Incidence bounds in positive characteristic via valuations and distality Extended Edition!!

Martin Bays

27.05.2021

This talk is based on joint work with Jean-François Martin.

Contents

1	Background .1 Incidence bounds in characteristic zero .2 Incidence bounds in positive characteristic .2 Discrete	1
	.3 Distality	1
2	Che result .1 Statements	
3	Proof of Theorem 2.1 .1 Compressing balls .2 Compressing cheeses .3 Collapsing USHDs	1
4	lekes-Szabó consequences	1

1 Background

1.1 Incidence bounds in characteristic zero

• Fact (Szemerédi-Trotter '83) There exists $C \in \mathbb{R}$ such that, given N points and N lines in \mathbb{R}^2 , the number of incidences is bounded as

$$|\{(p,l): p \in l\}| \le C(N^{\frac{3}{2} - \frac{1}{6}}).$$

• This has been generalised in various ways. In particular:

Fact (Elekes-Szabó '12) If $(C_b)_{b\in B}$ is an algebraic family of distinct irreducible plane curves over a field K of characteristic 0, there are $C, \epsilon > 0$ such that given N points in K^2 and N curves in the family,

$$|\{(a,b): a \in C_b\}| \le C(N^{\frac{3}{2}-\epsilon}).$$

- Hrushovski: this indicates a certain *modularity* of the interaction between (pseudo)finite sets and field structure.
- In particular, abelian groups are the only source of relations on which finite sets "maximally accumulate":

Fact (Elekes-Szabó '12 (m = 3), Raz-Sharir-de Zeeuw '18 (m = 4), B-Breuillard '20) Let $V \subseteq \mathbb{A}^m$ be an irreducible affine variety over a field K of characteristic 0. Exactly one of the following holds:

(i) $\exists C, \epsilon > 0. \ \forall X_1, \dots, X_m \subseteq_{\text{fin}} K.$

 $|V(K) \cap (X_1 \times \ldots \times X_m)| \le C \max(|X_i|)^{\dim V - \epsilon};$

(ii) OR: up to finite correspondences on co-ordinates and taking products,
 V is a subgroup of a power of a 1-dimensional algebraic group.

1.2 Incidence bounds in positive characteristic

• In positive characteristic, these bounds utterly fail:

Remark Let $K := \mathbb{F}_p^{\text{alg}}$. For any algebraic set $V \subseteq K^n$, there is r > 0 such that for arbitrarily large n,

$$|V(\mathbb{F}_{p^n})| \ge r(p^n)^{\dim V}$$

(This follows from the Lang-Weil estimates.)

• However, Hrushovski conjectures that the Zilber trichotomy applies: infinite pseudofinite fields should be the only obstruction to modularity. (Above it is $\prod_{n \to \mathcal{U}} \mathbb{F}_{p^n} \leq K^{\mathcal{U}}$.)

(In the case of the sum-product theorem, this is true, i.e. failures of sum-product bounds are due to finite subfields (Bourgain-Katz-Tao, Tao-Vu, Tao, Hrushovski, Wagner).)

• As an extreme case, this conjecture suggests that for K with **finite** algebraic part $K \cap \mathbb{F}_p^{\text{alg}}$, e.g. $K = \mathbb{F}_p(t)$, the characteristic 0 results should go through.

1.3 Distality

• **Definition** Let \mathcal{M} be an \mathcal{L} -structure.

- Let $\phi(x; y)$ be an \mathcal{L} formula, let $A, B \subseteq \mathcal{M}$.

An \mathcal{L} -formula $\zeta_{\phi}(x; z)$ is a **uniform strong honest definition (USHD)** for ϕ on A over B if for any $a \in A^x$ and finite subset $B_0 \subseteq_{\text{fin}} B$ with $|B_0| \ge 2$, there is $d \in B_0^z$ such that $tp(a/B_0) \supseteq \zeta_{\phi}(x, d) \models tp_{\phi}(a/B_0)$

$$\operatorname{tp}(a/B_0) \ni \zeta_{\phi}(x,d) \vdash \operatorname{tp}_{\phi}(a/B_0)$$

(where $\operatorname{tp}_{\phi}(a/B_0) := \{\phi(x,b)^{\epsilon} \in \operatorname{tp}(a/B_0) : b \in B_0^y\}$). - If $A = \mathcal{M}$, we omit "on A".

- $-B \subseteq \mathcal{M}$ is distal in \mathcal{M} if every \mathcal{L} -formula $\phi(x; y)$ has a USHD on B over B.
- Reduction to one variable:

Fact $B \subseteq \mathcal{M}$ is distal in \mathcal{M} iff any \mathcal{L} -formula $\phi(x; y)$ with |x| = 1 has a USHD on B over B.

Proof idea. Given $a, b \in B$ and $\phi(x, y; z)$ and $B_0 \subseteq_{\text{fin}} B$, say $\operatorname{tp}(a/bB_0) \ni \zeta(x, b, c) \vdash \operatorname{tp}_{\phi(x;y,z)}(a/bB_0)$ with $c \in B_0^w$. Now say $\operatorname{tp}(b/B_0) \ni \theta(y, c') \vdash \operatorname{tp}_{\forall x.(\zeta(x,y,w) \to \phi(x,y,z))}(b/B_0)$. Then $\operatorname{tp}(ab/B_0) \ni \zeta(x, y, c) \land \theta(y, c') \vdash \operatorname{tp}_{\phi(x,y;z)}^+(ab/B_0)$. Now repeat with $\neg \phi$. Uniformity follows through.

- Example If $B = (b_i)_i \subseteq \mathcal{M}$ is a \emptyset -indiscernible sequence, and there is an \mathcal{L} -formula θ_{\leq} with $\mathcal{M} \models \theta_{\leq}(b_i, b_j) \Leftrightarrow i < j$, then B is distal in \mathcal{M} .
- Fact (Chernikov-Simon) $Th(\mathcal{M})$ is distal iff \mathcal{M} is distal in \mathcal{M} .
- Distality implies incidence bounds:

Fact 1.1 (Chernikov-Galvin-Starchenko, Chernikov-Starchenko '20) Suppose $B \subseteq \mathcal{M}$ is distal in \mathcal{M} and $\phi(x; y)$ is an \mathcal{L} -formula. Suppose $\phi(B; B)$ is $K_{d,s}$ -free, i.e. there is no $X_0 \times Y_0 \subseteq \phi(B; B)$ with $|X_0| = d$ and $|Y_0| = s$. Let $\zeta_{\phi}(x, z)$ be a USHD for ϕ on B, and let t := |z|. Then there exists $C \in \mathbb{R}$ such that for $X_0 \subseteq_{\text{fin}} B^x$ and $Y_0 \subseteq_{\text{fin}} B^y$,

$$|\phi(X_0;Y_0)| \le C(|X_0|^{\frac{(t-1)d}{td-1}}|Y_0|^{\frac{td-t}{td-1}} + |X_0| + |Y_0|)$$

2 The result

2.1 Statements

Theorem 2.1 Let k be a valued field with finite residue field. Then k is distal in k^{alg} ⊨ ACVF.
(Note: a positive characteristic valued field with finite residue field is not distal as a structure, nor even NIP (by Kaplan-Scanlon-Wagner).)

• So by Fact 1.1:

Corollary Let k be a valued field with finite residue field. Let $E \subseteq k^n \times k^m$ be quantifier-free definable in $\mathcal{L}_{div}(k)$. Suppose E is $K_{d,s}$ -free, where $d, s \in \mathbb{N}$. Then there exist t, C > 0 such that for $A_0 \subseteq_{fin} k^n$ and $B_0 \subseteq_{fin} k^m$,

$$|E \cap (A_0 \times B_0)| \le C(|A_0|^{\frac{(t-1)d}{td-1}}|B_0|^{\frac{td-t}{td-1}} + |A_0| + |B_0|).$$

• In particular this yields a Szemerédi-Trotter-style result:

Corollary Suppose $(C_b)_{b \in B \subseteq k^m}$ is an algebraic family of distinct irreducible plane curves over a field k which admits a valuation with finite residue field.

Then $E := \{(a,b) : a \in C_b(k)\} \subseteq k^{2+m}$ is $K_{2,s}$ -free for some $s \in \mathbb{N}$.

So there exist $\epsilon_0, C > 0$ such that for $A_0 \subseteq_{\text{fin}} k^2$ and $B_0 \subseteq_{\text{fin}} k^m$

$$|E \cap (A_0 \times B_0)| \le C(|A_0|^{1-\epsilon_0}|B_0|^{\frac{1}{2}(1+\epsilon_0)} + |A_0| + |B_0|)$$

 $(\epsilon_0 := \frac{1}{2t-1} > 0)$, or in symmetric form:

$$|E \cap (A_0 \times B_0)| \le C'(\max(|A_0|, |B_0|))^{\frac{3}{2} - \epsilon}$$

 $(\epsilon := \frac{\epsilon_0}{2} > 0, C' := 3C).$

2.2 Fields admitting finite residue field

Example The t-adic valuation on $\mathbb{F}_p(t)$ has residue field \mathbb{F}_p . Similarly, any finitely generated extension of \mathbb{F}_p , i.e. any function field over a finite field, admits a valuation with finite residue field.

However:

Proposition 2.2 For any prime p, there exists an algebraic extension $L \geq \mathbb{F}_p(t)$ such that $L \cap \mathbb{F}_p^{\text{alg}} = \mathbb{F}_p$ but no valuation on L has finite residue field.

Such an L can be built by recursively adjoining Artin-Schreier roots which force Artin-Schreier extensions of the residue fields of valuations on previously built fields; using the Artin-Schreier version of Kummer theory, one can always do this without extending the algebraic part.

3 Proof of Theorem 2.1

- Let $L \vDash ACVF$ and let $k \subseteq L$ be a subfield with res(k) finite.
- We want to see that $k \subseteq L$ is distal in L.

• By reduction to 1 variable, it suffices to see: any $\phi(x, y)$ with |x| = 1 has a USHD over k.

3.1 Compressing balls

• By QE, for $a \in k$, $\phi(L, a)$ is a boolean combination of open and closed balls

$$v(x-a') > \alpha \text{ or } v(x-a') \ge \alpha$$

centred at points a' with $\deg(k(a')/k)$ bounded, say dividing d.

• Let $B_{k,d}$ be the set of balls (closed and open) centred at points of degree |d| field extensions of k within L.

Using the bounded size of the residue field of such extensions, we obtain:

Lemma $x \in y$ has a USHD over $B_{k,d}$.

Proof.

- Let $a \in L$ and $B_0 \subseteq_{\text{fin}} B_{k,d}$.
- Then $x \in (b \setminus \bigcup_{i < s} b_i) \vdash \operatorname{tp}_{\in}(a/B_0)$ where
 - * b is smallest in B_0 such that $a \in b$ (or b := L).
 - * b_1, \ldots, b_s are the maximal proper subballs of b in B_0 .
- Sufficient to uniformly bound s.
- By ultrametricity, joins of finitely many balls are joins of two. So we may assume B_0 is closed under \lor
 - (where $b' \lor b'' :=$ smallest ball containing both).
- Assume s > 1.
- Say $p_i \in b_i$ is of degree |d over k, and let $\alpha \in v(L)$ be the radius of b.
- Now

$$i \mapsto \lambda_i := \operatorname{res}\left(\frac{p_i - p_1}{p_2 - p_1}\right)$$

is an injection of $\{1, \ldots, s\}$ into res(L):

- * If $i \neq j$ then $b_i \vee b_j = b$, so $v(p_i p_j) = \alpha$.
- * Now suppose $\lambda_i = \lambda_j$. Then $\operatorname{res}(\frac{p_i p_j}{p_2 p_1}) = 0$,

so
$$v(p_i - p_j) > v(p_2 - p_1) = \alpha$$
, so $i = j$.

$$-$$
 Say res $(k) = \mathbb{F}_{q}$

– Since each λ_i is in the residue field of an extension of k of degree $|d^3$, by the valuation inequality

$$\lambda_i \in \mathbb{F}_{q^{d^3}}.$$

$$-$$
 So $s \le q^{d^3}$.

- But this is not enough on its own. To show that $\phi(x, y)$ has a USHD over k: given $C \subseteq_{\text{fin}} k$ we have to determine $\text{tp}_{\phi}(a/C)$ using only C as parameters – but the balls involved will generally not be defined over C!
- So we need to be more careful with the QE.

3.2 Compressing cheeses

• $\phi(L, a)$ has a unique-up-to-permutation "Swiss cheese decomposition" as a finite union of disjoint cheeses,

$$\phi(L,a) = \bigcup_{i} (b_i \setminus \bigcup_{j} b_{ij}),$$

where each cheese is a ball b_i minus a finite union of disjoint proper subballs b_{ij} , and no b_i is equal to any hole $b_{i'j}$.

• Moreover:

Fact (Uniform Swiss Cheese Decomposition) There are N and d depending only on ϕ such that for all $a \in L^y$, $\phi(L, a)$ has Swiss cheese decomposition involving $\leq N$ balls, where each ball contains a point in a degree |d| field extension of the subfield generated by a.

- Increasing N and allowing the empty ball, we can assume the form of the decomposition is constant, given by a Boolean term $D(x_1, \ldots, x_N)$.
- Let $X \subseteq B^N$ be the set defined by the inclusion relations required for $D(b_1, \ldots, b_N)$ to be a Swiss cheese decomposition.
- So $D: X \to [\text{codes for subsets}]$ is definable with boundedly finite fibres, and

$$D(X \cap (B_{k,d})^N) \supseteq \{ \ulcorner \phi(L,c) \urcorner : c \in k^y \}.$$

3.3 Collapsing USHDs

• We conclude by a general elementary model theoretic lemma on USHDs:

Lemma Let f be definable with boundedly finite fibres. Let $C \subseteq im(f)$. If $\psi(x, f(z))$ has a USHD over $f^{-1}(C)$, then $\psi(x, y)$ has a USHD over C.

(Explicitly, to conclude:

- apply this Lemma to $x \in D(\overline{z})$, which has a USHD over $B_{k,d}$ by ball compression;
- this yields that $x \in w$ has a USHD over

$$\{ \ulcorner \phi(L,c) \urcorner : c \in k^y \},$$

- hence $\phi(x, y)$ has a USHD over k.)

Proof idea. Given a and $C_0 \subseteq_{\text{fin}} C$, we have $\zeta(x, \tilde{d}) \ni \operatorname{tp}(a/f^{-1}(C_0))$ implying all instances of ψ over C_0 . Then find $C_1 \subseteq C_0$ bounded by the fibre size such that if $f(\tilde{d}') = f(\tilde{d})$ and $\zeta(x, \tilde{d}')$ implies the instances over C_1 , then it implies all. Then "exists such a \tilde{d}' over $f(\tilde{d})$ " is a USHD.

• Remark Following the proof gives a bound on the exponent in the distal cell decompositions, hence in the incidence bound for |x| = 1, of $t = 2(q^{d^3} + 1)$ where $res(k) = \mathbb{F}_q$.

For |x| > 1 a bound can in theory be computed, but it involves QE in ACVF (for the reduction to one variable).

For the Szemerédi-Trotter case $\{((x, y), (a, b)) : y = ax + b\}$, we get t = 4(q + 1), giving an exponent in the symmetric form of $\frac{3}{2} - \frac{1}{16(q+1)-2}$.

This uses linear QE (Weispfenning): if an \mathcal{L}_{div} qf-formula $\psi(x, \overline{y}, \overline{z})$ is linear in x, \overline{y} , i.e. each polynomial has degree 1 in x and each y_i , then $\exists x.\psi(x, \overline{y}, \overline{z})$ is equivalent modulo ACVF to a qf-formula linear in \overline{y} .

Question: in the Szemerédi-Trotter case with $\mathbb{F}_p(t)$, could there be an exponent which doesn't depend on p? Worst lower bound I know is $\frac{4}{3}$, with a similar "rectangular grid" argument as in the char 0 case:

$$\begin{aligned} |\{((x,y),(a,b)) \in (\mathbb{F}_p[t]_{$$

4 Elekes-Szabó consequences

As in the characteristic 0 case, these incidence bounds yield "modularity of coherence", and hence Elekes-Szabó bounds.

- Let k_0 be a field admitting a valuation with finite residue field.
- For $r \ge 1$, let

$$k_r := \{a \in (k_0)^{\text{alg}} : \deg(k_0(a)/k_0) \le r\}$$

- From the proof for k_0 , we get that each k_r is also distal in $(k_0)^{\text{alg}} \models \text{ACVF}$.
- This is sufficient for the arguments of one direction of the 1-dimensional case of the main result of B-Breuillard to go through:

Theorem Let \mathcal{U} be a non-principal ultrafilter on ω . Let $k' := ((k_0)^{\mathcal{U}})^{\text{alg}} \leq ((k_0)^{\text{alg}})^{\mathcal{U}} =: L$, so $k' = \bigcup_{r \in \omega} (k_r)^{\mathcal{U}}$. Let $\xi \in \mathbb{N}^{\mathcal{U}} \setminus \mathbb{N}$.

$$\delta(\prod_{i \to \mathcal{U}} X_i) := \operatorname{st} \log_{\xi} \lim_{i \to \mathcal{U}} |X_i| \in \mathbb{R} \cup \{\infty\}.$$

Equip L with the structure generated by countably many internal relations, including each $(k_r)^{\mathcal{U}}$, such that $\boldsymbol{\delta}$ is continuous.

For
$$\overline{a} \in L^{<\omega}$$
,

$$\boldsymbol{\delta}(\overline{a}) = \boldsymbol{\delta}(\operatorname{tp}(\overline{a})) = \inf_{\phi \in \operatorname{tp}(\overline{a})} \boldsymbol{\delta}(\phi(L))$$

 $P \subseteq L$ is coherent if $\delta(\overline{a}) = \operatorname{trd}(\overline{a})$ for all $\overline{a} \in P^{<\omega}$.

Write acl^0 for field-theoretic algebraic closure.

Let $P \subseteq k'$ be coherent, and let $\operatorname{ccl}(P) := \{a \in \operatorname{acl}^0(P) : \delta(a) = \operatorname{trd}(a)\} \subseteq k'$. Then $\operatorname{ccl}(P)$ is coherent, and $\operatorname{acl}^0|_{\operatorname{ccl}(P)}$ is a modular pregeometry.

Fact (Evans-Hrushovski) Let Π be a modular subgeometries of dimension $3 \le n < \omega$ of the geometry of algebraic closure on an algebraically closed field L (of any characteristic) over an algebraically closed subfield $C_0 \le L$.

Then there exists a 1-dimensional algebraic group G over C_0 and generic $\overline{x} \in G^n$ over C_0 such that Π embeds in the projective geometry $\{\operatorname{acl}_{C_0}(\sum_i e_i x_i) : e_i \in \operatorname{End}(G), \ \overline{e} \neq 0\}.$

One deduces:

Theorem Let k_0 be a field admitting a valuation with finite residue field. Let $V \subseteq \mathbb{A}^m$ be an irreducible affine variety over k_0 .

At least one of the following holds:

(i) $\exists C, \epsilon > 0. \ \forall X_1, \dots, X_m \subseteq_{\text{fin}} k_0.$

 $|V(k_0) \cap (X_1 \times \ldots \times X_m)| \le C \max(|X_i|)^{\dim V - \epsilon};$

(ii) Up to finite correspondences on co-ordinates and taking products,V is a subgroup of a power of a 1-dimensional algebraic group.

Remark 4.1 In characteristic 0 there is a higher dimensional ("coarse general position") version of this. That doesn't immediately go through, but only because it needs a positive characteristic version of higher dimensional Evans-Hrushovski, which remains to be proven. (The m = 3 case probably goes through directly, but I haven't checked.)

Getting a version with "exactly one" in place of "at least one" would also take some more work.