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Elekes-Szabd

» Suppose f € C[X, Y, Z] is an irreducible polynomial in which
each of X, Y, Z appears.

» Set V= {(x,y,2) € C2: f(x,y,z) = 0}.

» Consider intersections with finite “grids” A x B x C with
Al,1B,|Cl <N eN.

» We have

VN (Ax BxC)| < O(N?).
» Say V “admits no powersaving” if for no € > 0 do we have
VN (Ax BxC)| <O(N>7¢).

» Example: if f(x,y,z) = z— x — y then arithmetic progressions
A = B = C :=[-m, m] witness that V admits no powersaving.

Theorem (Elekes-Szab 2012)

V' admits no powersaving iff V is in co-ordinatewise algebraic
correspondence with the graph of addition on a 1-dimensional
algebraic group.



Pseudofinite dimension
Hrushovski “On Pseudo-Finite Dimensions” (2013)
» U C P(w) non-principal ultrafilter.
» K:=CHY.
» X C K"isinternal if X = [[_,;, Xs for some X5 C C", and
pseudofinite if each X; is finite.
For X internal, set |X| := lims_ | Xs| € R¥ U {o0}.
|X| € RY if X is pseudofinite, | X| := oo else.
Fix ¢ € RY with ¢ > R.
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Definition (Coarse pseudofinite dimension )

For X internal,
8(X) = 8¢(X) := st (logg(]X])) € R U {—o00, 00}
» Note that internality is closed under cardinality quantifiers: if

R C K" x K™is internal and o € RY, then
{y € K":35,x.R(X,y)} is internal.
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Lint: predicate for each internal X C K".

K = K monster model in Lint.

For ¢ € Lint, set d(¢) := d(o(K)).

d has a unique extension to (Lint)x such that

tp(b) — 8(¢(X, b))

Sy(0) = {—oc0} URU {oo}
is well-defined and continuous for each ¢(X,y) € Lin.
Explicitly, d(¢(x, a@)) :=sup{g € Q : KF I>¢aX. ¢(X, a)}.



Lint monster
» Lint: predicate for each internal X C K".
» K = K monster model in Lin.
> For ¢ € Lint, set 6(¢) := d(o(K)).
» J has a unique extension to (Li,)x such that

tp(b) — d(¢(x, b))
Sy(0) = {—oc0} URU {oo}
is well-defined and continuous for each ¢(X,y) € Lin.
» Explicitly, 6(¢(x, a@)) :=sup{g € Q : KF I>¢X. (X, a)}.
» For ® a partial type, 6(®) :=inf{d(¢) : ¢ F ¢}.
» d(a/C) :=d(tp(a/C)).
Fact
For C C K small and a,b € K<v,
» (Invariance): a=¢ b= d(a/C) = d(b/C).
» (Additivity): 5(ab/C) = &§(a/bC) + 6(b/C).
» (Existence): A partial type ¢ over C has a realisation a € ¢(K)
with §(a/C) = 8(®).



acl®

For V a variety over K, eliminate the imaginary to consider elements
of V(K) as tuples from K, i.e. V(K) C K<“.
Definition
Superscript 0 means: reduct to ACF¢.
(C<CY=K<K)
» d°(A/B) := trd(C(A, B)/C(B)) (for A, B C K<¥)
» acl’(B) := {ae K< : d°(a/B) = 0} = field-theoretic algebraic
closure of C(B) in K<v.

Remark
ac acl®(B) = d(a/B) = 0.



Coherence (1-dimensional version)
Definition
P C K is coherent if for any tuple a € P<¥,

é(a) = d°(a).

In other words, § is equal on P<“ to the dimension function of the
pregeometry (P;acl®).



Coherence (1-dimensional version)
Definition

P C K is coherent if for any tuple a € P<¥,

é(a) = d°(a).

In other words, § is equal on P<“ to the dimension function of the
pregeometry (P;acl).
Lemma

Say an irreducible complex variety V. C A" “admits no powersaving” if
for no e > 0 do we have a bound

IV(C) N ] Al < O(NIm(V)=e),
i
for A; C C with |A;| = N.

Then V admits no powersaving iff there exists a generic point
ac V(K) with{ay,...,an} coherent.



Coarse general position
Definition
a € K<¥ is in coarse general position (or is cgp) if for any B C K,

d°(a/B) < d°(a) = é(a/B) = 0.

Any a € K is cgp.
Definition
Let W be an irreducible variety over C.

A K-definable set X C W(K) with §(X) € R+ is cgp if for any
W’ C W proper subvariety over K,

d(XNnW)=o.

If X is cgp, then any a € X is cgp.



Coherence
Definition
P C K<¥ is coherent if

» every a € P is cgp, and
» for any tuple @ ¢ P<%, d°(@) = 6(3).

Then (P; acl®) is a pregeometry, and if d°(a) is constant for a € P,
then § is proportional on P<“ to its dimension function.

Example

Let G be a complex semiabelian variety, e.g. G = (C*)".

Let v € G(C) generic.

Let X := ][], {—5-7,...,8 -7}, and set £ such that §(X) = dim(G).
Then X is cgp, since | X N W’| < X by uniform Mordell-Lang.

Now §(X3 NT) = 28(X).

Let (a, b, c) € X3 NI, with §(abc) = 26(X).

Then {a, b, c} is coherent.



Szemerédi-Trotter bounds
Suppose a, e € K< satisfy (working over some C C K):
If & = eand & =% ebut & # e, then §(a/ee’) = 0.

Lemma (Trivial bound)

Assume such a € exists (i.e. e ¢ dcl(a))).
Then §(a/e) < 3é(a).

Proof.

Take € =, ewith € £ e and §(€'/ab) = (€'/a).

Then 0 = §(a/e€’) = d(ae€’) — d(e€’) = 26(ab) — (a) — (e€’) >
26(a/e) —d(a) .



Szemerédi-Trotter bounds
Suppose a, e € K< satisfy (working over some C C K):
If & = eand & =% ebut & # e, then §(a/ee’) = 0.
Lemma (Trivial bound)

Assume such a € exists (i.e. e ¢ dcl(a))).
Then §(a/e) < 3é(a).

Proof.

Take € =, ewith € £ e and §(€'/ab) = (€'/a).

Then 0 = §(a/e€’) = d(ae€’) — d(e€’) = 26(ab) — (a) — (e€’) >
26(aj/e) — d(a) . O
Lemma (Szemerédi-Trotter bound due to Elekes-Szabd)

Assume (e) > }(a) > 0.

Then §(a/e) < 5é(a).

Hrushovski: Szemerédi-Trotter bounds correspond to modularity.



Modularity

Recall

» A geometry is a pregeometry with cl(#) = ¢ and cl({x}) = {x}.
» The geometry of a pregeometry (P;cl) is ({cl(x) : x € P};cl).

Definition

» A geometry (P,cl) is modular if for a,b € Pand C C P,
if a € cl(bC) \ cl(C) then there exists ¢ € cl(C) such that
a € cl(bc).

» Say a, b € P are non-orthogonal if a € cl(bC) \ cl(C) for some
CCP.

Fact (Veblen-Young co-ordinatisation theorem)

The modular geometries of dimension > 4 in which every two points
are non-orthogonal are precisely the projective geometries Pe(V) of
vector spaces of dimension > 4 over division rings.



Linearity
Lemma
Suppose P C K<¥ js coherent, ay, ao, by, ...,b, € P, and:
» d%ay) = k = d%a);
» a; € acl®(axb) \ acl’(b) and a; ¢ acl®(ay).
Let e := Cb °F(a/C(b)). Then d°(e) = k.
Moreover, e is cgp, so {e} is coherent.



Linearity
Lemma
Suppose P C K<¥ js coherent, ay, ao, by, ...,b, € P, and:
» d%ay) = k = d%a);
» a; € acl®(axb) \ acl’(b) and a; ¢ acl®(ay).
Let e := Cb °F(a/C(b)). Then d°(e) = k.
Moreover, e is cgp, so {e} is coherent.

Proof.
By cgp and canonicity, if & = e and € E% e but € # e, then
d(a/e€’) = 0.

But 6(a/e) > &(a/b) = d°(a/b) = 1d°(@) = 16(a).

So by the Szemerédi-Trotter bounds, we have §(e) < 54(a).

Now e € acl®(b) and b is coherent, and it follows that d°(e) < (e).
So d°(e) < 4(e) < 14(a) = k.



Linearity
Lemma
Suppose P C K<¥ js coherent, ay, ao, by, ...,b, € P, and:
» d%ay) = k = d%a);
» a; € acl®(axb) \ acl’(b) and a; ¢ acl®(ay).
Let e := Cb °F(a/C(b)). Then d°(e) = k.
Moreover, e is cgp, so {e} is coherent.

Proof.
It remains to show that e is cgp.
Suppose B C K<¢ and e [ ° B; we show d(e/B) = 0.
Let @ = aja, such thatd@ =, aand @ | B. So e € acl’(@). Then
@ / °B. Sosince @ is coherent, §(Z/B) < §(a) = k.
Meanwhile, §(@' /e) = 6(a) —d(e) = d°(@) — d°(e) = k. So 6(e/B) =
5(@/B)—46(d/eB)=6(d/B)—d(d/e) < k—k=0.
]



Modularity of coherence

Definition
For P C K<“, ccl(P) := {x € acl’(P) : {x} is coherent}.

Lemma
If P is coherent, so is ccl(P).

Proposition

Suppose P = ccl(P) is coherent.
Then the geometry of (P; acl®) is modular.



Projective subgeometries in ACF

Define P(K) := {acl®(x) : x € K}.
Example

Suppose G is a 1-dimensional complex algebraic group and
F < Q ®z End(G) is a subfield.

G(K)/G(C) is naturally an F-vector space.

Let B C G(K) be a set of independent generics, and set

V = (B/G(C)).

Define 7 : Pr(V) — P(K) by 7((x/G(C))r) := acl’(x).

Then n embeds Pr(V) as a subgeometry of P(K).

Theorem (Evans-Hrushovski 1991)

Any projective subgeometry of P(K) of dimension at least 3 arises in
this way.



Projective geometries fully embedded in ACF®
Define P(K<) := {acl®(x) : x € K<}.

Definition

n: Pr(V) — P(K<¥) is a k-dimensional full embedding if for all
b € Pr(V)<¥, we have d°(n(b)) = k - dimp_ (D) .

Example

If G is a complex abelian algebraic group, F < Q®z End(G) a division
subring, B C G(K) independent generics, and V := (B/G(C))f.
Then 5((x/G(C)) ) := acl®(x) is a dim(G)-dimensional full
embedding.

Theorem (“Higher Evans-Hrushovski”)

Suppose V is a vector space of dimension at least 3 over a division
ring F, and n : Pe(V) — P(K<¥) is a k-dimensional full embedding.
Then there are G and embeddings F < Q ®z End(G) and

V < G(K)/G(C) such that n is as in the example.



Projective geometries fully embedded in ACF*

Proof idea.
Abelian group configuration yields G.
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Version due to Faure of the fundamental theorem of projective
geometry (semilinearity of projective morphisms) yields embeddings
F— Q®zEnd(G) and V — G(K)/G(C). O



Elekes-Szab6 consequences
Definition
Say a finite subset X of a variety W is T-cgp if for any proper
subvariety W' C W of complexity < 7, we have | X N W'| < |Xﬁ .

Definition
If V C I[; W; are irreducible complex algebraic varieties, with

dim(W;) = mand dim(V) = dm, say V admits a powersaving if for
some 7 and e > 0 there is a bound

[[xinv
i

for -cgp X; C W; with | Xi| < N.

< O(Nd—e)

Lemma
V admits no powersaving iff exists coherent generic a € V(K).



Elekes-Szab6 consequences

Definition

H < G" is a special subgroup if G is a commutative algebraic group
and H = ker(A)° for some A € Mat(F N End(G)) for some division
subalgebra F < Q ®z End(G).

Theorem

V C [1; W; admits no powersaving iff it is in co-ordinatewise algebraic
correspondence with a product of special subgroups.

Proof.

—: Take coherent generic; apply modularity of coherence and
“higher Evans-Hrushovski”.
<: see below. O



Sharpness
Fact (Amitsur-Kaplansky)

Any division subring F C Mat,(C) has finite dimension over its centre.

Corollary

Any finitely generated subring of a division subring F C End®(G) is
contained in a finitely generated subring O C F which is
constrainedly filtered: there are finite O, C O such that

(CFO) On € Opi1;Upey On = O
(CF1) 3k.¥n. Op + Op C Onir;
(CF2) Ya e 0. 3k.¥n. aOp C Opsk;
(CF3) Ve > 0. 122l < O(|0 9.

(e.9.Z =J,[—2",2"] is constrainedly filtered.)

Let “Xi == [[s_yy (> i1 Os_k7i)” With +; € G generic independent.
Then X := (N, Xk is an O-submodule and §(X) = 6(Xp) and X is cgp.
So any special subgroup defined using © admits no powersaving.



Application: Generalised sum-product phenomenon
Corollary

Let (Gy,+1) and (G, +2) be one-dimensional non-isogenous
connected complex algebraic groups, and fori = 1,2 let

fi - Gi(C) — C be a rational map. Then there are e, ¢ > 0 such that if
A C C is afinite set lying in the range of each f;, then setting

Ai = f71(A) C Gi(C) we have

max(|A1 +1 A4 ‘, |A2 +2 AQD > C’A’1+€.

Proof.

Else, considering

{06y, 57100 +1 71 (), 7 () +2 557 (¥)) : X,y € C}, get group
(G; +) such that ', is in co-ordinatewise correspondence with I,
i=1,2.

But then (by Ziegler) G;j is isogenous to G. O

Similarly in higher dimension, with a cgp assumption.



Application: Intersections of varieties with approximate
subgroups

Theorem

I < G(K) a 0-\-definable subgroup of a 1-dimensional algebraic
group G, with §(I') = dim(G).

Then any coherent tuple 5 € " is generic in a coset of an algebraic
subgroup of G".

Similarly in higher dimension, with a cgp assumption.
Corollary

Let G be a commutative complex algebraic group. Suppose V is a
subvariety of G" which is not a coset of a subgroup. Then there are
N;e,n > 0 depending only on G and the complexity of V such that if
A C G is a finite subset such that A — A is T-cgp and |A+ A| < |A]'*e

dim(V)
and|A| > N, then |A" N V| < |A|@m@ ",



Diophantine connection

Example

G = E complex elliptic curve.

E[oo] := |, E[m] torsion subgroup.

Suppose V C E" is an irreducible closed complex subvariety such
that V(C) N E[oc] is Zariski dense in V. Let d := dim(V).

By Manin-Mumford, V is a coset of an algebraic subgroup. Hence for
any e > 0, for arbitrarily large r € N,

IV(C) N E[r']"| > |E[r]|? €.

Suppose conversely that we only know this consequence of
Manin-Mumford on the asymptotics of the number of torsion points in
V. Then V has a coherent generic non-standard torsion point, and so
by above theorem V is a coset.

Similarly for Mordell-Lang.



Relaxing general position

Remark

V := graph of (a1, by) * (&, b2) = (a1 + a + b2b3, by + by),
Xi={-N* ... N} x{=N,...,N} CC?=: W,.

Then [X3 N V| > Q(|X;[?), but not in coarse general position, and V is
not in co-ordinatewise correspondence with the graph of a group
operation.



Thanks



Thanks

(Bonus slides follow)



Elekes-Szab6 consequences; detailed statement
Definition
aec W(K)isdcgp if ae X C W(K) for some (-definable cgp X.

Theorem

Given V C [[; W,, TFAE

(a) V admits no powersaving.

(b) Exists coherent generic a € V(K) with a; degp in W;.
(c) Exists coherent generic a € V(K).
(d)

d) V is in co-ordinatewise algebraic correspondence with a product
of special subgroups.

Proof.

(a) < (

(b) =
(c) =
(d) =

b): ultraproducts.

(c): clear.

(d): modularity of coherence + “higher Evans-Hrushovski”.
(b): see below. O



Example

G := (CH)*.

Q ®z End(G) = Q ®z Maty(Z) = Mat4(Q).

Ho = (Q[i,j,k] : 2 =2 =k? = —1; [j=k; jk =1I; ki =)
embeds in Mat,4(Q) via the left multiplication representation.
Hz = Zli,j, k] C Hg acts on G by endomorphisms:

v

v

v

v

n-(ab,c,d)=(a",b" c" d"),
i-(ab,c,d)= (b1 ad "’ c)
j-(a,b,c,d)=(c"",d,a b
k-(ab,c,d)=(d"",¢c " b,a)

Then

v

4 I:{(va,ZhZZaZS) € GS
Py =X4Y, Zo=X+0y, Zz3=X+]- Y}

is a special subgroup of G°.



Example (continued)

v

Vi={(x,y,21,20,23) €G° 121 =X+ Yy, Zo=X+i-y, z3=
X+ j -y} is a special subgroup of G°.

“Approximate Hz-submodules” witness that V admits no
powersaving:

Hy:={n+mi+pj+qgk:nmj,ke[-N,N]} CHy

g € G generic

Xy =Hy-g=1{h-g:he Hy} CHz -gCG.

Then (by uniform Mordell-Lang), for W C G proper closed of
complexity < 7, |[W N Hzg| < O-(1).

So V7. VN >> 0. Xy is 7-cgpin G.

Buti- Xy =Xy =/ Xy, SO ’XI?/ N V‘ > Q(’XN‘z)



