.1 Free products

Definition 5.5. If G1 and G2 are groups, the colimit of the diagram consisting
of these two groups, with no morphisms, is called the free product of G1 and
G2, denoted G1 ∗G2.

Let G1 ∗G2 be a free product, and let fi : Gi → G1 ∗G2 be the homomor-
phisms of the colimit.

Lemma 5.6. G1 ∗G2 = 〈f1(G1), f2(G2)〉.

Proof. By the universal property applied to the homomorphisms fi : Gi → H :=
〈f1(G1), f2(G2)〉 ≤ G1 ∗ G2 =: G, there is α : G → H with α ◦ fi = fi. Let
ι : H → G be the inclusion. Then (ι ◦α) ◦ fi = fi, so ι ◦α = idG by uniqueness,
so H = G.

From the proof of Lemma 5.2, we see:

Remark 5.7. If we take presentations Gi ∼= 〈Xi | Ri〉 with X1 ∩ X2 = ∅, then
G1∗G2

∼= 〈X1 ∪X2 | R1 ∪R2〉, and fi is induced by the inclusion Xi ⊆ X1∪X2.

Example 5.8. For n,m ∈ N, we have Fn ∗ Fm ∼= Fn+m by considering presenta-
tions.

In particular, F2
∼= F1 ∗ F1

∼= Z ∗ Z.

Definition 5.9. Let G1 and G2 be groups with G1 ∩G2 = 1. A normal form
in (G1, G2) is a sequence (gi)i<n where

• n ∈ N,

• gi ∈ (G1 ∪G2) \ {1},

• gi ∈ G1 iff gi+1 ∈ G2 (∀i).

Theorem 5.10 (Normal Form Theorem for free products). Let G1 ∗ G2 be a
free product with associated homomorphisms fi : Gi → G1 ∗G2. Then:

(i) The fi are embeddings, and the images Gi := fi(Gi) intersect trivially,
G1 ∩G2 = 1.

(ii) For all g ∈ G1 ∗G2 there is a unique normal form (gi)i<n in (G1, G2) such
that g =

∏
i<n gi.

Remark 5.11. By (i), after replacing Gi with its isomorphic copy Gi, each Gi is
a subgroup of G1 ∗G2. Then (ii) says that each element of G1 ∗G2 has a unique
expression as

∏
i<n gi where (gi)i<n is a normal form in (G1, G2).

Proof. Replacing G1 with an isomorphic copy, we may assume G1 ∩G2 = {1}.
Let X be the set of normal forms in (G1, G2).

Claim 5.12. The map f : X → G1 ∗ G2; (gi)i<n 7→
∏
i<n(f1 ∪ f2)(gi) is a

bijection.
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Proof. Consider the natural left action of G1 on X, defined for g ∈ G1 \ {1}
by:

g ∗1 (g0, . . . , gn−1) :=


(g, g0, . . . , gn−1) if n = 0 or g0 ∈ G2

(gg0, . . . , gn−1) if g0 ∈ G1, gg0 6= 1

(g1, . . . , gn−1) if g0 ∈ G1, gg0 = 1,

(and 1 ∗1 x := x). By the universal property, this and the analogous action ∗2
of G2 induce via f1, f2 a left action ∗ of G1 ∗ G2 on X (i.e. a homomorphism
G1 ∗G2 → Sym(X)); so for g ∈ Gi, fi(g) ∗ x = g ∗i x.

Then by induction on n, for any (gi)i<n ∈ X we have f((gi)i<n)∗∅ = (gi)i<n.
So f is injective.

Now from the definition of ∗i, for g ∈ Gi and x ∈ X, we have f(g ∗i x) =
fi(g) · f(x). So f(X) ⊆ G is closed under left multiplication by each fi(Gi).
and hence by G1 ∗G2 (by Lemma 5.6). So f(X) = G, and f is surjective.

5 .12

By considering normal forms of length 1, it follows from the claim that each
fi is an embedding. If 1 6= g ∈ G1 ∩G2, say f1(g1) = g = f2(g2), then (g1, g

−1
2 )

is a normal form, but gg−1 = 1, so this contradicts the claim. So we conclude
(i), and then (ii) follows directly from the claim.

Proposition 5.13. Let G be a group. Suppose G1, G2 ≤ G are subgroups such
that

(i) 〈G1 ∪G2〉 = G;

(ii) G1 ∩G2 = 1;

(iii) if (gi)i<n is a normal form in G1, G2 with n > 0, then
∏
i<n gi 6= 1.

Then G ∼= G1 ∗G2.

Proof. Consider the mapG1∗G2 → G induced by idG1
and idG2

. It maps normal
forms to normal forms, so it is injective by (iii), and surjective by (i).

Example 5.14. The infinite dihedral group D∞ is the automorphism group of
the tree C∞. We show D∞ ∼= Z/2Z ∗ Z/2Z.

Recall we defined (C∞)0 := Z =: (C∞)+ with α(n) := n, ω(n) := n+ 1. Let
a ∈ D∞ be the reflection through the vertex 0, and let b ∈ D∞ be the reflection
through the edge 0; so for n ∈ (C∞)+, a ∗ n = −n− 1 and b ∗ n = −n.

Now an element of D∞ is determined by its action on 0 ∈ (C∞)+, and we
calculate

(ab)n ∗ 0 = −n
b(ab)n = n

(ba)n ∗ 0 = n

a(ba)n ∗ 0 = −n− 1,

so we conclude by Proposition 5.13.
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Remark 5.15. We can also define the free product of a family (Gi)i∈I of groups
as the colimit ∗i∈I Gi of the diagram consisting of the groups Gi and no homo-
morphisms.

In terms of presentations, ∗i∈I 〈Xi | Ri〉 ∼=
〈⋃

i∈I Xi

∣∣ ⋃
i∈I Ri

〉
(assuming

the Xi are disjoint). With this one can easily verify:

• ∗i∈I Z ∼= F (I).

• The free product of finitely many groups (Gi)i<n is isomorphic over the
Gi to the iterated binary free product,

∗
i<n

Gi ∼= G0 ∗ (G1 ∗ (. . . ∗Gn−1) . . .).

5.2 Amalgamated free products

Definition 5.16. If A,G1, G2 are groups and φi : A → Gi is an embedding
(i = 1, 2), the colimit of the diagram consisting of these groups and embeddings
is called the amalgamated free product (or just amalgam) of G1 and G2

over A (with respect to the φi), denoted G1 ∗A G2.

Consider an amalgamated free product G = G1 ∗A G2, and let fi : Gi → G
be the homomorphisms of the colimit.

Exactly as in Lemma 5.6, we have:

Lemma 5.17. G = 〈f1(G1), f2(G2)〉.

Remark 5.18. If we take presentations Gi ∼= 〈Xi | Ri〉 with X1 ∩X2 = ∅, then
by the proof of Lemma 5.2,

G1 ∗A G2
∼= 〈X1 ∪X2 | R1 ∪R2 ∪ {φ1(a) = φ2(a) : a ∈ A}〉

(where φi(a) denotes the corresponding word in Xi). Hence

G1 ∗A G2
∼= (G1 ∗G2)/

〈〈
{φ1(a)φ2(a)−1 : a ∈ A}

〉〉
.

To simplify notation in the following theorem, assume that the embeddings
φi : A→ Gi are inclusions, and G1 ∩G2 = A.

Theorem 5.19 (Normal Form Theorem for amalgamated free products).

(i) The fi are embeddings, and f1(G1) ∩ f2(G2) = f1(A) (= f2(A)).

(ii) Identify Gi with fi(Gi) via fi.

Let Si ⊆ Gi be a set of representatives for the right cosets of A in Gi.

Define a normal form to be a sequence (a; s0, . . . , sn−1) where

• n ∈ N;

• a ∈ A;

• si ∈ (S1 \A) ∪ (S2 \A);

• si ∈ S1 iff si+1 ∈ S2 (∀i).

Then for all g ∈ G there is a unique normal form (a; s0, . . . , sn−1) such
that g = as0 . . . sn−1.



5 COLIMITS OF GROUPS 30

Proof. Let X be the set of normal forms.
Note that f ′ := f1 ∪ f2 : G1 ∪G2 → G is well-defined, since G1 ∩G2 = A.

Claim 5.20. The map f : X → G; (a; s0, . . . , sn−1) 7→ f ′(a)f ′(s0) . . . f ′(sn−1)
is a bijection.

Proof. If g ∈ Gi \ A, let gA ∈ A and gS ∈ Si \ A be the unique elements such
that g = gAgS .

Consider the natural left action of G1 on X:

g∗1(a; s0, . . . , sn−1) :=


(ga; s0, . . . , sn−1) if g ∈ A
((ga)A; (ga)S , s0, . . . , sn−1) if g /∈ A, n = 0 or s0 ∈ S2

((gas0)A; (gas0)S , s1, . . . , sn−1) if g /∈ A, s0 ∈ S1, gas0 /∈ A
(gas0; s1, . . . , sn−1) if g /∈ A, s0 ∈ S1, gas0 ∈ A.

Let ∗2 be the analogous action of G2 on X. Note then:

f(g ∗i x) = fi(g) · f(x) (for i ∈ {1, 2}, g ∈ Gi, x ∈ X). (*)

Now ∗1 and ∗2 agree on A, so by the universal property they induce an
action ∗ of G on X such that for g ∈ Gi, fi(g) ∗ x = g ∗i x.

Then for any (a; s0, . . . , sn−1) ∈ X we have

f((a; s0, . . . , sn−1)) ∗ (1; ) = f((a; s0, . . . , sn−2)) ∗ (1; sn−1)

= f((a; s0, . . . , sn−3)) ∗ (1; sn−2, sn−1)

= . . .

= f((a; )) ∗ (1; s0, . . . , sn−1)

= (a; s0, . . . , sn−1).

So f is injective.
By (*), f(X) ⊆ G is closed under left multiplication by each fi(Gi). and

hence by G (by Lemma 5.17). So f(X) = G, and f is surjective.

5 .20

Now for g ∈ Gi,

fi(g) =

{
f((gA; gS)) if g /∈ A
f((g; ) if g ∈ A

,

so by the claim fi(g) = 1 iff g = 1. So each fi is an embedding.
If g ∈ f1(G1\A)∩f2(G2\A), say f1(g1) = g = f2(g2), then f((g1)A, (g1)S) =

g = f((g2)A, (g2)S), contradicting the claim.
So we conclude (i), and then (ii) follows directly from the claim.

When considering an amalgamated free product G = G1 ∗A G2, we often
identify A,G1, G2 with their isomorphic images in G, so then we have A ⊆
G1, G2 ⊆ G and G1 ∩G2 = A.

Proposition 5.21. Let G be a group. Suppose A ≤ G1, G2 ≤ G are subgroups
such that G1 ∩G2 = A.

Call a sequence (gi)i<n a non-trivial alternating sequence if
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• n > 0;

• gi ∈ (G1 ∪G2) \A for all i < n;

• gi ∈ G1 ⇔ gi+1 ∈ G2 for all i < n− 1.

Then the homomorphism θ : G1∗AG2 → G induced by the inclusions Gi → G
is an isomorphism iff

(i) 〈G1 ∪G2〉 = G, and

(ii) for any non-trivial alternating sequence (gi)i<n, we have
∏
i<n gi 6= 1.

Proof.

• (i) holds iff θ is surjective:

G1 ∗A G2 is generated by G1 ∪ G2 (with the usual identifications), so
θ(G1 ∗A G2) is generated by θ(G1 ∪G2) = G1 ∪G2.

• (ii) holds iff θ is injective: Let G′ := G1 ∗A G2. Making the usual iden-

tifications, we have Gi ≤ G′ and θ|G1∪G2
= id. We use superscripts to

disambiguate products in G′ from products in G.

We show that {
∏G′

i<n gi : (gi)i<n is a non-trivial alternating sequence} =
G′ \A. Then since θ|A is injective, we have: θ is injective iff 1 /∈ θ(G′ \A)

iff 1 6= θ(
∏G′

i<n gi) =
∏G
i<n θ(gi) =

∏G
i<n gi for any non-trivial alternating

sequence (gi)i<n, as required.

For the remainder of this proof, all products are in G′. Pick representatives
Si ⊆ Gi for A\Gi .
If g ∈ G′ \A, then by existence of normal forms we have g = as0 . . . sn−1

for a normal form (a; s0, . . . , sn−1) with n > 0, and then (as0, s1, . . . , sn−1)
is a non-trivial alternating sequence as required.

Conversely, if (gi)i<n is a non-trivial alternating sequence, then say gi =
aisi with si ∈ (S1 ∪ S2) \A, then∏

i<n

gi = a0s0 . . . sn−3an−2sn−2an−1sn−1

= a0s0 . . . sn−3an−2(sn−2an−1)A(sn−2an−1)Ssn−1

= . . .

= a′0s
′
0 . . . s

′
n−2s

′
n−1

where (a′0; s′0, . . . , s
′
n−1) is a normal form (here we use that since sn−2 ∈

Gi \ A, also sn−2an−1 ∈ Gi \ A, and so on). Then
∏
i<n gi /∈ A by the

normal form theorem, since n > 0.

6 Trees and amalgams

Definition 6.1. A segment is a tree with two vertices.
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Theorem 6.2. Let G 	 X be a non-inversive action of a group on a graph,

and suppose G\X is a segment. Let T = be a lift of G\X (which exists
by Lemma 2.27).

Let GP , GQ, Gy ≤ G be the stabilisers, so GP ∩ GQ ≤ Gy, and so the
inclusions GP , GQ ↪−→ G induce a homomorphism θ : GP ∗Gy GQ → G.

Then X is a tree if and only if θ is an isomorphism.

Definition 6.3. For n > 0, a circuit of length n in a graph X is a subgraph
isomorphic to Cn.

Lemma 6.4. A graph X is acyclic if and only if it contains no circuit.

Proof.

⇒: If X contains a circuit of length n > 0, then the image (e0, . . . , en−1) of
the path (0, . . . , n − 1) in Cn is a non-trivial reduced path from a vertex
to itself.

⇐: Suppose X is not acyclic but contains no circuit. Suppose n > 0 is minimal
such that there is a reduced path (e0, . . . , en−1) with α(e0) = ω(en−1).
Since this does not yield a circuit, we must have α(ei) = α(ej) for some
i < j. But then (ei, . . . , ej−1) is a reduced path from α(ei) to ω(ej−1) =
α(ej) = α(ei), contradicting the minimality.

Proof of Theorem 6.2. By Proposition 5.21, it suffices to show:

(i) X is connected iff 〈GP ∪GQ〉 = G;

(ii) X is acyclic iff for no non-trivial alternating sequence (gi)i<n do we have∏
i<n gi = 1.

We prove these in turn.

(i) Let X ′ be the connected component of X containing T , and let

G′ := {g ∈ G : gX ′ = X ′} ≤ G,

so X = GT is connected iff G′ = G. We conclude by showing G′ =
〈GP ∪GQ〉 =: H ≤ G.

If h ∈ GP ∪ GQ, then hT shares a vertex with T , so hT ⊆ X ′. So since
hX ′ is the connected component of X containing hT , we have hX ′ = X ′,
so h ∈ G′. Hence H ≤ G′.
Now HT and (G \H)T are disjoint subgraphs of X; indeed, if h ∈ H and
g ∈ G \H, then h−1g /∈ H ⊇ GP ∪GQ, so hP 6= gP and hQ 6= gQ (and of
course hP 6= gQ and hQ 6= gP , since P and Q are in different orbits).

So since HT ∪ (G \ H)T = GT = X, we must have X ′ ⊆ HT and so
G′ ≤ H.

(ii) We apply Lemma 6.4. So supposeX contains a circuit, and let (e0, . . . , en−1)
be the image of the path (0, . . . , n − 1) in Cn. Say ei = hiyi where
yi ∈ {y, y}. Let Pi := α(yi) ∈ {P,Q}.
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Let i < n. Treat indices modulo n, so yn = y0 etc. Considering the image
path in G\X , we see yi = yi+1 and {Pi, Pi+1} = {P,Q}. Also

hi+1Pi+1 = hi+1α(yi+1) = α(hi+1yi+1) = ω(hiyi) = hiω(yi) = hiPi+1,

so gi := h−1
i hi+1 ∈ GPi+1 . Now by the definition of a circuit, we have

ei 6= ei+1. So
hiyi = ei 6= ei+1 = hi+1yi+1 = hi+1yi,

so gi ∈ GPi+1
\Gy.

Now h0 = hn = h0g0 . . . gn−1, so
∏
i<n gi = 1. But (gi)i<n is a non-

trivial alternating sequence, so this establishes the forward direction of
the statement.

The converse is obtained by reversing the above construction. Let (gi)i<n
is a non-trivial alternating sequence with

∏
i<n gi = 1, and say g0 ∈

GQ \Gy. If n is even, then (y, g0y, g0g1y, . . . ,
∏
i<n−1 giy) is a non-trivial

reduced path from P to P . If n is odd, n 6= 1 since θ is an embedding
on GQ and GP , and (g0y, g0g1y, . . . ,

∏
i<n−1 giy) is a non-trivial reduced

path from Q to Q.

Theorem 6.5. Let G = G1 ∗A G2 be an amalgamated free product. Assume
(WLOG) A ≤ G1, G2 ≤ G.

Then there exists a tree X and an action G 	 X such that G\X is a segment,

and a lift of G\X such that GP = G1, GQ = G2, and Gy = A.

Proof. Let X be the graph:

X0 := G/G1 ∪̇ G/G2

X+ := G/A

α(gA) := gG1

ω(gA) := gG2,

with the obvious left action of G.
Then G\X is a segment, and setting P := G1, Q := G2, and y := A,

is a lift, and the stabilisers are as required.
By Theorem 6.2, X is a tree.

In particular, we deduce from Theorems 6.2 and Theorem 6.5:

Corollary 6.6. A group G is an amalgamated free product if and only if G has
a non-inversive action on a tree X such that G\X is a segment.

Example 6.7. The action ofG := D∞ = Aut(C∞) on C∞ induces a non-inversive
action on its barycentric subdivision B(C∞) (which is itself isomorphic to C∞).

Taking a subsegment of B(C∞), one sees GP ∼= Z/2Z ∼= GQ and
Gy = 1, so in this case Theorem 6.2 recovers the isomorphismD∞ ∼= Z/2Z∗Z/2Z
of Example 5.14.
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Example 6.8. The tree of Theorem 6.5 for Z/3Z ∗ Z/4Z is: .

Corollary 6.9. Let θ : G� G1 ∗A G2 be an epimorphism.
Then G ∼= θ−1(G1) ∗θ−1(A) θ

−1(G2).

Proof. Let X be the tree of Theorem 6.5 for G1 ∗A G2. Then we conclude by
applying Theorem 6.2 to the action of G on X induced by θ, namely g ∗ x :=
θ(g) ∗ x.

Corollary 6.10. Suppose A E G1, G2.
Then (G1 ∗A G2)/A ∼= (G1/A) ∗ (G2/A).

Proof. A E G1 ∗A G2 =: G, since G1, G2 generate G.
Let X be the tree of Theorem 6.5 for G. Then A is in the kernel of the

action, since A acts trivially on X+ = G/A (indeed, agA = ga′A = gA). So the
action induces an action of G/A on X, and we conclude by Theorem 6.2.

6.1 SL2(Z)
Definition 6.11. The upper half plane is H := {z ∈ C : Imz > 0}. The
action of PSL2(R) = SL2(R)/{1,−1} on H by Möbius transformations is
the action induced by the following action of SL2(R):[

a b
c d

]
∗ z 7→ az + b

cz + d
.

Fact 6.12. This does define a well-defined faithful action of PSL2(R).

(If we equip H with the Poincaré metric ds =

√
dx2+dy2

y (z = x + iy), with

which H is a model of the hyperbolic plane, then the action is by isometries.)

Definition 6.13. A hyperbolic line in H is the intersection with H of a
circle with real centre or a vertical line, i.e. {z : |z − a| = r, Im(z) > 0 } or
{a+ iy : y > 0} with a ∈ R and r > 0.

Fact 6.14. PSL2(R) maps hyperbolic lines to hyperbolic lines.
(This follows from the fact that the hyperbolic lines are precisely the maximal

geodesics in the hyperbolic plane H.)

Definition 6.15. The modular group is Γ := PSL(Z) ≤ PSL(R).

Fact 6.16.

D := {z : Re(z) ∈ [0,
1

2
], |z| ≥ 1} ∪ {z : Re(z) ∈ (−1

2
, 0), |z| > 1} ⊆ H

is a fundamental domain for the action of Γ on H by Möbius transformations,
i.e. D intersects each orbit of the action in exactly one point.
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Let α, β ∈ Γ be the images of

[
0 1
−1 0

]
,

[
0 1
−1 1

]
∈ SL2(Z), so α ∗ z = − 1

z

and β ∗ z = 1
1−z .

Fact 6.17. α has order 2, β has order 3, and 〈α, β〉 = Γ.

Fact 6.18. Suppose γ ∈ Γ \ 1, z ∈ D, and γz = z. Then either

• z = e
1
2πi and γ ∈ 〈α〉, or

• z = e
1
3πi and γ ∈ 〈β〉.

Theorem 6.19. Let A := {eαπi : α ∈ [ 1
3 ,

1
2 ]} ⊆ D. Then ΓA ⊆ H is home-

omorphic to the realisation of a tree X, and the action of Γ on H induces a
non-inversive action on X. The segment T corresponding to A is a lift of the
quotient; the stabilisers of the edges of T are trivial, and the stabilisers of its
vertices are 〈α〉 and 〈β〉.

Hence Γ ∼= Z/2Z ∗ Z/3Z.

Proof. By Facts 6.16 and 6.18, two images gA and hA of A do not intersect
outside the endpoints. So ΓA is the realisation of a graph X, and the quotient
and stabilisers are as stated. It remains to see that X is a tree.

Suppose X is not acyclic, let C ⊆ X be a circuit, and let S ⊆ ΓA be its
corresponding realisation. Then S bounds a compact region R in H. Now ΓA
does not cover R (because C is a Baire space), so since D is a fundamental
domain, γz ∈ R for some z in D \ A and γ ∈ Γ. The half-line L := z + iR≥0

is contained in D \ A, so since D is a fundamental domain, also γL ∩ ΓA = ∅.
So the hyperbolic half-line γL does not intersect S ⊆ ΓA, so γL ⊆ R. But then
Im(γL) is contained in the closed interval Im(R) in (0,∞), which contradicts
the description of hyperbolic lines.

Finally, X is connected by (i) in the proof of Theorem 6.2, since 〈α, β〉 =
Γ.

Applying Corollary 6.9, we deduce:

Corollary 6.20. SL2(Z) ∼= Z/4Z ∗Z/2Z Z/6Z ∼=
〈
A,B

∣∣ A4, B6, A2 = B3
〉
.

7 Bass-Serre theory

We aim to prove a common generalisation of Theorem 3.22 and Theorem 6.2,
describing the structure of a group acting on a tree in terms of a generalised
notion of fundamental group of the quotient graph, taking into account the
stabilisers of the action.
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7.1 Graphs of groups

Definition 7.1. A graph of groups (G, Y ) consists of

• a connected non-empty graph Y ;

• for each x ∈ Y 0 a group Gx;

• for each e ∈ Y 1 a group Ge and an embedding Ge → Gω(e) denoted by
a 7→ ae,

• such that Ge = Ge for all e ∈ Y 1.

(G denotes the family of groups and embeddings.)
We write Ge

e ≤ Gω(e) for the image of Ge under the corresponding embed-
ding. We call (Gx)x the vertex groups, and (Ge)e the edge groups.

Example 7.2.

• Let Y be a segment. Then (G, Y ) consists of a diagram

φ1 : Ge → Gx, φ2 : Ge → Gy

whose colimit is the corresponding amalgamated free product.

• Let Y = C1. Then (G, Y ) consists of a group Ge with two embeddings
into a group Gx.

7.2 The fundamental group of a graph of groups

We first define a handy generalisation of the group presentation notation.

Notation 7.3. Given groups (Gi)i∈I , a set X, and relators R ⊆ ∗iGi ∗ F (X),
define

〈(Gi)i∈I , X | R〉 := (∗
i
Gi ∗ F (X))/ 〈〈R〉〉 .

As usual, we allow ourselves to write s = t for the relator st−1.

Example 7.4. In this notation, Remark 5.18 becomes:

G1 ∗A G2
∼= 〈G1, G2 | φ1(a) = φ2(a) : a ∈ A〉 .

Lemma 7.5. Let (Gi)i∈I , X,R be as above, and let H be a group, θi : Gi → H
for i ∈ I homomorphisms, f : X → H a map of sets.

Then these maps respect the relations of the presentation, meaning that R is
in the kernel of the induced5 homomorphism ∗iGi ∗ F (X)→ H, if and only if
they induce a homomorphism 〈(Gi)i∈I , X | R〉 → H.

Proof. Immediate.

Definition 7.6. Let (G, Y ) be a graph of groups.

5(by the universal properties of the free product and the free group)
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• The universal group of (G, Y ) is the group

F (G, Y ) :=
〈
(Gx)x∈Y 0 , Y 1

∣∣ {eaee = ae : e ∈ Y 1, a ∈ Ge}
〉
.

WARNING: ae here is the image of a under the embedding Ge → Gω(e),
it does not mean conjugation by e! Technically this is not ambiguous,
because a itself is not an element of ∗x∈Y 0 Gx, but to avoid confusion we
will eschew the exponential notation for conjugation in this section.

• For x ∈ Y 0, we identify g ∈ Gx with its image in F (G, Y ) under the homo-
morphism of the presentation. We will see later that this homomorphism
is an embedding.

• The fundamental group of (G, Y ) with base-point x ∈ Y 0 is the
subgroup

π1(G, Y, x) := {g0e0g1 . . . en−1gn : x ∈ Y 0, (e0, . . . , en−1) is a path from x to x,

gi ∈ Gα(ei) (i < n), gn ∈ Gx} ≤ F (G, Y ).

• Let T ⊆ Y be a maximal subtree. The fundamental group of (G, Y )
with respect to T is the quotient

π1(G, Y, T ) := F (G, Y )/
〈〈
T 1
〉〉

∼=
〈
(Gx)x∈Y 0 , Y 1

∣∣ {eaee = ae : e ∈ Y 1, a ∈ Ge} ∪ T 1
〉
.

(Note that we deduce the relations e = e−1 for e ∈ Y 1 by taking a = 1 ∈
Ge, and ae = ae for e ∈ T 1.)

Example 7.7.

(i) If vertex (and hence edge) groups are all trivial, then these definitions
agree with those in Section 4.3 of the fundamental group of a graph.

(ii) If Y is a segment with Y 0 = {x, y} and Y 1 = {e, e}, then π1(G, Y, Y ) =〈
Gx, Gy

∣∣ {ae = ae : a ∈ Ge}
〉 ∼= Gx ∗Ge Gy.

(iii) Exercise: More generally, if Y is a tree, then π1(G, Y, Y ) is the colimit of
the corresponding diagram of groups and embeddings.

(iv) If Y ∼= C1 is a loop, say Y 0 = {x}, Y 1 = {e, e}, then the maximal subtree T
has no edges and π1(G, Y, T ) ∼= F (G, Y ) ∼=

〈
Gx, e

∣∣ {eaee = ae : a ∈ Ge}
〉
.

Section 7.3 below is devoted to this case.

The following theorem and its proof extend Theorem 4.19.

Theorem 7.8. For any choice of x and T , π1(G, Y, x) ∼= π1(G, Y, T ).
In particular, the fundamental group is independent (up to isomorphism) of

the choice of x or T ; we sometimes call it π1(G, Y ).

Proof. For y ∈ Y 0 = T 0, let γy := e0 . . . en−1 ∈ F (G, Y ) where (e0, . . . , en−1) is
the geodesic in T from x to y.
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We define a homomorphism f : π1(G, Y, T ) → π1(G, Y, x) by setting for
e ∈ Y 1 and g ∈ Gy (y ∈ Y 0):

f(e) := γα(e)eγ
−1
ω(e) ∈ π1(G, Y, x)

f(g) := γygγ
−1
y .

To see that this defines such a homomorphism, we must check that it respects
the relations (see Lemma 7.5) of π1(G, Y, T ). But indeed, f(e) = 1 for e ∈ T 1,
and for e ∈ Y 1 and a ∈ Ge,

f(e)f(ae)f(e) = γα(e)eγ
−1
ω(e)γω(e)a

eγ−1
ω(e)γα(e)eγ

−1
ω(e)

= γα(e)ea
eeγ−1

ω(e)

= γα(e)a
eγ−1
ω(e)

= f(ae).

Let p : π1(G, Y, x) → π1(G, Y, T ) be the restriction of the quotient map
F (G, Y )→ π1(G, Y, T ).

Then p(f(e)) = e for e ∈ Y 1, and p(f(g)) = g for g ∈ Gy (y ∈ Y 0),
so p ◦ f = id. If (e0, . . . , en−1) is a path from x to x, and gi ∈ Gα(ei) and
gi ∈ Gω(en−1), then

f(p(g0e0g1 . . . en−1gn))

= γα(e0)g0γ
−1
α(e0)γα(e0)e0γω(e0)−1γα(e1)g1 . . . en−1γ

−1
ω(en−1)γω(en−1)gnγ

−1
ω(en−1)

= g0e0g1 . . . en−1gn

(since α(e0) = x = ω(en−1) and ω(ei) = α(ei+1)).
So p and f are mutually inverse homomorphisms, so they are isomorphisms.

7.3 HNN extensions

Before proceeding with the general theory, we consider in detail the case of a
loop, (G, C1).

Definition 7.9. Let φ1, φ2 : A → G be group embeddings. The HNN-
extension of this data is the group

HNN(G,A, φ1, φ2) :=
〈
G, t

∣∣ tφ1(a)t−1 = φ2(a) : a ∈ A
〉
.

We call t the stable letter.

Remark 7.10. The HNN-extension is the fundamental group of the correspond-
ing graph of groups (G, C1).

Namely, given φ1, φ2 : A→ G, define a graph of groups (G, C1) with vertex
group Gx := G, edge group Ge := A =: Ge, and φ1, φ2 as the embeddings.

The maximal subtree T ⊆ C1 contains no edges, so

π1(G, C1, T ) ∼= F (G, C1) ∼= 〈G, e | eφ1(a)e = φ2(a) : a ∈ A〉 ∼= HNN(G,A, φ1, φ2).

We now justify calling an HNN-extension an extension.
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Lemma 7.11. Let φ1, φ2 : A → G be group embeddings. For g ∈ G, let
λG

2

g ∈ Sym(G2), λG
2

g (g1, g2) := (gg1, g2) Then there exists τ ∈ Sym(G2) such
that

τ ◦ λG
2

φ1(a) = λG
2

φ2(a) ◦ τ

for all a ∈ A.

Proof (due to P. Hall).

Claim 7.12. [G2 : φ1(A)× 1] = [G2 : φ2(A)× 1].

Proof. Considering the chains

φ1(A)× 1 ≤ G× 1 ≤ G× φ2(A) ≤ G2 ≥ G× φ1(A) ≥ G× 1 ≥ φ2(A)× 1,

and noting |φ1(A)| = |A| = |φ2(A)|, we have

[G2 : φ1(A)× 1] = [G : φ2(A)]|φ2(A)|[G : φ1(A)]

= [G : φ1(A)]|φ1(A)|[G : φ2(A)]

= [G2 : φ2(A)× 1].

7 .12

Identify G with G× 1 ≤ G2 (and hence φi(A) with φi(A)× 1).
Let Ri ⊆ G2 be representatives for the right cosets of φi(A) in G2. By the

claim, let f : R1 → R2 be a bijection.
Define τ : G2 → G2 as follows: for a ∈ A and r ∈ R1, set

τ(φ1(a)r) := φ2(a)f(r).

Then τ is a well-defined bijection, since any element of G2 has a unique expres-
sion of the form φ1(a)r, and also a unique expression of the form φ2(a)f(r).

Now for a, a′ ∈ A and r ∈ R1,

τ(φ1(a)φ1(a′)r) = τ(φ1(aa′)r) = φ2(aa′)f(r) = φ2(a)(φ2(a′)f(r)) = φ2(a)(τ(φ1(a′)r),

so
τ ◦ (φ1(a)·) = (φ2(a)·) ◦ τ

(using the notation (g·) : G2 → G2;h 7→ gh), as required.

Theorem 7.13. Let H := HNN(G,A, φ1, φ2) be an HNN-extension. Then the
homomorphism η : G→ H of the presentation is an embedding.

Proof. Let τ be given by Lemma 7.11. Then we obtain (by Lemma 7.5) a well-

defined homomorphism β : H → Sym(G2) with β(η(g)) = λG
2

g for g ∈ G and
β(t) = τ .

But then β ◦ η : G → Sym(G2) is injective (since λG
2

g 6= λG
2

h for g 6= h),
hence η is injective.

Corollary 7.14 (Higman-Neumann-Neumann 1949). Subgroups A and B of a
group G are conjugate in some supergroup of G if and only if A ∼= B.

Proof.
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⇒: Clear.

⇐: Say θ : A→ B is an isomorphism. Then B = tAt−1 in HNN(G,A, id, θ) ≥
G.

Corollary 7.15. Any group G embeds in a group G∗ in which any two elements
of the same order are conjugate. If G is countable, G∗ can also be taken to be
countable.

Proof for G countable. First note that if g1, g2 ∈ G have the same order, then
there is n ∈ N and embeddings φi : Z/nZ → G with φi(1) = gi, so g1, g2 are
conjugate in HNN(G,Z/nZ, φ1, φ2) ≥ G.

Claim 7.16. Any countable group H embeds in a countable group E(H) in
which any two elements of H of the same order are conjugate.

Proof. Let (gi, hi)i∈N enumerate the pairs of elements of H with the same order.
Let H0 := H, and recursively define Hi+1 ≥ Hi to be such that gi and hi are
conjugate in Hi+1, as above. Let E(H) :=

⋃
i∈NHi be the direct limit of this

chain. 7 .16

Now let G0 := G, and Gi+1 := E(G). Then the direct limit G∗ =
⋃
i∈NGi

is as required: if g, h ∈ G∗ have the same order, then g, h ∈ Gi for some i ∈ N,
so they are conjugate in Gi+1, and hence in G∗ ≥ Gi+1.

An alternative proof of Theorem 7.13 goes via the following normal form
theorem. We will not use it, so we omit the proof (but we obtain it below
(Remark 7.35) as a special case of a more general result).

Fact 7.17 (Britton’s Lemma). Let Si be a set of representatives for the right
cosets of φi(A) in G, with 1 ∈ Si.

Then every h ∈ H has a unique expression of the following form: h =
gtε0s0 . . . t

εn−1sn−1 where

• n ∈ N;

• g ∈ G;

• εi ∈ {1,−1};

• if εi = 1, then si ∈ S1, else si ∈ S2;

• if si = 1 and i < n− 1 then εi = εi+1.

The following proposition explains what HNN-extensions have to do with
amalgams. We will not use it.

Proposition 7.18. Let H := HNN(G,A, φ1, φ2).
Let (G, C∞) be the following graph of groups: Gi = G for i ∈ (C∞)0, and

for e ∈ (C∞)+:
Ge := A, ae := φ1(a), ae := φ2(a).

Then the action by translations Z 	 C∞ induces an action Z 	 π1(G, C∞)
with respect to which

H ∼= π1(G, C∞)o Z.
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Sketch proof. For notational purposes, replace the Gi with disjoint isomorphic

copies of G; say ψi : G
∼=−→ Gi. Let φi,1 := ψi◦φ1 : A→ Gi and φi,2 := ψi+1◦φ2 :

A→ Gi+1 be the resulting embeddings. Let θi := ψi+1 ◦ ψ−1
i : Gi

∼=−→ Gi+1.
Note θi ◦ φi,1 = φi+1,1.
Then we compute presentations as follows, with the action of Z induced by

the θi:

π1(G, C∞)o Z ∼= 〈(Gi)i∈Z | {φi,1(a) = φi,2(a) : i ∈ Z, a ∈ A}〉o Z
∼=
〈
(Gi)i∈Z, t

∣∣ {φi,1(a) = φi,2(a) : i ∈ Z, a ∈ A} ∪ {t−1git = θi(gi) : i ∈ Z, gi ∈ Gi}
〉

∼=
〈
G1, t

∣∣ {tφ1,1(a)t−1 = φ0,2(a) : a ∈ A}
〉

∼= HNN(G,A, φ1, φ2).

7.4 Inclusion of the vertex groups in the fundamental group

Theorem 7.19. Let (G, Y ) be a graph of groups, and let x ∈ Y 0. Then the
natural maps

(i) Gx → F (G, Y )

(ii) Gx → π1(G, Y, x)

(iii) Gx → π1(G, Y, T ) (for any maximal subtree T ⊆ Y )

are embeddings.

Proof. (i) Let K :=
∏
x∈Y 0 Gx. Identify each Gx with the corresponding

subgroup of K.

For e ∈ Y 1, Lemma 7.11 provides τy ∈ Sym(K2) such that

τy ◦ λK
2

ae = λK
2

ae ◦ τy

for a ∈ Ge. So we obtain a homomorphism β : F (G, Y ) → Sym(K2)

with β(g) = λK
2

g for g ∈ Gx, x ∈ Y 0, and the injectivity follows (as in
Theorem 7.13).

(ii) This follows from (i), since π1(G, Y, x) is a subgroup of F (G, Y ) containing
Gx (by taking n = 0 in the definition of π1(G, Y, x)).

(iii) This follows from (ii), since the quotient map π1(G, Y, x)→ π1(G, Y, T ) is
an isomorphism by (the proof of) Theorem 7.8.

7.5 Preview of the main results of Bass-Serre theory

We will associate to a graph of groups (G, Y ) its “universal cover”, which will
be a tree with an action of π1(G, Y ) such that the quotient is Y . The vertex
and edge groups will be recovered as stabilisers of the action.

We will then prove that any action of a group G on a tree X is of this form.
So G ∼= π1(G, G\X) where G consists of certain stabilisers. Along the way, we
will obtain a normal form theorem for fundamental groups of graphs of groups,
making this description even more useful.
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7.6 Universal covers of graphs

Definition 7.20. A morphism is locally bijective if it is both locally injective
and locally surjective, i.e. if it restricts to bijections of stars.

Notation 7.21. If p : X → Y is a morphism of graphs and x ∈ X0, y ∈ Y 0,
we write p : (X,x)→ (Y, y) to mean p(x) = y.

Lemma 7.22. Let p : (Y, y)→ (X,x) be locally bijective, and let (e0, . . . , en−1)
be a path in X from x. Then there is a unique path (the lift) (e′0, . . . , e

′
n−1)

from y with p(e′i) = ei.

Proof. Immediate, by induction on n.

Definition 7.23. Let X be a connected graph.

• A connected cover of X is a locally bijective morphism Y → X where
Y is a connected graph.

• A universal cover of X is a connected cover q : X̂ → X with the
following universal property: for any x̂ ∈ X̂, if p : (Y, y) → (X,x) is a
connected cover where x := q(x̂), then there exists a unique morphism

r : (X̂, x̂)→ (Y, y) such that p ◦ r = q.

(X̂, x̂)

!

##
q

��

(Y, y)

{{vv
vv

vv
vv

v

(X,x)

Lemma 7.24. Universal covers are unique up to unique isomorphism of pointed
graphs: let qX : (X̂, x̂) → (X,x) and qY : (Ŷ , ŷ) → (Y, y) be universal covers,
and suppose θ : (X,x) → (Y, y) is an isomorphism. Then there exists a unique

isomorphism θ̂ : (X̂, x̂)→ (Ŷ , ŷ) such that qY ◦ θ̂ = θ ◦ qX .

(X̂, x̂)
θ̂

!
//

qX

��

(Ŷ , ŷ)

qY

��

(X,x)
θ // (Y, y)

We call θ̂ the extension of θ sending x̂ to ŷ.

Proof. θ−1 ◦ qY : (Ŷ , ŷ) → (X,x) is a connected cover, so by the universal

property of qX there is a unique morphism θ̂ : (X̂, x̂) → (Ŷ , ŷ) making the
diagram commute, and it remains only to see that it is an isomorphism.

But θ ◦ qX : (X̂, x̂) → (Y, y) is also a connected cover, so by the universal

property of qY there is a (unique) morphism φ̂ : (Ŷ , ŷ) → (X̂, x̂) making the
diagram commute.
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But then

qY ◦ θ̂ ◦ φ̂ = θ ◦ qX ◦ φ̂ = θ ◦ θ−1 ◦ qY = qY ◦ idŶ : (Ŷ , ŷ)→ (Y, y),

so by the uniqueness in the universal property (with p := qY ) we have θ̂◦φ̂ = idŶ ,

and similarly φ̂ ◦ θ̂ = idX̂ .

Lemma 7.25. If q : X̂ → X is a connected cover and X̂ is a tree, then q is a
universal cover.

Proof. Let x̂ ∈ X̂0, let x := q(x̂), and let p : (Y, y) → (X,x) be a connected

cover. We construct r : (X̂, x̂)→ (Y, y) such that p ◦ r = q.

Given z ∈ X̂0, let (e0, . . . , en−1) be the geodesic from x̂ to z in X̂, and let
(by Lemma 7.22) (e′0, . . . , e

′
n−1) be the lift of (q(e0), . . . , q(en−1)) to a path in

Y from y. Then to have p ◦ r = q, we must set r(z) := ω(e′n−1) and, if n > 0,

r(en−1) := e′n−1 and r(en−1) := e′n−1.

Defining r this way, ranging over all z ∈ X̂0, gives us a unique candidate for
a morphism with p ◦ r = q, and it remains only to check that r is a morphism.
But indeed, since in the above (e0, . . . , en−2) is also a geodesic if n > 0, we have

α(r(en−1)) = α(e′n−1) = ω(e′n−2) = r(ω(en−2) = r(α(en−1)),

and we also have

ω(r(en−1)) = ω(e′n−1) = r(z) = r(ω(en−1)).

Theorem 7.26. Any connected non-empty graph X has a universal cover q :
X̂ → X.

Proof. Let x ∈ X0. Let X̂0 be the set of reduced paths in X from x, and if
p ∈ X̂0 is a path to y, set q(p) := y. Let x̂ ∈ X̂0 be the trivial reduced path
from x.

Let X̂+ be the set of non-trivial reduced paths inX from x, and set q((e0, . . . , en−1)) :=
en−1. Set ω((e0, . . . , en−1)) := (e0, . . . , en−1) and α((e0, . . . , en−1)) := (e0, . . . , en−2).

Then q is a morphism, and it is locally bijective since if p = (e0, . . . , en−1) ∈
X̂0 \ {x̂} then

starX̂(p) ={(e0, . . . , en) : en ∈ starX(q(p)) \ {en−1}}

∪ {(e0, . . . , en−1)}

maps bijectively to starX(q((e0, . . . , en−1))), and similarly starX̂(x̂) = {(e) : e ∈
starX(x)} also maps bijectively to starX(x).

Considering these formulas for the stars, we also see that the reduced paths
in X̂ from x̂ are precisely those of the form

((e0), (e0, e1), . . . , (e0, . . . , en−1))

where (e0, . . . , en−1) is a reduced path in X. So X̂ is connected and has no

non-trivial reduced paths from x̂ to x̂, and it follows that X̂ is a tree.
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7.7 Universal covers of graphs of groups

We say a graph of groups (G, Y ) is oriented if Y is oriented, i.e. Y has a
specified orientation Y + ⊆ Y 1.

Definition 7.27. Let (G, Y ) be an oriented graph of groups, and let T ⊆ Y
be a maximal subtree (with the induced orientation T+ = T 1 ∩ Y +). Let
π := π1(G, Y, T ).

For e ∈ Y +, define
πe := Gee ≤ Gα(e) ≤ π.

The universal cover of (G, Y ) with respect to T is the oriented graph Ỹ defined
as follows,

Ỹ 0 :=
⋃̇

x∈Y 0
π/Gx

Ỹ + :=
⋃̇

e∈Y +
π/πe

α(gπe) := gGα(e)

ω(gπe) := geGω(e),

with the obvious action of π, namely h ∗ (gGx) := hgGx and h ∗ (gπe) := hgπe.
We will actually mostly use the following notation instead. For x ∈ Y 0, set

x̃ := Gx ∈ Ỹ 0, and for e ∈ Y +, set ẽ := πe ∈ Ỹ +. So then

Ỹ 0 =
⋃̇

x∈Y 0
πx̃

Ỹ + =
⋃̇

e∈Y +
πẽ

α(gẽ) = gα̃(e)

ω(gẽ) = geω̃(e).

We define a morphism p : Ỹ → Y by p(gx̃) := x and p(gẽ) := e.

We also define a lift T̃ ⊆ Ỹ of T :

T̃ 0 = {x̃ : x ∈ T 0}

T̃+ = {ẽ : e ∈ T+}.

Lemma 7.28.

(i) The graph Ỹ is well-defined.

(ii) The stabiliser of x̃ is Gx, and the stabiliser of ẽ is πe (for x ∈ Y 0 and
e ∈ Y +).

(iii) p : Ỹ → Y is a morphism.

(iv) Y is isomorphic to π\Ỹ via x 7→ πx̃ and e 7→ πẽ, and p agrees with the
quotient map.

(v) T̃ is a lift of T along p.
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Proof. (i) We check that α and ω are well-defined. If a ∈ πe ≤ Gα(e), then

α(aπe) = aGα(e) = Gα(e) = α(πe),

and
ω(aπe) = aeGω(e) = eeaeGω(e) = eGω(e) = ω(πe)

since eae ∈ Gω(e).

(ii) Immediate.

(iii)

p(α(gẽ)) = p(gα̃(e)) = α(e) = α(p(gẽ)).

p(ω(gẽ)) = p(geω̃(e)) = ω(e) = ω(p(gẽ)).

(iv) Immediate.

(v) T̃ is a subgraph of Ỹ , since for e ∈ T+ we have α(ẽ) = α̃(e) and ω(ẽ) =

eω̃(e) = ω̃(e). Then it is a lift, since p|T̃ is a bijection.

Example 7.29. If Y is a segment, then Ỹ is the graph defined in Theorem 6.5.

Remark 7.30. Typically, a universal cover of (G, Y ) is not a universal cover of
the graph Y , since p is typically not locally injective.

However, consider the case that G consists of trivial groups, so π = π(G, Y, T ) =
π(Y, T ) ∼= F (Y + \ T+). Then p is locally bijective, since p is a bijection on any

starỸ (gx̃) = {gẽ : α(e) = x} ∪ {ge−1ẽ : ω(e) = x}

(here we use that since Gx = 1, we have α(hẽ) = gα̃(e) ⇔ h = g and ω(hẽ) =

gω̃(e)⇔ h = ge−1).

We will see below that Ỹ is a tree, so p : Ỹ → Y is the universal cover of
the graph Y . (We could also prove this directly, giving an alternative proof of
Theorem 7.26.)

Lemma 7.31. Let (G, Y ) be an oriented graph of groups, let T ⊆ Y be a
maximal subtree, and let T+ := T 1 ∩ Y +. Then

π1(G, Y, T ) ∼=
〈
(Gx)x∈Y 0 , Y +

∣∣ {eaee−1 = ae : e ∈ Y +, a ∈ Ge} ∪ T+
〉
.

Proof. We obtain this from the original presentation by using the relations e =
e−1 to delete the generators {e : e ∈ Y +}.

Theorem 7.32. Let Ỹ be the universal cover of an oriented graph of groups
(G, Y ) with respect to a maximal subtree T .

Then Ỹ is a tree.

Proof.
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• Ỹ is connected: First, let W ⊆ Ỹ be the smallest subgraph with W+ =

{ẽ : e ∈ Y +}. Then W is connected, since α(ẽ) = α̃(e) ∈ T̃ 0 for ẽ ∈ Y +,

and T̃ is connected.

Let S := Y + ∪
⋃
x∈Y 0 Gx ⊆ π. If s ∈ S, then W 0 ∩ sW 0 6= ∅: indeed, if

g ∈ Gx then x̃ ∈W 0∩gW 0, and if e ∈ Y + then ω(ẽ) = eω̃(e) ∈W 0∩eW 0.
So W ∪ sW is connected, and hence also W ∪ s−1W = s−1(W ∪ sW ) is
connected. It follows that for any

∏
i<n si ∈ π, where si ∈ S ∪ S−1,

W ∪ s0W ∪ . . .∪
∏
i<n siW = W ∪ . . .∪

∏
0<i<n)∪ s0( is connected, since

each adjacent subunion
∏
i<k siW ∪

∏
i≤k siW =

∏
i<k si(W ∪ skW ) is

connected. Since 〈S〉 = G and πW = Ỹ , it follows that Ỹ is connected.

• Ỹ is acyclic (proof due to Chiswell): Let q : Ŷ → Ỹ be the universal

cover of the graph Ỹ (which exists by Theorem 7.26). We will conclude

by embedding Ỹ into the tree Ŷ .

Let T̂ be a lift of T̃ along q (which exists by Lemma 2.27). For x ∈ Y 0 =

T 0, let x̂ ∈ T̂ be the element with q(x̂) = x̃. For e ∈ Y + \ T+, let ê ∈ Ŷ 1

be the unique edge with q(ê) = ẽ and α(ê) = α̂(e).

For g ∈ π, let λg ∈ Aut(Ỹ ) be given by the action of π on Ỹ defined above.

Now we extend this action to an action ∗ of π on Ŷ .

For g ∈ Gx, where x ∈ Y 0, we have gx̃ = x̃, so by Lemma 7.24 let
(g∗) : Ŷ → Ŷ be the unique extension of λg : Ỹ → Ỹ such that g ∗ x̂ = x̂.
This does define an action of Gx, i.e. (gh∗) = (g∗) ◦ (h∗) and (1∗) = id,
by the uniqueness.

Claim 7.33. Let e ∈ Y + and g ∈ πe ≤ Gα(e). Then g ∗ ê = ê.

Proof. q(g∗ ê) = gẽ = ẽ = q(ê), and α(g∗ ê) = g∗α(ê) = g∗ α̂(e) = α̂(e) =
α(ê). So since q is locally injective, g ∗ ê = ê.

For e ∈ Y + \T+, we have eω̃(e) = ω(ẽ), so let (e∗) : Ŷ → Ŷ be the unique

extension of λe : Ỹ → Ỹ such that e ∗ ω̂(e) = ω(ê).

We claim that these definitions respect the relations of

π = π1(G, Y, T ) ∼=
〈
(Gx)x∈Y 0 , Y +

∣∣ {eaee−1 = ae : e ∈ Y +, a ∈ Ge} ∪ T+
〉
,

and hence (via Lemma 7.5) define an action ∗ of π on Ŷ (i.e. a homomor-

phism π → Aut(Ŷ )). Indeed,

e ∗ (ae ∗ (e−1 ∗ ω(ê))) = e ∗ (ae ∗ ω̂(e)) = e ∗ ω̂(e) = ω(ê),

and also ae∗ω(ê) = ω(ae∗ ê) = ω(ê) by the Claim. So since λeaee−1 = λae ,
we conclude (e∗) ◦ (ae∗) ◦ (e−1∗) = (ae∗) by uniqueness of extensions.

Now since (g∗) : Ŷ → Ŷ extends λg : Ỹ → Ỹ for g a generator, this also
holds for any g ∈ π. So we have:

q(g ∗ x̂) = gx̃, q(g ∗ ê) = gẽ. (*)
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Now define r : Ỹ → Ŷ by r(gx̃) := g ∗ x̂ and r(gẽ) := g ∗ ê; this is well-
defined, since Gx stabilises x̂ and (by the Claim) πe stabilises ê. Then r
is a graph morphism, since

α(r(gẽ)) = α(g ∗ ê) = g ∗ α(ê) = g ∗ α̂(e) = r(gα̃(e)) = r(α(gẽ))

and

ω(r(gẽ)) = ω(g ∗ ê) = g ∗ ω(ê) = ge ∗ ω̂(e) = r(geω̃(e)) = r(ω(gẽ)).

By (*), q ◦ r = idỸ , so r is an embedding as required.

We can deduce a normal form theorem for the fundamental group.

Corollary 7.34. Let (G, Y ) be a graph of groups, and let x ∈ Y 0.

(i) If (e0, . . . , en−1) is a path from x to x, and gi ∈ Gα(ei) (for i < n) and
gn ∈ Gx, and g0 6= 1 if n = 0, and

∀i < n− 1. (ei+1 = ei → gi+1 /∈ Gei
ei),

then in π1(G, Y, x) we have

g0e0g1e1 . . . gn−1en−1gn 6= 1.

(ii) For e ∈ Y 1, let Se be a set of representatives for the right cosets of Ge
e

in Gω(e), with 1 ∈ Se. Then every element h ∈ π1(G, Y, x) can be written
uniquely in the form h = ge0s0 . . . en−1sn−1 where (e0, . . . , en−1) is a path
from x to x, g ∈ Gx, si ∈ Sei , and

∀i < n− 1. (ei+1 = ei → si 6= 1)

(i.e. there is no subword of the form ei1ei). We call this the normal form
for h.

Proof. (i) In this proof, we have to consider negative edges. For e ∈ Y +,
define ẽ := ẽ, so then this equation holds for any e ∈ Y 1.

For n = 0, the result follows from the map Gx → π1(G, Y, x) being an
embedding (Theorem 7.19(ii)). So suppose n > 0.

Let xi := α(ei) and xn := x = x0. Let Pi := g0e0 . . . gi−1ei−1x̃i for i ≤ n.
For i < n, let

fi :=

{
g0e0 . . . gi−1ei−1giẽi if ei ∈ Y +

g0e0 . . . gi−1ei−1gieiẽi if ei ∈ Y −
.

Then α(fi) = Pi and ω(fi) = Pi+1: indeed, if ei ∈ Y + then

α(fi) = g0e0 . . . gi−1ei−1gix̃i = Pi

and
ω(fi) = g0e0 . . . gi−1ei−1gieix̃i+1 = Pi+1,
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and if ei ∈ Y − then

α(fi) = ω(fi)

= ω(g0e0 . . . gi−1ei−1gieiẽi)

= g0e0 . . . gi−1ei−1gieieix̃i

= g0e0 . . . gi−1ei−1gix̃i

= Pi

and

ω(fi) = α(fi)

= α(g0e0 . . . gi−1ei−1gieiẽi)

= g0e0 . . . gi−1ei−1gieix̃i+1

= Pi+1.

Suppose (f0, . . . , fn−1) is not reduced, say fi+1 = fi. Then ei+1 = ei.
Suppose ei ∈ Y +, so ei+1 ∈ Y −. Then from fi+1 = fi we obtain

eigi+1ei+1ẽi+1 = ẽi = ẽi+1,

so eigi+1ei+1 stabilises ẽi+1 and hence ẽi, so eigi+1ei+1 ∈ πei = Gei
ei , so

gi+1 ∈ eiGei
eiei = Gei

ei , contrary to assumption.

So ei ∈ Y −. But then eigi+1ẽi+1 = eiẽi = eiẽi+1, so gi+1 ∈ πei+1
= Gei

ei ,
again contrary to assumption.

So (f0, . . . , fn−1) is a non-trivial reduced path from P0 to Pn, so since Ỹ
is a tree,

g0e0 . . . gn−1en−1gnx̃ = Pn 6= P0 = x̃,

so g0e0 . . . gn−1en−1gn 6= 1.

(ii) First we observe that every h ∈ π1(G, Y, x) can be written in normal form.
Indeed, say h = g0e0g1 . . . en−1gn. Write gn = g′sn−1 where sn−1 ∈ Sen−1

and g′ ∈ Gen−1

en−1 . Let g′′ := en−1g
′e−1
n−1 ∈ Gen−1

en−1 ≤ Gα(en−1),
and let g′n−1 := gn−1g

′′ ∈ Gα(en−1). Then h = g0e0g1 . . . g
′
n−1en−1sn−1.

Continuing in this way, we obtain an expression h = g0e0s0 . . . en−1sn−1.
Iteratively deleting any subwords ei1ei, we obtain a normal form.

For the uniqueness, define a “partial normal form” to be an expression
ge0s0 . . . en−1sn−1 which can be completed to a normal form ge0s0 . . . en−1sn−1 . . . en′−1sn′−1

for some n′ ≥ n. In other words, it satisfies all the conditions of a normal
form, except that the path is not required to be to x.

Suppose ge0s0 . . . en−1sn−1 = g′e′0s
′
0 . . . em−1sm−1 are both partial normal

forms, with equality for the product computed in F (G, Y ). We show that
the forms are the same (i.e. n = m, g = g′, gi = g′i, si = s′i) by induction
on n+m.

First suppose n,m > 0. Then ge0s0 . . . en−1sn−1s
′
m−1

−1
e′n−1 . . . s

′
0
−1
e′0g
′−1

=

1, so by (i) we must have en−1 = e′m−1 = e′m−1 and sn−1s
′
m−1

−1 ∈
Gen−1

en−1 . Since sn−1, s
′
m−1 ∈ Sen−1

, this implies sn−1 = s′m−1. We
then conclude by the inductive hypothesis.
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Now suppose m = 0 or n = 0; by symmetry, we can assume m = 0. Then
ge0s0 . . . en−1sn−1g

′−1
= 1, which contradicts (i) unless also n = 0 and

g = g′, as required.

Remark 7.35. Considering the cases where Y is a segment or a loop, we recover
the normal form theorem for amalgamated free products (Theorem 5.19) and
Britton’s Lemma (Fact 7.17) on normal forms for HNN-extensions.

7.8 Structure theorem

The universal cover construction associates to a graph of groups a non-inversive
action of its fundamental group on a tree. Now we obtain a converse, showing
that any non-inversive action on a tree is of this form.

Let G 	 X be a non-inversive action of a group on a connected non-empty
graph. Let Y := G\X , and let p : X → Y be the quotient map. Let Y + ⊆ Y 1

be an orientation. Let T ⊆ Y be a maximal (oriented) subtree, and let T̂ ⊆ X

be a lift. (So T̂ is a tree of representatives.) Define lifts x̂ and ê of the vertices
and positive edges of Y as follows:

• For x ∈ T 0 = Y 0, let x̂ ∈ T̂ 0 be the unique element with p(x̂) = x.

• For e ∈ T+, let ê ∈ T̂ 1 be the unique element with p(ê) = e.

• For e ∈ Y + \ T+, arbitrarily choose ê ∈ X1 such that p(ê) = e and

α(ê) = α̂(e).

Then for e ∈ Y +, we have p(ω(ê)) = ω(p(ê)) = ω(e) = p(ω̂(e)), so say γe ∈ G is
such that

ω(ê) = γeω̂(e),

and γe = 1 if e ∈ T+.

Definition 7.36. The quotient graph of groups of G 	 X (with respect to
the above choices) is the oriented graph of groups G\\X = (G, Y ) with Gx := Gx̂
and Ge := Gê for x ∈ Y 0 and e ∈ Y +, where the right hand sides denote the
stabilisers, and with embeddings a 7→ ae := γ−1

e aγe and a 7→ ae := a for e ∈ Y +

and a ∈ Ge.
(These embeddings are into the right groups, since

ae = a ∈ Gα(ê) = G
α̂(e)

= Gα(e) = Gω(e)

and
ae = γ−1

e aγe ∈ γ−1
e Gω(ê)γe = Gγ−1

e ω(ê) = G
ω̂(e)

= Gω(e).)

Remark 7.37. In the case that G\X is a tree, the vertex and edge groups of G\\X
are just the vertex and edge stabilisers of a tree of representatives, with the
inclusions as the embeddings.

Let (G, Y ) = G\\X and π := π1(G, Y, T ).
The inclusions Gx ↪−→ G and maps e 7→ γe induce a homomorphism

φ : π → G;
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indeed, γe = 1 if e ∈ T+, and γea
eγ−1
e = ae.

Let Ỹ be the universal cover of (G, Y ) with respect to T . Define

ψ : Ỹ → X

ψ(gx̃) := φ(g)x̂

ψ(gẽ) := φ(g)ê.

This is well-defined, since φ(stab(x̃)) = φ(Gx) = Gx = Gx̂ and φ(stab(ẽ)) =
φ(πe) = φ(Gee) = Gee = Ge = Gê (using that φ is the identity on the vertex
groups).

ψ is a graph morphism, since

ψ(α(gẽ)) = ψ(gα̃(e)) = φ(g)α̂(e) = φ(g)α(ê) = α(φ(g)ê) = α(ψ(gẽ)),

ψ(ω(gẽ)) = ψ(geω̃(e) = φ(ge)ω̂(e) = φ(g)γeω̂(e) = φ(g)ω(ê) = ω(φ(g)ω(ê)) = ω(ψ(gê)).

Lemma 7.38. φ : π → G and ψ : Ỹ → X are surjections.

Proof. Let H := φ(π) ≤ G. Let Ŷ ⊆ X be the smallest subgraph with Ŷ + =

{ê : e ∈ Y +}. Then GŶ = X, and Ŷ ⊆ ψ(Ỹ ). Also Ŷ 0 ⊆ HT̂ 0, since for

e ∈ Y + \ T+ we have ω(ê) = γeω̂(e) ∈ HT̂ 0. Since also T̂ 0 ⊆ Ŷ 0, we have

HŶ 0 = HT̂ 0.

Claim 7.39. If g ∈ G and x, gx ∈ T̂ 0, then g ∈ H.

Proof. Since Gx ∩ T̂ 0 = {x}, we have gx = x, so g ∈ Gx ≤ H. 7 .39

Claim 7.40. HŶ = X.

Proof. Since X is connected, it suffices to show that if f ∈ X1 and α(f) ∈
HŶ 0 = HT̂ 0, then f ∈ HŶ . Let f be such. Translating by an element of H,
we may assume α(f) ∈ T̂ 0. Say f = gê or f = gê, and we conclude by showing
g ∈ H.

Suppose first f = gê, so α(gê) ∈ T̂ 0. Then gα̂(e) = α(gê) ∈ T̂ 0, so g ∈
G
α̂(e)
≤ H by Claim 7.39.

Otherwise, f = gê, so ω(gê) ∈ T̂ 0. Then gγeω̂(e) = ω(gê) ∈ T̂ 0 so gγe ∈
G
ω̂(e)
≤ H by Claim 7.39, so g ∈ H.

So HT̂ 0 = HŶ 0 = X0.
So if g ∈ G and x ∈ T̂ 0, then hgx ∈ T̂ 0 for some h ∈ H, so hg ∈ H by

Claim 7.39, so g ∈ H.
Hence H = G, and φ is surjective. Then also ψ is surjective, since Y =

G\X .

Theorem 7.41. Suppose X is a tree. Then φ : π → G and ψ : Ỹ → X are
isomorphisms.

Proof. Given the previous lemma, it remains to show that φ and ψ are injective.

Claim 7.42. ψ is locally injective.
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Proof. Suppose ψ(gẽ) = ψ(g′ẽ′), i.e. φ(g)ê = φ(g′)ê′. Then ê = ê′, so e = e′,
and φ(g−1g′) ∈ Ge.

We must show that if either α(gẽ) = α(g′ẽ) or ω(gẽ) = ω(g′ẽ), then gẽ = g′ẽ′,
i.e. g−1g′ ∈ stab(ẽ) = πe = Gee = Ge.

First suppose α(gẽ) = α(g′ẽ). Then g−1g′ ∈ stab(α(ẽ)) = stab(α̃(e)) =
Gα(e). Then since φ|Gα(e)

= id, we have g−1g′ = φ(g−1g′) ∈ Ge as required.

Next suppose ω(gẽ) = ω(g′ẽ). Then g−1g′ ∈ stab(ω(ẽ)) = stab(eω̃(e)) =
eGω(e)e

−1. But φ is injective on Gω(e) and hence also on eGω(e)e
−1, which

contains eGeee
−1 = Gee = Ge 3 φ(g−1g′). So φ is injective on a set containing

both g−1g′ and φ(g−1g′), but φ(φ(g−1g′)) = φ(g−1g′) since φ|Gα(e)
= id, so we

deduce g−1g′ = φ(g−1g′) ∈ Ge as required. 7 .42

Since X is a tree, injectivity of ψ follows by Lemma 2.25.
Finally, suppose g ∈ ker(φ) \ 1. Let x ∈ Y 0. Then g /∈ Gx ≤ π, since φ is

an embedding on Gx by definition, so gx̃ 6= x̃. But ψ(gx̃) = φ(g)x̂ = x̂ = ψ(x̃),
contradicting injectivity of ψ.

Remark 7.43. In particular, the choices in the definition of G\\X do not affect
the isomorphism type of its fundamental group, nor the isomorphism type of its
universal cover.

Remark 7.44. With a little more argument, one can strengthen Theorem 7.41
to: X is a tree ⇔ φ is surjective ⇔ ψ is surjective.

Combining Theorem 7.41 with Theorem 7.32, we obtain what we might call
the Fundamental Theorem of Bass-Serre Theory:

Corollary 7.45. The natural action of the fundamental group of a graph of
groups on its universal cover is a non-inversive action of a group of a tree, and
conversely every non-inversive action G 	 X of a group on a tree is isomor-
phic to the action of the fundamental group of G\\X on its universal cover; in
particular,

G ∼= π1(G\\X).

Remark 7.46. Applying this in the case that G\X is a segment, we recover
Theorems 6.2 and 6.5.

Applying it in the case that G acts freely on a tree, we recover Theorem 3.22.

Specialising to the case that G\X ∼= C1, we obtain:

Corollary 7.47. Let H := HNN(G,A, φ1, φ2) ≥ G. Then the following graph

Ỹ is a tree, and H\Ỹ ∼= C1 for the natural action of H.

Ỹ 0 = H/G

Ỹ + = H/φ1(A)

α(hφ1(A)) = hG

ω(hφ1(A)) = htG.

Conversely, if H 	 X is a non-inversive action of a group on a tree with

H\X ∼= C1, then H ∼= HNN(G,A, φ1, φ2) where: G = Hx where x ∈ X0 is
arbitrary, A = He ≤ G where e ∈ X1 is arbitrary such that α(e) = x, and
φ1(a) = γ−1

e aγe where γe ∈ H is arbitrary such that ω(e) = γex, and φ2 = id.
Note φ2(a) = γeφ1(a)γ−1

e for a ∈ A, so we can identify γe with the stable
letter of the HNN extension.
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Remark 7.48. The universal cover of a graph of groups is also known as its
Bass-Serre tree.

Corollary 7.49. Let G 	 X be a non-inversive action of a group on a tree.
Then π1(G\X) ∼= G/

〈
Gx : x ∈ X0

〉
.

Proof. By Corollary 7.45, we may identify G with π1(G\\X). Then {Gx : x ∈
X0} is the set of conjugates in G of the vertex groups of G\\X . So setting
Y := G\X , taking an orientation Y + and a maximal oriented subtree T ,

G/ 〈Gx : x ∈ X0〉 = π1(G\\X)/
〈〈
{Gy : y ∈ Y 0}

〉〉
∼=
〈
(Gy)y∈Y 0 , Y +

∣∣ {eaee−1 = ae : e ∈ Y +, a ∈ Ge}, T+, (Gy)y∈Y 0

〉
∼=
〈
Y +

∣∣ T+
〉

∼= F (Y + \ T+)

which is isomorphic to π1(Y ) by Remark 4.18.

7.9 Subgroups of free products

Lemma 7.50. Let (G, X) be a graph of groups where each edge group is trivial.
Then π1(G, X) ∼= π1(X) ∗ ∗x∈X0 Gx.

Proof. Let X+ ⊆ X be an orientation, and T ⊆ X a maximal oriented subtree.
Then by Lemma 7.31,

π1(G, X, T ) =
〈
(Gx)x∈X0 , X+

∣∣ T+
〉 ∼= F (X+ \ T+) ∗ ∗

x∈X0
Gx,

and F (X+ \ T+) ∼= π1(X) by Remark 4.18.

Lemma 7.51. Let H,K ≤ G be subgroups of a group G, and let X ⊆ G be a
subset. The following are equivalent:

(i) X ⊆ G is a system of representatives for the double cosets H\G/K ,
i.e. each double coset HgK = {hgk : h ∈ H, k ∈ K} ⊆ G contains exactly
one element of X.

(ii) The quotient map induces a bijection X → X/K ⊆ G/K, and X/K con-
tains exactly one element of each orbit of the action of H on G/K by left
multiplication.

Proof. The union of the cosets in the orbit under H of a coset gK is precisely
the double coset HgK.

So: (i) ⇔ each H-orbit of G/K has union containing exactly one element of
X ⇔ X → X/K is a bijection and each H-orbit of G/K contains exactly one
element of X/K ⇔ (ii).

Theorem 7.52 (Kurosh 1934). Let H be a subgroup of a free product G =
G1 ∗G2.

Then there exists a free group F and systems of representatives Xi ⊆ G for
the double cosets H\G/Gi such that

H ∼= F ∗ ( ∗
x∈X1

H ∩ xG1x
−1) ∗ ( ∗

x∈X2

H ∩ xG2x
−1).
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Proof. Let (G, Y ) be the graph of groups where Y is a segment, the edge group

is trivial, and the vertex groups are G1 and G2 respectively. Let Ỹ be its
universal cover, i.e. the tree of Theorem 6.5. Then the action of π1(G, Y ) = G

on Ỹ induces a non-inversive action of H, and H ∼= π1(H\\Ỹ ) by Corollary 7.45.

Now the edges of Ỹ have trivial stabiliser under the action of G, since the
edge group of (G, Y ) is trivial. Hence the edge groups of H\\Ỹ are trivial. So by
Lemma 7.50,

H ∼= π1(H\\Ỹ ) ∼= π1(H\Ỹ ) ∗ ∗
z∈
(
H\Ỹ

)0
Hz,

where Hz is the vertex group in H\\Ỹ ; by definition, Hz = stabH(ẑ) where

ẑ ∈ (Ỹ )0 is a lift.

Now (Ỹ )0 = G/G1∪̇G/G2, so each ẑ is of the form xGi, and then

Hz = stabH(ẑ) = H∩stabG(ẑ) = H∩stabG(xGi) = H∩xstabG(Gi)x
−1 = H∩xGix−1.

Finally, {ẑ : z ∈ (H\Ỹ )0} = X1/G1∪̇X2/G2 where Xi/Gi contains one
element in each orbit of the left action of H on G/Gi, and Xi → Xi/Gi is
a bijection. By Lemma 7.51, Xi is a system of representatives for the double
cosets H\G/Gi , as required.

Remark 7.53. Essentially the same proof yields the following generalisation to
amalgamated products: if H ≤ G = G1 ∗A G2 and H ∩ gAg−1 = 1 for each
g ∈ G, then H has the same form as in Theorem 7.52.

8 Amalgams and fixed points

8.1 FA groups

Definition 8.1. Let G 	 X be an action of a group on a graph. Then XG is the
subgraph of X fixed by all elements of G, (XG)i := {x ∈ Xi : ∀g ∈ G. g∗x = x}
(i = 0, 1).

Remark 8.2. If X is a tree and XG is non-empty, then XG is a tree. Indeed, if
x, y ∈ (XG)0 then the geodesic from x to y is contained in XG.

Definition 8.3. Let G be a group.

• G is FA if for any non-inversive action of G on a tree X, XG is non-empty.

• G is a non-trivial amalgam if G = G1 ∗A G2 with A ≤ G1, G2 ≤ G and
G1, G2 6= G.

Lemma 8.4. Let T be a finite tree.

(i) Suppose |T 0| > 1. Then there exists a subtree T ′ ⊆ T , e ∈ T 1, and y ∈ T 0,
such that T = T ′∪̇{e, e, y}. (Such a y is called a “terminal vertex” of T .)

(ii) If T ′ ⊆ T is a subtree, then there exists a chain of subtrees T ′ = T0 ⊆
T1 ⊆ . . . ⊆ Tn = T such that each Ti+1 is of the form Ti∪̇{ei, ei, yi}.

Proof. Exercise. For (i), consider a geodesic of maximal length. For (ii), con-
sider a geodesic from a vertex of T ′ to a vertex outside T ′.
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Theorem 8.5. Let G be a countable group. Then G is FA if and only if it
satisfies the following three conditions:

(i) G is not a non-trivial amalgam.

(ii) No quotient of G is isomorphic to Z.

(iii) G is finitely generated.

Proof.

⇒ Suppose G is FA. We show (i)-(iii).

(i) Suppose G ∼= G1 ∗A G2, and let X be the corresponding Bass-Serre
tree (as in Theorem 6.5). By FA, some vertex of X has stabiliser G.
But the stabiliser of any vertex is a conjugate of either G1 or G2, so
G = G1 or G = G2.

(ii) Suppose θ : G� Z. Define an action of G on C∞ by g∗n := θ(g)+n.
Then ZG = ∅, contradicting FA.

(iii) Since G is countable, it is the union of a chain G0 ⊆ G1 ⊆ . . . of sub-
groups (indeed, ifG = {gi : i ∈ ω}, we can takeGi := 〈{gj : j ≤ i}〉 ≤
G).

Let X be the graph:

X0 :=
⋃̇

i
G/Gi

X+ :=
⋃̇

i
G/Gi

α(gGi) := gGi

ω(gGi) := gGi+1

Then X is a tree. Indeed, if C is a circuit in X, then say c = gGi ∈ C0

with i minimal, then the two edges from c in C must be in X+ and so
must both be equal to gGi, contradicting the definition of a circuit.
So X is acyclic by Lemma 6.4. It is connected since given two vertices
gGi and g′Gi′ , there is j > i, i′ such that g, g′ ∈ Gj , and then each
of gGi and g′Gi′ is connected by a path to Gj ∈ G/Gj .
Let G 	 X be the obvious left action. By FA, say gGi ∈ XG. Then
Gi = G, so G is finitely generated.

⇐ Suppose G satisfies (i)-(iii) and acts non-inversively on a tree X, and
suppose XG = ∅.
By Corollary 7.49, F := π1(G\X) is a quotient of G, so by (ii) F has no
quotient isomorphic to Z. But F is free, so this implies F is trivial. So
T := G\X is a tree.

Let (G, T ) := G\\X . For T ′ ⊆ T a subtree, let GT ′ := π1(G|T ′ , T ′) be the
fundamental group of the subtree of groups, and identify G with GT .

Claim 8.6.

(i) Let T ′ ⊆ T be a finite subtree. The natural homomorphism GT ′ →
GT is an inclusion GT ′ ≤ GT .
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(ii) G = GT =
⋃
T ′⊆T finite subtreeGT ′ .

Proof.

(i) It suffices to see this in the case that T is finite, since if x ∈ GT ′

satisfies a relation in GT = 〈X | R〉, i.e. x ∈
〈
RGT

〉
, then x ∈

〈
RG0

0

〉
for some finite R0, G0, which already appear in the presentation of
GT ′′ for some finite T ′′.

So by induction and Lemma 8.4(ii), it suffices to consider the case
T = T ′∪̇{e, e, y}. But then GT = GT ′ ∗Ge Gy, and the result follows
from Theorem 5.19(i) (or Theorem 7.19).

(ii) This follows from (i), since GT is certainly generated by the GT ′ since
they contain all the vertex groups.

8 .6

So since G is finitely generated by (iii), there is a minimal finite subtree
T ′ ⊆ T such that G = GT ′ .

If |(T ′)0| = 1, then G = Gy where y ∈ (T ′)0, contradicting XG = ∅.
So |(T ′)0| > 1, and then by Lemma 8.4(i), T ′ = T ′′∪̇{e, e, y} for some
subtree T ′′ ⊆ T ′, and then G = GT ′ = GT ′′ ∗Ge Gy. But G 6= GT ′′ by the
minimality of T ′, and G 6= Gy since XG = ∅, contradicting (i).

Lemma 8.7. Let H be FA, and suppose H ≤ G1∗AG2 =: G (with A ≤ G1, G2 ≤
G). Then H is contained in some conjugate in G of G1 or of G2.

Proof. The induced action of H on the Bass-Serre tree of G = G1 ∗A G2 has a
fixed point, i.e. H is contained in the stabiliser for the action of G of that point,
which is a conjugate of G1 or of G2.

8.2 Automorphisms of trees

Lemma 8.8. Let X be a tree, let x ∈ X, and let T ⊆ X be a subtree. Then
there is a unique path of minimal length from x to a vertex of T .

This path is called the geodesic from x to T .

Proof. Exercise.

Let σ be a non-inversive automorphism of a tree X.

Definition 8.9.

• A fixed point of σ is an x ∈ X0 with σ(x) = x.

• Define Xσ := X〈σ〉.

Remark 8.10. σ has a fixed point if and only if Xσ is non-empty, in which case
it is a tree by Remark 8.2.

Definition 8.11.
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• A straight path in a graph X is a subgraph isomorphic to C∞.

• A translation by m ∈ N on a straight path T is an automorphism which
is induced via an isomorphism T ∼= C∞ by the automorphism x 7→ x+m
of C∞. It is non-trivial if m 6= 0.

Notation 8.12. If p = (e0, . . . , en−1) and q = (f0, . . . , fm−1) are paths in a
graph with ω(en−1) = α(f0), their concatenation is the path

p_q := (e0, . . . , en−1, f0, . . . , fm−1).

Lemma 8.13. Suppose σ has a fixed point.

(i) Let x ∈ X0. Let p = (e0, . . . , en−1) be the geodesic from x to Xσ. Then
the geodesic from x to σ(x) is p_σ(p) = (e0, . . . , en−1, σ(en−1), . . . , σ(e0)).

(ii) σ does not act by non-trivial translation on any straight path in X.

Proof.

(i) If n = 0, then x = σ(x) and the result is immediate. So suppose n > 0.

Suppose σ(en−1) = en−1. Then ω(en−2) = α(en−1) ∈ Xσ, contradicting
the minimality of p. So p_σ(p) is reduced, so is the geodesic as required.

(ii) Suppose T is a straight path on which σ acts by translation by m 6= 0.
Let x ∈ T 0. Then σ(x) ∈ T 0, so the geodesic from x to σ(x) lies within
T . But by (i), the geodesic passes through a vertex of Xσ. Hence Tσ 6= ∅,
contradicting m 6= 0.

Lemma 8.14. Suppose σ has no fixed point.
Then there is a unique straight path T ⊆ X on which σ acts by a non-trivial

translation.

Proof.

• Existence: Let m := minx∈X0 d(x, σ(x)). Since σ has no fixed point,
m > 0. Let x ∈ X0 with d(x, σ(x)) = m. Let p = (e0, . . . , em−1) be the
geodesic from x to σ(x).

Claim 8.15. p_σ(p) is a reduced path from x to σ2(x).

Proof. Else, em−1 = σ(e0). Then m 6= 1 since σ acts non-inversively, so
m > 1, and σ(ω(e0)) = α(em−1), so d(ω(e0), σ(ω(e0))) = m − 2 < m,
contradicting the minimality of m. 8 .15

Hence σn(p)_σn+1(p) is reduced for any n ∈ Z, and it follows that

. . ._σ−1(p)_p_σ(p)_σ2(p)_ . . .

forms a straight path T on which σ acts as translation by m.
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• Uniqueness: Suppose T, T ′ ⊆ X are straight paths on which σ acts as
translation by m,m′ respectively, with m,m′ > 0.

Let x ∈ T 0, and let p = (e0, . . . , en−1) be the geodesic from x to T ′. Let
q be the geodesic from ω(en−1) ∈ T ′ to σ(ω(en−1)). Then q is a path
within T ′ of length m′ > 0. Therefore p_q_σ(p) is a reduced path from
x to σ(x), so it is the geodesic from x to σ(x). Hence m = d(x, σ(x)) =
2 length(p) + m′ ≥ m′. Then by symmetry, m = m′, and p is trivial, so
x ∈ (T ′)0.

So T ⊆ T ′, and by symmetry, T = T ′.

Putting the previous two lemmas together, we conclude:

Theorem 8.16. Let σ be a non-inversive automorphism of a tree X. The
following are equivalent:

(i) Xσ = ∅.

(ii) There is a straight path T ⊆ X on which σ acts by a non-trivial translation.

(iii) There is a unique straight path T ⊆ X on which σ acts by a non-trivial
translation.

Proof.

• (i) ⇒ (iii): Lemma 8.14.

• (iii) ⇒ (ii): Immediate.

• ¬(i) ⇒ ¬(ii): Lemma 8.13(ii).

8.3 Nilpotent groups acting on trees

Recall that a group G is nilpotent if it has a finite central series, i.e. a sequence

1 = G0 E . . . E Gn = G

with Gi E G and with each Gi+1/Gi central in G/Gi.
We omit the proof of the following fact; it will be obvious for the groups we

apply it to in Theorem 8.23.

Fact 8.17. Let G be a finitely generated nilpotent group.
Then there exists a sequence 1 = G0 E . . . E Gn = G with each Gi+1/Gi

cyclic.
(A group with this property is called “polycyclic”.)

Proof idea. First show that every subgroup of G is finitely generated (this is
not so easy). Then proceed by induction on the length of a central series and
use that any finitely generated abelian group is a product of cyclic groups.

A full proof can be found in [Rob96, 5.2.18]
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We will also use the easily verified fact that any subgroup and any homo-
morphic image of a nilpotent group is nilpotent.

Theorem 8.18. Let G be a finitely generated nilpotent group acting non-inversively
on a tree X. Then

(i) XG = ∅ if and only if there exists a unique straight path T ⊆ X such that
the action restricts to a non-trivial action of G on T by translations (i.e.
σ|T is a translation for any σ ∈ G, and is a non-trivial translation for
some σ ∈ G).

(ii) If G = 〈g1, . . . , gn〉 and each gi has a fixed point, then XG 6= ∅.

(iii) Any element g ∈ G′ of the commutator subgroup of G has a fixed point.

Proof.

(i)

⇐: Say σ|T is a non-trivial translation. Then σ has no fixed point by
Theorem 8.16, so XG = ∅.

⇒: First, note that it suffices to show existence of T , since uniqueness
follows from the uniqueness in Theorem 8.16; indeed, if T and T ′ are
straight paths on which G acts non-trivially by translations, and if
g ∈ G acts non-trivially on T , then Xg = ∅ by Theorem 8.16(ii)⇒(i),
so g also acts non-trivially on T ′, so T = T ′ by Theorem 8.16(ii)⇒(iii).

By Fact 8.17, we have a sequence 1 = G0 E . . . E Gn = G with
Gi+1/Gi cyclic. We have n > 0 since XG = ∅. We prove the result
by induction on n for any nilpotent group admitting such a sequence.
So inductively, we may assume the result for H := Gn−1 (which is
nilpotent, since it is a subgroup of the nilpotent group G).

First suppose XH 6= ∅. Say G/H = 〈σH〉. Then the action of σ
restricts to an action on XH : indeed, if x ∈ XH and h ∈ H, then
hσx = σhσx = σx since H E G, and similarly for σ−1. So σ acts
non-inversively on the tree XH without fixed points (since XG = ∅),
so by Theorem 8.16, σ acts by non-trivial translations on a straight
path T ⊆ XH ⊆ X. Then G acts by translations on T , since if
g ∈ G then g = σnh for some n ∈ Z and h ∈ H, and then for
t ∈ T , gt = σnht = σnt since t ∈ XH . So G acts non-trivially by
translations on T , as required.

Finally, suppose XH = ∅. By the inductive hypothesis, let T ⊆ X
be the unique straight path on which H acts non-trivially by trans-
lations.

Claim 8.19. T is G-invariant.

Proof. Let g ∈ G. Then H also acts non-trivially by translations on
gT , since the action of h ∈ H on gT is induced via the isomorphism
g : T → gT by the action of hg ∈ H on T (since hgt = ghgt). So
T = gT by uniqueness of T . 8 .19
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Then θ(g) := (g∗)|T defines a homomorphism θ : G→ Aut(T ). Iden-
tify Aut(T ) ∼= Aut(C∞) with the infinite dihedral group Z o Z/2Z,
where Z acts by translations. Now Z o Z/2Z is centreless and hence
not nilpotent, so is not a homomorphic image of a nilpotent group,
and any infinite subgroup of Z o Z/2Z is either a subgroup of Z or
is isomorphic to Z o Z/2Z. So θ(G) ≤ Z ≤ Aut(T ) is a non-trivial
group of translations, as required.

(ii) Suppose XG = ∅ and let T be as in (i). Then some gi acts by non-trivial
translation on T , contradicting Theorem 8.16.

(iii) If XG 6= ∅ then certainly g has a fixed point. Otherwise, let T be as in (i),
identify the group of translations of T with Z, and let θ : G → Z be the
homomorphism g 7→ (g∗)|T . Then θ(G′) ≤ Z′ = 1, so G′ acts trivially on
T .

8.4 Intersecting subtrees

Lemma 8.20. Let T1, T2 be subtrees of a tree X. Then there is a unique path
p of minimal length amongst the paths from a vertex of T1 to a vertex of T2,
called the geodesic from T1 to T2.

If T1 ∩ T2 = ∅, then any subtree T ⊆ X with T ∩ Ti 6= ∅ for i = 1, 2 contains
p.

Proof. Exercise.

Lemma 8.21. Let X1, . . . , Xm be subtrees of a tree X. Suppose Xi ∩Xj 6= ∅
for all i, j. Then X1 ∩ . . . ∩Xm 6= ∅.

Proof. By induction, we have Y := X1 ∩ . . . ∩Xm−1 6= ∅. Then Y is a subtree
(as in the proof of Lemma 2.36). Suppose for a contradiction that Y ∩ Xm =⋂
i≤mXi = ∅. Let p be the geodesic from Y to Xm. For i < m, Xi ∩ Y = Y 6=
∅ 6= Xi ∩Xm, so p is contained in Xi by Lemma 8.20. Hence p is contained in
Y . But p contains a vertex of Xm, contradicting Y ∩Xm = ∅.

8.5 SL3(Z)
For 1 ≤ i, j ≤ 3, let eij ∈M3(Z) be the elementary 3x3 matrix

(eij)i′j′ = δ(i,j)(i′,j′) =

{
1 (i, j) = (i′, j′)

0 else

(so eijekl = δjkeil), and define the following elements zi ∈ SL3(Z) for i ∈ Z/6Z:

z0 := 1 + e12 z1 := 1 + e13 z2 := 1 + e23

z3 := 1 + e21 z4 := 1 + e31 z5 := 1 + e32.

Fact 8.22. SL3(Z) = 〈z0, . . . , z5〉.

Theorem 8.23. SL3(Z) is FA.
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Proof. Let i ∈ Z/6Z and let Bi := 〈zi−1, zi+1〉 ≤ SL3(Z). Note [zi−1, zi+1] ∈
{zi, z−1

i } and [zi, zi+1] = 1; e.g.

[z0, z2] =(1− e12)(1− e23)(1 + e12)(1 + e23) =

(1− e12 − e23 + e13)(1 + e12 + e23 + e13) = 1− e13 + 2e13 = 1 + e13 = z1

[z1, z3] =(1− e13)(1− e21)(1 + e13)(1 + e21) =

(1− e13 − e21)(1 + e13 + e21) = 1− e23 = z−1
2

[z1, z2] =(1− e13)(1− e23)(1 + e13)(1 + e23) = 1.

So Bi is nilpotent with central series 1 E (Bi)
′ = Z(Bi) = 〈zi〉 E Bi. (Note

that Bi is easily seen to be polycyclic, as a special case of Fact 8.17.) (Bi is
isomorphic to the discrete Heisenberg group H3(Z).)

Consider a non-inversive action of SL3(Z) on a tree X.
By Theorem 8.18(iii) applied to each Bi, each zi has a fixed point. So each

Bi is generated by elements with fixed points, so XBi 6= ∅ by Theorem 8.18(ii).
Now the subtrees Xz1 , Xz3 , Xz5 ⊆ X have non-trivial pairwise intersections,

since Xz1 ∩Xz3 ⊇ XB2 6= ∅ and similarly for the other pairs. So Y := Xz1 ∩
Xz3 ∩Xz5 6= ∅ by Lemma 8.21. But 〈z1, z3, z5〉 = 〈z0, z1, z2, z3, z4, z5〉 = SL3(Z)
by considering commutators, so XSL3(Z) = Y 6= ∅ as required.

Applying Theorem 8.5, we deduce:

Corollary 8.24. SL3(Z) is not a non-trivial amalgam.
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