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The content of this talk is adapted from K. TENT & M. ZIEGLER, A
Course in Model Theory.

conventions We fix for all the following a language £, a countable complete
theory 7" with infinite models, and a monster model € .
We recall some results about indiscernibles:

Definition 1 (Indiscernible). Let I be an infinite linear order and A a set of
parameters. A sequence (a;);c; of tuples is said to be A-indiscernible if for
every L(A)-formula ¢ and every i; < -+ <, j1 < -+ <j, €1:
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Definition 2 (Ehrenfeucht-Mostowski type). Let I be an infinite linear or-
der, A a set of parameters, and (a;);cr a sequence of tuples. The Ehrenfeucht-
Mostowski type EM((a;);er/A) is the set of all L(A)-formula ¢ such that for
alliy < - <ip, €1, Eplay, - ,a;)

n/*

Lemma 3 (Standard Lemma). Let A be a set of parameters, (a;)ic; an

infinite sequence of tuples and J a linear order. Then there is a sequence
indexed by J of A-indiscernibles realising EM((a;)icr/A).

Definition 4 (Dividing). We say ¢(z,b) k-divides over A if there is a se-
quence (b;);en of realisations of tp(b/A) such that {@(x,b;) | i € IN} is
k-inconsistent. We also say that ¢ divides over A if there is a k such that ¢
k-divides over A. Finally, we say that a set of formulas 7(x) divides over A
if w(x) implies a formula which divides over A.
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If ¢ divides over A, then {¢} divides over A. Conversely, if ¢(z, b) implies
a formula ¢ (x, ") which divides, then by adding dummy variables we have :

F vx¢($7 ba b/) - ¢($, b7 b/)

Since ¥ (x, b, b') divides over A, there is a sequence (b;, b;);c realising tp(bb'/A)
and such that {¢(z,b;,0}) | i € N} is k-inconsistent, so {¢(x,b;,0;) | i € N}
is k-inconsistent.

So ¢ divides over A if and only if {¢} divides over A. It follows also that a
set w(x) of formulas divides over A if and only if there is a finite conjunction

of formulas of 7(x) which divides over A.

Ezxamples.

e The formula x = b divides over A if and only if there is infinitely many
different elements realising tp(b/A), which means b ¢ acl(A).

e If a set 7(x) of formulas is consistent and defined over acl(A), then it
doesn’t divide over A.

e In T = Tpro, the formula by < z < by 2-divides over the empty set.
The set {x > a | a € Q} does not divide over the empty set.

Lemma 5. A set w(x,b) divides over A if and only if there is a sequence
(bi)ien of A-indiscernibles with tp(by/A) = tp(b/A) and | J,cy 7(2, b;) is in-

consistent.

Proof. Let (b;);en be a sequence of A-indiscernibles with tp(by/A) = tp(b/A)
and (J,c 7(2, b;) inconsistent. So, there is a conjunction ¢(z,b) of formulas
from 7(z,b) such that 3(z) = {¢(z,b;) | i € N} is inconsistent. By com-
pactness there is a finite inconsistent subset of ¥(x) of size k, but since the
b; are indiscernibles, ¥(z) is k-inconsistent.

Conversely, if w(x,b) divides over A, then there is a conjunction ¢(x,b)
of formulas from 7(z, b) which divides over A. So, there is a sequence (b;);en
of realisations of tp(b/A) such that {p(x,b;) | i € N} is k-inconsistent. By
lemma 3] there is a sequence (¢;);ew A-indiscernible with the same property;
Uien (2, ¢;) is then inconsistent. O

Corollary 6. The following are equivalent:

1) tp(a/Ab) does not divide over A.



2) For any A-indiscernible sequence (b;);cr containing b, there exists some
a’ with tp(a’/Ab) = tp(a/Ab) and such that (b;);cr is Ad’-indiscernible.

2') For any A-indiscernible sequence (b;);cr containing b, there ezists a se-
quence (b});er with tp((b))icr/Ab) = tp((b;)icr/Ab) and such that (b});cr

1s Aa-indiscernible.

2*) For any A-indiscernible sequence (b;)ic; containing b, there exists a
sequence (bf)ie; and some a* with tp((b})er/Ab) = tp((b;)icr/Ab),
tp(a*/Ab) = tp(a/Ab) and such that (b})ic; is Aa*-indiscernible.

Proof. Tt is immediate to see that and that . For the con-
verse, since tp(a*/Ab) = tp(a/Ab), we can take an automorphism o fixing
Ab pointwise and taking a* to a. Then (0})ien = (0(b}))ien suits for
Choosing instead an automorphism taking each b} to b; gives us

Let (b;)icr be an infinite sequence of A-indiscernibles with b;, =
b. Let p(z,y) = tp(ab/A) and consider p(z,b) = tp(a/Ab). Since it doesn’t
divide, by lemma 5| J,; p(w,b;) is consistent. Let a* be a realisation. By
lemma [3] there is (b});e; Aa*-indiscernible realising EM((b;);er/Aa*). Since
= p(a*,b;,), there is an automorphism o fixing Aa* pointwise and taking b;_
to b. Then holds with (b;k)lej = (O'(b;))le]

Rl Let p(z,y) = tp(ab/A) and let (b;);en be A-indiscernible with
tp(bo/A) = tp(b/A). By [2)| there is o’ with tp(a’/A) = tp(a/A) such that
(bi)iew is Aa’ indiscernible. Since F p(a’,b), a’ realises | J,.; p(z, b;), therefore
p(z,b) = tp(a/Ab) doesn’t divide over A. O

Proposition 7 (Transitivity). If tp(a/B) does not divide over A C B and
tp(c/Ba) does not divide over Aa, then tp(ac/B) does not divide over A.

Proof. Let b € B be a tuple and (b;);c; a sequence of A-indiscernibles con-
taining b. tp(a/B) doesn’t divide over A, so tp(a/Ab) doesn’t divide over
A, and by corollary [f] there is a sequence (b});e; Aa-indiscernible such that
tp((0))icr/Ab) = tp((b;)ier/Ab). Now tp(c/Ba) doesn’t divide over A, so
there is a sequence (b);e; Aac-indiscernible such that tp((b);er/Aab) =
tp((0})icr/Aab). This means that tp(ac/Ab) does not divide over A for any
b, therefore tp(ac/B) does not divide over A. O

Definition 8 (Forking]). A set of formulas 7(x) forks over A if m(z) implies
a disjunction ;. ¢;(x,b;), with each of the ¢;(x,b;) dividing over A.
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If 7(z) divides over A, then it forks over A. The converse is not true in
general.

Example. We define the cyclical order in Q by:
cyc(a,b,c) & (a<b<c)V(b<c<a)V(c<a<b)

Then, in T' = Th(Q, cyc), the unique type over the empty set forks but does
not divide over the empty set.

By compactness, we have the following:

Proposition 9 (non-forking closeness). If p € S(B) forks over A, there is
some @(x) € p such that any q € S(B) containing ¢ forks over A.

Corollary 10 (finite character). If p € S(B) forks over A, then there is a
finite By C B such that p|ap, forks over A.

Lemma 11. If 7 is finitely satisfiable in A, then it doesn’t fork over A.

Proof. If  is finitely satisfiable in A and implies a disjunction V1<j<n ©i(z, b)),
one of the ¢;(x,b;) must be realised by some a € A. Now for any sequence
(b;)iew of realisations of tp(b;/A), a realises {¢(z,b;) | ¢ € IN}, which is
therefore consistent. ]

Lemma 12. Let A C B and let m be a partial type over B. If m does not
fork over A, then it can be extended to a p € S(B) which does not fork over
A.

Proof. Let p(x) be a maximal non-forking over A set of £(B)-formulas con-
taining 7(x). p is consistent, and complete: if ¢ is a £(B)-formula such that
both ¢ and —¢ don’t belong to p, then both pU{¢} and pU {—p} fork over
A, but then p itself forks over A. n



