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1 Background

1.1 Incidence bounds in characteristic zero

• Fact (Szemerédi-Trotter ’83) There exists C ∈ R such that, given N points and N
lines in R2, the number of incidences is bounded as

|{(p, l) : p ∈ l}| ≤ C(N
3
2−

1
6 ).

• This has been generalised in various ways. In particular:

Fact (Elekes-Szabó ’12) If (Cb)b∈B is an algebraic family of distinct irreducible plane
curves over a field K of characteristic 0, there are C, ε > 0 such that given N points in
K2 and N curves in the family,

|{(a, b) : a ∈ Cb}| ≤ C(N
3
2−ε).

• Hrushovski: this indicates a certain modularity of the interaction between (pseudo)finite
sets and field structure.

• In particular, abelian groups are the only source of relations on which finite sets “maxi-
mally accumulate”:

Fact (Elekes-Szabó ’12 (m = 3), Raz-Sharir-de Zeeuw ’18 (m = 4), B-Breuillard ’20)
Let V ⊆ Am be an irreducible affine variety over a field K of characteristic 0.

Exactly one of the following holds:

(i) ∃C, ε > 0. ∀X1, . . . , Xm ⊆fin K.

|V (K) ∩ (X1 × . . .×Xm)| ≤ C max(|Xi|)dimV−ε;

(ii) OR: up to finite correspondences on co-ordinates and taking products,
V is a subgroup of a power of a 1-dimensional algebraic group.

1.2 Incidence bounds in positive characteristic

• In positive characteristic, these bounds utterly fail:

Remark Let K := Falg
p . For any algebraic set V ⊆ Kn, there is r > 0 such that for

arbitrarily large n,
|V (Fpn)| ≥ r(pn)dimV .

(This follows from the Lang-Weil estimates.)

• However, Hrushovski conjectures that the Zilber trichotomy applies:
infinite pseudofinite fields should be the only obstruction to modularity.
(Above it is

∏
n→U Fpn ≤ KU .)

(In the case of the sum-product theorem, this is true, i.e. failures of sum-product bounds
are due to finite subfields (Bourgain-Katz-Tao, Tao-Vu, Tao, Hrushovski, Wagner).)

• As an extreme case, this conjecture suggests that for K with finite algebraic part K∩Falg
p ,

e.g. K = Fp(t), the characteristic 0 results should go through.

1.3 Distality

• Definition Let M be an L-structure.

– Let φ(x; y) be an L formula, let A,B ⊆M.

An L-formula ζφ(x; z) is a uniform strong honest definition (USHD) for φ on
A over B if for any a ∈ Ax and finite subset B0 ⊆fin B with |B0| ≥ 2, there is d ∈ Bz0
such that

tp(a/B0) 3 ζφ(x, d) ` tpφ(a/B0)

(where tpφ(a/B0) := {φ(x, b)ε ∈ tp(a/B0) : b ∈ By0}).

– If A =M, we omit “on A”.

– B ⊆M is distal in M if every L-formula φ(x; y) has a USHD on B over B.

• Reduction to one variable:

Fact B ⊆ M is distal in M iff any L-formula φ(x; y) with |x| = 1 has a USHD on B
over B.

Proof idea. Given a, b ∈ B and φ(x, y; z) and B0 ⊆fin B,
say tp(a/bB0) 3 ζ(x, b, c) ` tpφ(x;y,z)(a/bB0) with c ∈ Bw0 .

Now say tp(b/B0) 3 θ(y, c′) ` tp∀x.(ζ(x,y,w)→φ(x,y,z))(b/B0).

Then tp(ab/B0) 3 ζ(x, y, c) ∧ θ(y, c′) ` tp+
φ(x,y;z)(ab/B0).

Now repeat with ¬φ. Uniformity follows through. �

• Example If B = (bi)i ⊆M is a ∅-indiscernible sequence,
and there is an L-formula θ< with M � θ<(bi, bj)⇔ i < j,
then B is distal in M.

• Fact (Chernikov-Simon) Th(M) is distal iff M is distal in M.

• Distality implies incidence bounds:

Fact 1.1 (Chernikov-Galvin-Starchenko, Chernikov-Starchenko ’20)
Suppose B ⊆M is distal in M and φ(x; y) is an L-formula.

Suppose φ(B;B) is Kd,s-free,
i.e. there is no X0 × Y0 ⊆ φ(B;B) with |X0| = d and |Y0| = s.

Let ζφ(x, z) be a USHD for φ on B, and let t := |z|.
Then there exists C ∈ R such that for X0 ⊆fin B

x and Y0 ⊆fin B
y,

|φ(X0;Y0)| ≤ C(|X0|
(t−1)d
td−1 |Y0|

td−t
td−1 + |X0|+ |Y0|).

2 The result

2.1 Statements

• Theorem 2.1 Let k be a valued field with finite residue field.
Then k is distal in kalg � ACVF.

(Note: a positive characteristic valued field with finite residue field is not distal as a
structure, nor even NIP (by Kaplan-Scanlon-Wagner).)

• So by Fact 1.1:

Corollary Let k be a valued field with finite residue field.

Let E ⊆ kn × km be quantifier-free definable in Ldiv(k).

Suppose E is Kd,s-free, where d, s ∈ N.

Then there exist t, C > 0 such that for A0 ⊆fin k
n and B0 ⊆fin k

m,

|E ∩ (A0 ×B0)| ≤ C(|A0|
(t−1)d
td−1 |B0|

td−t
td−1 + |A0|+ |B0|).

• In particular this yields a Szemerédi-Trotter-style result:

Corollary Suppose (Cb)b∈B⊆km is an algebraic family of distinct irreducible plane curves
over a field k which admits a valuation with finite residue field.

Then E := {(a, b) : a ∈ Cb(k)} ⊆ k2+m is K2,s-free for some s ∈ N.

So there exist ε0, C > 0 such that for A0 ⊆fin k
2 and B0 ⊆fin k

m,

|E ∩ (A0 ×B0)| ≤ C(|A0|1−ε0 |B0|
1
2 (1+ε0) + |A0|+ |B0|)

(ε0 := 1
2t−1 > 0), or in symmetric form:

|E ∩ (A0 ×B0)| ≤ C ′(max(|A0|, |B0|))
3
2−ε

(ε := ε0
2 > 0, C ′ := 3C).

2.2 Fields admitting finite residue field

Example The t-adic valuation on Fp(t) has residue field Fp.
Similarly, any finitely generated extension of Fp, i.e. any function field over a finite field,

admits a valuation with finite residue field.

However:

Proposition 2.2 For any prime p, there exists an algebraic extension L ≥ Fp(t) such that
L ∩ Falg

p = Fp but no valuation on L has finite residue field.

Such an L can be built by recursively adjoining Artin-Schreier roots which force Artin-Schreier
extensions of the residue fields of valuations on previously built fields; using the Artin-Schreier
version of Kummer theory, one can always do this without extending the algebraic part.

3 Proof of Theorem 2.1

• Let L � ACVF and let k ⊆ L be a subfield with res(k) finite.

• We want to see that k ⊆ L is distal in L.

• By reduction to 1 variable, it suffices to see:
any φ(x, y) with |x| = 1 has a USHD over k.

3.1 Compressing balls

• By QE, for a ∈ k, φ(L, a) is a boolean combination of open and closed balls

v(x− a′) > α or v(x− a′) ≥ α

centred at points a′ with deg(k(a′)/k) bounded, say dividing d.

• Let Bk,d be the set of balls (closed and open) centred at points of degree |d field extensions
of k within L.

Using the bounded size of the residue field of such extensions, we obtain:

Lemma x ∈ y has a USHD over Bk,d.

Proof.

– Let a ∈ L and B0 ⊆fin Bk,d.

– Then x ∈ (b \
⋃
i<s bi) ` tp∈(a/B0) where

∗ b is smallest in B0 such that a ∈ b (or b := L).

∗ b1, . . . , bs are the maximal proper subballs of b in B0.

– Sufficient to uniformly bound s.

– By ultrametricity, joins of finitely many balls are joins of two.

So we may assume B0 is closed under ∨
(where b′ ∨ b′′ := smallest ball containing both).

– Assume s > 1.

– Say pi ∈ bi is of degree |d over k, and let α ∈ v(L) be the radius of b.

– Now

i 7→ λi := res

(
pi − p1

p2 − p1

)
is an injection of {1, . . . , s} into res(L):

∗ If i 6= j then bi ∨ bj = b, so v(pi − pj) = α.

∗ Now suppose λi = λj . Then res(
pi−pj
p2−p1 ) = 0,

so v(pi − pj) > v(p2 − p1) = α, so i = j.

– Say res(k) = Fq.
– Since each λi is in the residue field of an extension of k of degree |d3, by the valuation

inequality
λi ∈ Fqd3 .

– So s ≤ qd3 .

�

• But this is not enough on its own.

To show that φ(x, y) has a USHD over k: given C ⊆fin k we have to determine tpφ(a/C)
using only C as parameters – but the balls involved will generally not be defined over C!

• So we need to be more careful with the QE.

3.2 Compressing cheeses

• φ(L, a) has a unique-up-to-permutation “Swiss cheese decomposition” as a finite union of
disjoint cheeses,

φ(L, a) =
⋃
i

(bi \
⋃
j

bij),

where each cheese is a ball bi minus a finite union of disjoint proper subballs bij ,
and no bi is equal to any hole bi′j .

• Moreover:

Fact (Uniform Swiss Cheese Decomposition) There are N and d depending only
on φ such that for all a ∈ Ly, φ(L, a) has Swiss cheese decomposition involving ≤ N balls,
where each ball contains a point in a degree |d field extension of the subfield generated by
a.

• Increasing N and allowing the empty ball, we can assume the form of the decomposition
is constant, given by a Boolean term D(x1, . . . , xN ).

• Let X ⊆ BN be the set defined by the inclusion relations required for D(b1, . . . , bN ) to be
a Swiss cheese decomposition.

• So D : X → [codes for subsets] is definable with boundedly finite fibres, and

D(X ∩ (Bk,d)
N ) ⊇ {pφ(L, c)q : c ∈ ky}.

3.3 Collapsing USHDs

• We conclude by a general elementary model theoretic lemma on USHDs:

Lemma Let f be definable with boundedly finite fibres. Let C ⊆ im(f).

If ψ(x, f(z)) has a USHD over f−1(C),
then ψ(x, y) has a USHD over C.

(Explicitly, to conclude:

– apply this Lemma to x ∈ D(z), which has a USHD over Bk,d by ball compression;

– this yields that x ∈ w has a USHD over

{pφ(L, c)q : c ∈ ky},

– hence φ(x, y) has a USHD over k.)

Proof idea. Given a and C0 ⊆fin C, we have ζ(x, d̃) 3 tp(a/f−1(C0)) implying all in-

stances of ψ over C0. Then find C1 ⊆ C0 bounded by the fibre size such that if f(d̃′) = f(d̃)

and ζ(x, d̃′) implies the instances over C1, then it implies all. Then “exists such a d̃′ over

f(d̃)” is a USHD. �

• Remark Following the proof gives a bound on the exponent in the distal cell decomposi-
tions, hence in the incidence bound for |x| = 1, of t = 2(qd

3

+ 1) where res(k) = Fq.
For |x| > 1 a bound can in theory be computed, but it involves QE in ACVF (for the
reduction to one variable).

For the Szemerédi-Trotter case {((x, y), (a, b)) : y = ax + b}, we get t = 4(q + 1), giving
an exponent in the symmetric form of 3

2 −
1

16(q+1)−2 .

This uses linear QE (Weispfenning): if an Ldiv qf-formula ψ(x, y, z) is linear in x, y, i.e.
each polynomial has degree 1 in x and each yi, then ∃x.ψ(x, y, z) is equivalent modulo
ACVF to a qf-formula linear in y.

Question: in the Szemerédi-Trotter case with Fp(t), could there be an exponent which
doesn’t depend on p? Worst lower bound I know is 4

3 , with a similar ”rectangular grid”
argument as in the char 0 case:

|{((x, y), (a, b)) ∈ (Fp[t]<n × Fp[t]<2n)2 : y = ax+ b}| = |Fp[t]<n × Fp[t]<n × Fp[t]<2n|
= p4n

= (p3n)
4
3

= |Fp[t]<n × Fp[t]<2n|
4
3 .

4 Elekes-Szabó consequences

As in the characteristic 0 case, these incidence bounds yield “modularity of coherence”, and
hence Elekes-Szabó bounds.

• Let k0 be a field admitting a valuation with finite residue field.

• For r ≥ 1, let
kr := {a ∈ (k0)alg : deg(k0(a)/k0) ≤ r}.

• From the proof for k0, we get that each kr is also distal in (k0)alg � ACVF.

• This is sufficient for the arguments of one direction of the 1-dimensional case of the main
result of B-Breuillard to go through:

Theorem Let U be a non-principal ultrafilter on ω.

Let k′ := ((k0)U )alg ≤ ((k0)alg)U =: L, so k′ =
⋃
r∈ω(kr)

U .

Let ξ ∈ NU \ N.

δ(
∏
i→U

Xi) := st logξ lim
i→U
|Xi| ∈ R ∪ {∞}.

Equip L with the structure generated by countably many internal relations, including each
(kr)

U , such that δ is continuous.

For a ∈ L<ω,
δ(a) = δ(tp(a)) = inf

φ∈tp(a)
δ(φ(L)).

P ⊆ L is coherent if δ(a) = trd(a) for all a ∈ P<ω.

Write acl0 for field-theoretic algebraic closure.

Let P ⊆ k′ be coherent, and let ccl(P ) := {a ∈ acl0(P ) : δ(a) = trd(a)} ⊆ k′.
Then ccl(P ) is coherent, and acl0|ccl(P ) is a modular pregeometry.

Fact (Evans-Hrushovski) Let Π be a modular subgeometries of dimension 3 ≤ n < ω of
the geometry of algebraic closure on an algebraically closed field L (of any characteristic)
over an algebraically closed subfield C0 ≤ L.

Then there exists a 1-dimensional algebraic group G over C0 and generic x ∈ Gn over C0

such that Π embeds in the projective geometry {aclC0
(
∑
i eixi) : ei ∈ End(G), e 6= 0}.

One deduces:

Theorem Let k0 be a field admitting a valuation with finite residue field. Let V ⊆ Am
be an irreducible affine variety over k0.

At least one of the following holds:

(i) ∃C, ε > 0. ∀X1, . . . , Xm ⊆fin k0.

|V (k0) ∩ (X1 × . . .×Xm)| ≤ C max(|Xi|)dimV−ε;

(ii) Up to finite correspondences on co-ordinates and taking products,
V is a subgroup of a power of a 1-dimensional algebraic group.

Remark 4.1 In characteristic 0 there is a higher dimensional (”coarse general position”)
version of this. That doesn’t immediately go through, but only because it needs a posi-
tive characteristic version of higher dimensional Evans-Hrushovski, which remains to be
proven. (The m = 3 case probably goes through directly, but I haven’t checked.)

Getting a version with “exactly one” in place of “at least one” would also take some more
work.
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