Geometric Group Theory I
 Exercise Sheet 5

Exercise 1. Let $H:=\left\langle\left\langle a^{2}, b\right\rangle\right\rangle \leq F(a, b):=F(\{a, b\})$ be the normal subgroup generated by a^{2} and b in the free group $F(a, b)$. Let $T:=\Gamma(F(a, b),\{a, b\})$ be the Cayley graph. Consider the natural action $H \circlearrowleft T$ of H on T.
a) Draw the quotient graph $H T^{T}$ and calculate $B_{1}\left(H^{T}\right)$.
b) - Find a tree T_{r} of representatives of $H \circlearrowleft T$ which includes the vertex 1 .

- Mark the orbit $G T_{r}$ of T_{r} under the action of H in the following subgraph Z, namely mark the intersection $Y:=G T_{r} \cap Z$.
- Draw Z / Y, i.e. the graph obtained by contracting the trees in Y.

$$
\text { Subgraph } Z \text { of } T \text {. }
$$

c) What is the rank of H ? Find a basis of them.

Hint: Consider $d:=[F(a, b): H]$ and use Schreier's formula, indeed you could read the set of generators from Z / Y.
d) How many index 2 subgroups of $F(a, b)$ are there? Find a basis for each of them.

Hint: Consider a homomorphism $f: F(a, b) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ and list all possible images of a, b.

Exercise 2. Show that the following group is trivial:

$$
\left\langle a, b \mid a b a^{-1}=b^{2}, b a b^{-1}=a^{2}\right\rangle
$$

(2 Points)

Exercise 3.

a) Let G be a group generated by t_{1}, \ldots, t_{n-1} satisfying the following relations (\star) :

$$
\begin{array}{r}
t_{1}^{2}=\cdots=t_{n-1}^{2}=1 ;\left(t_{1} t_{2}\right)^{3}=\cdots=\left(t_{n-2} t_{n-1}\right)^{3}=1 ; \\
t_{i} t_{j}=t_{j} t_{i} \text { for } 1 \leq i, j \leq n-1 \text { and } j \geq i+2 .
\end{array}
$$

Let H be the subgroup of G generated by t_{2}, \ldots, t_{n-1}. Show that the index $[G: H]$ is at most n and conclude that $|G| \leq n$!.
Hint: Show that the following collection of cosets $H, H t_{1}, H t_{1} t_{2}, \ldots, H t_{1} \cdots t_{n-1}$ is closed under right multiplication by t_{1}, \ldots, t_{n-1}.
b) Show that $S_{n} \cong\left\langle t_{1}, \ldots, t_{n-1} \mid(\star)\right\rangle$.

Exercise 4. Let X, Y be connected graphs and $x \in X^{0}, y \in Y^{0}$. Suppose $f: X \rightarrow Y$ is a morphism with $f(x)=y$.
a) Show that the map f_{*} defined as $f_{*}\left(\prod_{i<n} e_{i}\right):=\prod_{i<n} f\left(e_{i}\right)$ for any path $\left(e_{0}, \ldots, e_{n-1}\right)$ from x to x, is a homomorphism from $\pi_{1}(X, x)$ to $\pi_{1}(Y, y)$.
b) Prove or give counterexamples of the following statements:
i) If f is surjective, then f_{*} is surjective;
ii) If f is surjective, then f_{*} is injective;
iii) If f is injective, then f_{*} is injective;
iv) If f is injective, then f_{*} is surjective.

Submission by Wednesday morning 11:00, 16.11.2022, in Briefkasten 161.
The exercise sheets should be solved and submitted in pairs.
Tutorial: Fridays 12:00-14:00, in room SR1d.
If you have questions about the problem sheet, please write to Tingxiang: tingxiangzou@gmail.com.

