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Source This talk contains material from classical textbooks, mostly from
chapters 6,7 and 8 of Tent-Ziegler and chapter 6 and 8 from Marker.

Conventions We write lowercase letters for single elements or finite tuples.
We write “subset” for subsets — proper or not. We write “/A” for symmetric
difference of formula: @A = (¢ V) A =(p A1). We write “LJ” for disjoint
unions of formulas, so ¢ LI is the formula ¢ V 9, but it is only defined on
disjoint formulas. We write we for many cups of coffee, the induced lack of
sleep and I

Morley Rank

Ordinal-valued notion of dimension for formulas or definable sets.

Definition and basic properties

In a given structure M, we define by induction:

e MR () > 0 iff ¢ is consistent;

e MR(¢) = a + 1 iff there are (p;);, disjoint, each implying ¢, and
each of MR > «;
>

e MRu(p) = A iff MR(p) < a for all a < A.

Note that ¢ and ¢; are allowed to have different parameters.
Given a complete theory T', we define MRy (¢(z,a)) to be MRy (¢) for
M E T Nyp-saturated and containing a.



Lemma 1. MRy (p) is well defined, ie, it does not depend on the choice of
an Ng-saturated model.

Proof.

o If M is Rp-saturated and tp,,(a) = tpr(b), then MRy (p(z,a)) =
MR (s (2, b)).

— If MR=0 it’s clear, we proceed by induction.

— Anytime p(z,a) = ¢1(r,c1)U- - Upn(x, ¢,), by saturation we can
find dy,- - -, d,, such that tp,,(a,¢) = tp (b, d).

o If M < N are both Ng-saturated, then MR () = MRy ().

— If MR=0 it’s clear, we proceed by induction.
— MR () < MRar(¢p) is clear.

— In the other direction, we might have parameters from N, but we
can replace them by parameters from M by saturation.

Ny
2
e Let M FE T containing parameters of . Then: M v jj\/’ N

M
O

In the following, we assume that structures are at least Ny-saturated —
equivalentely, we work in a monster.

It is easy to check that MR(p V) = max(MR(¢), MR(¢))). By definition,
we have MR(¢) = 0 iff (M) is finite (and non-empty). If ¢ is inconsistent,
we write MR(¢) = —oo. Since the Morley rank of ¢(x,a) only depends on
tp(a) and there is no gap in the values of MR, we have:

Proposition 2. If MR(p) > (2"*, then MR(p) = a for all a; we write
MR(y) = oo.

Definition 3. We define an equivalence relation ¢ ~, 1 by MR(pAvy) < a.
A formula of MR « is a-strongly-minimal if for any ¢, either ¢ A ¢ or
e N\ is of MR < a.
If a formula is of MR «, the maximal amount of definable subsets of ¢ (M)
of MR « is called the Morley Degree of ¢.

Proposition 4. MD(p) is well-defined (if MR(p) is not £00): there is a
decomposition ¢ = @1 U --- U@y, with all ¢; a-strongly-minimal, unique up
to ~q.



Proof. 1t’s clear that if such a decomposition doesn’t exist, ¢ has MR > «a.
To prove uniqueness, take ¢ a-strongly-minimal implying ¢; then there is
exactly one ; such that ¢; A9 is of rank «, and thus ¢ ~, ;. ]

a-strongly-minimal < MR = o, MD =1

e MR(p) = 0= MD(yp) = |p(M)]

O-strongly-minimal < |p(M)| =1

1-strongly-minimal < strongly-minimal as usual

Definition 5. For a type p, we define:

MR(p) = min(MR(p)), and MD(p) = min (MD(¢))

pep p€p,MR(p)=MR(p)
We also write MR(A/B) = MR(tp(A/B)) and similarly for MD.
We have MR(A/B) =0 iff A C acl(B).

In strongly minimal theories

Recall that acl is a pregeometry on strongly-minimal theories:

e AC B= acl(A) C acl(B)

A C acl(A)

acl(acl(A)) = acl(A)

aCl<A) - UAOCA finite aCl(A(])
bacl(Ac) \ acl(A) = ¢ € acl(Ab)

The last property, called Exchange, might fail outside of strongly minimal
theories; the four others always hold.

Recall that a basis for A over B is a subset A’ such that acl(A'B) =
acl(AB) and for any X C A’, acl(XB) C acl(AB). dim(A/B) is the cardinal
of a basis of A over B; this is well defined.

We write A |, B if dim(a/C) = dim(a/BC) for all finite a € A.

Theorem 6. In a strongly minimal theory, we have[]

MR(ay, -, a,/B) = dim(ay,- - -, a,/B)

*here a; is a point, not a tuple.




For n = 1, either dim(a/B) = 0 < a € acl(B) < MR(a/B) = 0, or
dim(a/B) =1 < a ¢ acl(B) & MR(a/B) > 1. By strong minimality, any
formula with 1 free variable is of MR< 1, so we are done.

The strategy for arbitrary n is the same: first we deal with the case
dim < n, then with the case dim = n.

Lemma 7. Ifb € acl(Ca), MR(b/C) < MR(a/C).
Proof. We work by induction on a« = MR(a/C). If a = 0, it is clear that
MR(b/C) = 0.

We have MR(b/Ca) = 0, let d = MD(b/Ca). We take ¢, (x) € tp(a/C)
of MR «, and we take ¥y(a,y) € tp(b/Ca) of MR 0 and MD d. We may
assume M E Vz35% oy (z,y). Now let ¢(z,y) = 11 (x) A o(x,y). We have:

MR(3yp(z,y)) = a and |p(d’, M)| < d.

Consider x(y) = Jzp(x,y). We will prove MR(x) < «; since x € tp(b/A),
this proves MR(b/A) < a.

Let x; be an infinite family defining disjoint subsets of x, say with param-
eters in C'. Let ¢;(z) = 3x(e(x,y), x(y)). ¢; implies Jyp(z,y), and since
any d + 1 of the 1; are disjoint, at least one of them must have MR < a.

Take any b realizing x;(y). Then by definition of y there is @’ realizing
w(a',b'). So b € acl(C'a’) and MR(a’/C") < MR(¢;) < a, so by induction,
MR(b'/C") < a. Because this is true for any b', we conclude MR(x;) < . [

This lemma allows us to only consider the case where the a; are indepen-
dent over B, that is, dim(ay, -, a,/B) = n.

Proposition 8. In a strong minimal theory, the type of n independent ele-
ments over a given subset is uniquely determined.

Proof. In dim 1 it’s clear and has been done last week, prove the rest by
induction. O]

Thus any formula on n free variables must have MR< n, so in particular,

MR(ay, -+, a,/B) < n.

Remains to prove that if dim(ay, -, a,/B) = n, MR(ay, -+, a,/B) = n.
MR(ay,- -+, a,/Bay) =n — 1.

Let w € tp(ala' ' '7an/B)’ X(f7 (11) = w(xlf ' ',ZL’n) ATy = ay has MR>
n — 1.

If tp(a/B) = tp(a;/B), MR(x(Z,a)) =n — 1.

{x(Z,a) | a =p a1} is a disjoint family of subsets of 1, so MR(¢)) > n.
Dthm



Wanna fork?

From now on T is w-stable; this is equivalent (in a countable language) to
saying that the Morley Rank is never co.

Definition 9.
e We write A |, B when MR(a/C) = MR(a/BC) for any finite a € A.
e We say that tp(a/BC) forks over C' when a { , B.

e For A C B, p € S,(A), g € S,(B), we say that the extension p C ¢ is
forking if MR(p) > MR(q), or equivalently if ¢ forks over A.

e p € S,(C) is called stationary if for any C' C D, p has a unique non-
forking extension to D.

One can define forking in arbitrary theories but who has time for that?
Certainly not us.

Lemma 10. If p € S,,(A) has MD d and A C M, then there are exactly d
non-forking extension of p in S,(M), and they are of MD 1.

Proof. 1f ¢ € prealizes MR and MD of ¢ and ¢ = - - -Uypy, then complete
types over M containing p U {¢;} are exactly the non-forking extensions of
p. ]

Proposition 11. If M is k-saturated and k-homogeneous, any type forking
over a subset A smaller than k has at least k many conjugates over A.

No proof given.

Theorem 12 (Characterization of non-forking). T' is stable if and only if
there is a special class of extensions of n-types, which we denote by p C q,
with the following properties:

1. (Invariance) C is invariant under Aut(M),

2. (Local character) There is a cardinal k such that for q € S,(M) there
is Co C C of cardinality at most k such that q|Cy C q.

3. (Weak Boundedness) For all p € S,(A) there is a cardinal u such that
p has, for any A C B, at most u extensions q € S,(B) with p C q.

If T satisfies in addition:



4. (Existence) For allp € S, (A) and A C B, there is q € S, (B) such that
pL g,

5. (Transitivity) p C q C r implies p C T,
6. (Weak Monotonicity) p C r and p C q C r implies p C ¢,
then T coincides with the non-forking relation.

If we have time, we will prove that in stable theories, those conditions
characterize non-forking.

Canonical bases

Definition 13.

e o € M is called a canonical parameter for a definable set D C M if
for any o € Aut(M), o(a) = a iff D is invariant under o.

e A€ M is called a canonical base for a type p if any o € Aut(M) fixes
A pointwise iff p is invariant under o.

Lemma 14. Any definable set has an imaginary canonical parameter, that
is, a canonical parameter in M.

Proof. Write X = p(M,a). Define x ~ y by (M, z) = ¢(M,y). (a/ ~) €
M€ is a canonical parameter for X. O

Note that the canonical parameter lies in dcl®(a), also, EI is equivalent
to saying each set has a (real) canonical parameter.

Lemma 15. Any definable type has an imaginary canonical base.
Proof.
e B,={be M| p(x,b) € p} is definable by assumption
e op=piff 0(B,) = B, for all ¢
e Since B, is definable, it has a canonical parameter a, € M
o A={a, |y € L} is an imaginary canonical base for p.
O

Proposition 16. In an w-stable theory, for any formulas p(x,a) of MR «
and Y (z,y), the set {b € M | MR(¢(z,a) A(x,b)) = a} is a-definable.
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Proof. Write x(z,b) for ¢(x,a) A(x,b).
e We might assume MD(yp) = 1.

o If MR(x(z,¢)) = «, there is a finite X, C x(M,¢) such that if X, C
(M, b), MR(x(z,b)) = a.

— Chose ag € x(M,c). If we can’t find by such that ay € (M, by)
and MR(x(z,bo)) < «, then we can take X, = ao. Otherwise we
take such a by and continue by induction.

— We have MR(x(z,¢c) A A\, "¢ (z,b;)) = a, so we can take apiy
in there. Once again, if X. = {ao, --,a,} works, we're done;
otherwise there is b, such that {ag, -+, a,41} C ¥(x,b,y1) and
MR(x(x, bpy1)) < .

— It has to stop because ¢(a;, b;) holds iff i < j.

Let Y = {X C ¢(M,a) finite | X C (M, b) = MR(x(z,b)) = a} and
let Ox(y) = N,ex ¥(2,y). Now MR(x(z,0)) = a iff \/ .y Ox(D).

We have the same result for —.

We move to a pair (M, M*) where M < M* and M* is M-saturated.
We consider ¢ on M and 1 on M*.

By saturation we can finitize the disjunction, thus we have definability.

If o(a) = a, MR(x(x,b)) = MR(x(z,0(b))); thus we have a-definability.
[
Let ¢ € p realize MR and MD of p, then p = {¢ | MR(p A ¥) = a}, thus:

Corollary 17. In an w-stable theory, any p € S, (A) is definable over a finite
Ag C A, and thus has a finite imaginary canonical base in dcl®/(Ap).

Theorem 18. In an w-stable theory, if p € S, (A) and MD(p) = 1, then any
non-forking extension q of p is A-definable.
If MD(p) > 1, there is a € acl®(A) such that q is Aa-definable.

Proof. In degree 1, we have ¢ = {¢(z,b) | MR(p AY) = a,b € B} € S,(B),
so we might use the same definition than for p, needing only parameters
appearing in .

In degree d > 1:



e Fix M containing B, ¢ (hence p) has a non-forking extension ¢* to M.
q* is of MD 1.

e Take p(z) € p and ¢(x,b) € ¢* realizing MR and MD of p and ¢*. We
can assume ¢ implies .

o X ={c|MR(¢(z,c)) = a and Vd, if MR(¢)(z,d)) = «, then either
MR(¢(z,c) A Y(z,d)) < aor MR(¢(z,c) A ~)(x,d)) < a} is A-
definable.

o c ~ : MR(¢Y(x,c) ANp(x,d)) = a is a definable equivalence relation
on X.

o X/~ <d.
e For any ¢ ~ b, ¢ = {x | MR(x A¥(z,c) = a)}, and ¢ is Ac-definable.

e Because ~ has finitely many classes and is A-def, a = (b/ ~) € acl®/(A),
and ¢ is Aa-def.

]

Corollary 19. In an w-stable theory, if p € S, (M) doesn’t fork over A, then
p has a canonical base in acl®(A). If p|A is stationary, p has a canonical
base in dcl®(A).

Proof. Fix ¢(x,a) realizing MR(p), let X = {b| ¢(z,b) € p}. X is acl(A)*
(resp. A)- definable and op = p iff 0(X) = X. Now X has a canonical
parameter in dcl®(acl®(A)) (resp. dcl®/(A)). O

If p has a canonical base A, we write cb(p) = dcl®(A). This is well-
defined.

Corollary 20. In an w-stable theory, p € S,(M) doesn’t fork over A iff
cb(p) C acl®(A).

Reformulating, a |, B iff p = tp(a/BC) doesn’t fork over C'iff cb(p) C
acl®(C).

Corollary 21. If A = acl®(A), p € S,(A) is stationary.

Proof. Let ¢ realise MR and MD of p. If MD=1, we’re done. If not, I can
write p(z) = ¢1(x,b1) U+ Ug(x,by). Let ¢; € S,,(M) be the non-forking
extension of p containing ¢;. cb(g;) C acl®/(A) = A, so we might assume
b; € acl®)(A). But then ¢(x,b;) or —p(z, b;) must be in p already; so we must
have d = 1. []



Proving non-forking characterization

Let C check the conditions of theorem (12| and take p € S,,(A), ¢ € S,(B),
pCq IfpCq:

e By 3| (Boundedness) there is o such that p has at most p C-extensions
to S,(B).

e By proposition we can take B C M such that any r € S, (M)
forking over A has at least u conjugates over A.

e By [ (Existence) and [f| (Transitivity) we can find p C r € S,(M).

. By (Invariance) p C 7’ for any conjugate; since there can only be < p,
they are non-forking.

The other direction needs the full power or canonical bases.

Lemma 22. In an w-stable theory, for p € S,(A) and k > maz(|T|,|A]),
in any M strongly k-homogeneous, all non-forking extensions of p to M are
conjugate.

Proof. Let q1, g2 be extensions of p.

e In M® there is an A-automorphism of acl®(A) sending ¢, | acl*/(A) to
q2| acl®(A).

e By strong homogeneity, the reduct of this to the base sort extends
to an A-automorphism o of M, which in turns corresponds to an A-
automorphism o°? of M*9.

e Now 0%¢; is a non-forking extension of go| acl®’(A); but by stationarity
this must be ¢s.

]

Now we take p C ¢ non-forking:

e Take M strongly k-homogeneous for a large enough x, take ¢ C r €
Sn(M) non-forking and p C ' € S,(M).

We know p C 7’ is non-forking.

By the previous lemma r and 7’ are conjugate, so p C 7.

By [6] (Monotonicity) we have p C q.



