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Abstract. We give a model-theoretic treatment of the fundamental results of
Kechris-Pestov-Todor£evi¢ theory in the more general context of automorphism
groups of not necessarily countable structures. One of the main points is a
description of the universal ambit as a certain space of types in an expanded
language. Using this, we recover results of Kechris-Pestov-Todor£evi¢ [6], Moore
[8], Ngyuen Van Thé [9], in the context of automorphism groups of not neces-
sarily countable structures, as well as Zucker [12].

0. Introduction

The idea of studying interactions between dynamical properties of the automor-
phism group of a Fraïssé structure and combinatorial properties of the underlying
Fraïssé class developed in [6] started a whole new research area which joins tech-
niques from topological dynamics, structural Ramsey theory, and descriptive set
theory. The main results of [6] are the following.

• The automorphism group of a locally �nite Fraïssé structure F is extremely
amenable if and only if the underlying Fraïssé class has the embedding
Ramsey property (using the terminology from [12]; see [12, Theorem 5.1]).
• Let L0 and L = L0 ∪ {<} be two languages, F0 be a locally �nite Fraïssé
structure in L0, and let F be its Fraïssé order expansion to L (meaning
that the interpretation of < in F is a linear ordering). Then if Age(F )
has the Ramsey property and the so-called ordering property with re-
spect to Age(F0), then the universal minimal Aut(F0)-�ow is the closure
cl(Aut(F0)· <) in the space of linear orderings on F with the natural left
action of Aut(F0). (See [6, Theorem 7.5].)

Later, the second result was generalized in [9] to so-called precompact expansions
of F0 by a possibly in�nite number of relation symbols (see Fact 1.2).
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In this paper, we give a natural account for these (and some other important)
results using model-theoretic objects. The key point is our description of the right
[left] universal ambit for the group Aut(M) of automorphisms of any structure M
as a space of types in a very rich (full) language. To get this description, we use
the well-known model-theoretic description of the universal ambit of a topological
group from [5] (see also [7]). With our approach, it is natural to work more
generally with arbitrary structures instead of Fraïssé structures. This naturally
yields a generalization of the previous approach. However, since every structure
can be canonically expanded to an ultrahomogeneous one (see Subsection 1.1),
our approach yields in fact a generalization from the context of Fraïssé structures
to possibly uncountable ultrahomogeneous structures. Some generalizations to an
uncountable context have already been obtained, e.g. in [2] and [10].
Our point of view is not based on just trying to translate the existing papers

into model theory and translate existing proofs, but to �nd de�nitions and proofs
natural from the model-theoretic perspective. It would not be surprising that
there are parallels between our proofs and those in the descriptive set theory
literature. Although our results are not far from the known results, our paper is
a starting point and provides some foundational material for the upcoming paper
on �de�nable� versions of various notions and connections between Ramsey theory
and topolological dynamics for �rst order theories. We also hope that our paper
will make the whole subject more natural and easier to understand to a wider
model theory society.
All of this belongs to our general project of studying interactions between model

theory and the dynamical properties of groups of automorphisms. As mentioned
above, in a forthcoming paper of the �rst author with Junguk Lee and Slavko
Moconja, we will study Ramsey properties and degrees in a �rst order setting
(with some special �de�nable� colorings); but here we focus on classical Ramsey
theory (with all possible colorings allowed), and we mostly recover some known
results. Independently, also Ehud Hrushovski is preparing a paper containing some
�rst order version of Ramsey theory.
In Section 1, we recall the relevant de�nitions and facts from model theory, topo-

logical dynamics, and Ramsey theory. In Section 2, we give our description of the
universal ambit of the group of automorphism of any structure as a space of types,
and, using it, we recover Zucker's presentation from [12] of the universal ambit as
a certain inverse limit: model-theoretically this becomes absolutely natural, as it
follows from the presentation of the type space in in�nitely many variables as the
inverse limit of the restrictions to the �nite tuples of variables. In Section 3, we
reprove the �rst main theorem from [6] recalled above, and in Section 4 � an anal-
ogous result from [8] characterizing amenability of the automorphism group via
the so-called convex Ramsey property (everything done in a more general context
of arbitrary structures). In Section 5, we reprove the aforementioned result from
[9] (also in a more general context) yielding a description of the universal minimal
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�ow. In Section 6, we reprove [12, Theorem 8.7] saying that metrizability of the
universal minimal Aut(M)-�ow is equivalent to Age(M) having �nite embedding
Ramsey degree, where M is a Fraïssé structure.

1. Preliminaries

We present here the necessary notions and facts from model theory, topological
dynamics, and Ramsey theory.

1.1. Model theory. A �rst order structure will usually be denoted by M . We
say that M is κ-saturated if every type over a subset A of M of cardinality smaller
than κ is realized in M ; it is strongly κ-homogeneous if every elementary map
between subsets of M of cardinality smaller than κ extends to an automorphism
of M . Equivalently, strong κ-homogeneity means that any tuples ā ≡ b̄ in M of
length less than κ lie in the same orbit under Aut(M). A monster model of a
given complete theory T is a κ-saturated and strongly κ-homogeneous model for a
su�ciently large cardinal κ (usually one assumes that κ is a strong limit cardinal
greater than |T |); it is well-know that a monster model always exists.
An ultrahomogeneous structure is a structure M in which every isomorphism

between any �nitely generated substructures extends to an isomorphism of M ;
if the language is relational, then �nitely generated substructures are just �nite
substructures. Equivalently, ultrahomogeneity means that any �nite tuples in M
with the same quanti�er-free type lie in the same orbit under Aut(M). Note that
each ultrahomogeneous structure is strongly ℵ0-homogeneous. A Fraïssé structure
is a countable ultrahomogeneous structure. It is well-know that that the age of
a Fraïssé structure M (i.e. the class Age(M) of all �nitely generated structures
in the given language which can be embedded into M) is a Fraïssé class, i.e. is
non-empty and satis�es: Hereditary Property (HP), Joint embedding Property
(JEP), Amalgamation Property (AP), and Denumerability (see [6, Section 2]).
Fraïssé's theorem says that the converse is true: every Fraïssé class has a unique
(up to isomorphism) Fraïssé limit, i.e. a Fraïssé structure whose age is exactly the
Fraïssé class in question.
If M is an arbitrary structure, one can always consider its canonical ultraho-

mogeneous expansion by adding predicates for all the Aut(M)-orbits on all �nite
Cartesian powers of M . The automorphism group of this expansion is the same as
the original one. In this paper, often one can pass to this expansion without loss
of generality, which in the case of countable M means that we can assume that M
is a Fraïssé structure.

1.2. Topological dynamics. Let G be a topological group. Recall that a left
[right] G-�ow is a pair (G,X) where X is a non-empty, compact space on which
G acts on the left [resp. on the right] continuously. A G-ambit is a �ow (G,X, x0)
with a distinguished point x0 ∈ X whose G-orbit is dense in X. It is well-known
that for any topological group G there exists a universal G-ambit, i.e. a G-ambit
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which maps homomorphically to any other G-ambit; a universal G-ambit is clearly
unique up to isomorphism, so we can say the universal G-ambit. The existence of
the universal G-ambit is also easy: up to isomorphism there are at most i3(|G|)
G-ambits, so we can �nd a set A of G-ambits which consists of representatives of
all the isomorphism classes; then the product of all G-ambits from A, with the dis-
tinguished point being the net consisting of the distinguished points in the ambits
from A, is the universal G-ambit. This universal G-ambit can also be described as
the Samuel compacti�cation of G, and there is a well-known construction of this
object in general topology (e.g. see [11, Section 2]). In the next subsection, we
recall the model-theoretic presentation of the universal G-ambit which we will use
in this paper.
A sub�ow of a given �ow (G,X) is a �ow of the form (G, Y ) for a closed, G-

invariant subset Y of X, where the action of G on Y is the restriction of the
action of G on X. A minimal �ow is a �ow which does not have proper sub�ows.
A universal minimal G-�ow is a minimal G-�ow which maps homomorphically
to any minimal G-�ow. By Zorn's lemma, each �ow has a minimal sub�ow. It
is clear that that any minimal sub�ow of the universal G-ambit is a universal
minimal G-�ow. It turns out that a universal minimal G-�ow is also unique up to
isomorphism, which is less obvious (see [1, Chapter 8, Theorem 1]). An important
goal of topological dynamics is to understand the universal minimal G-�ow for a
given group G.
Recall that a topological group G is said to be extremely amenable if in every

left [equivalently right] G-�ow there is a �xed point. Equivalently, this holds for
the universal left [right] G-ambit. A topological group G is said to be amenable
if on every left [equivalently right] G-�ow there is a G-invariant, Borel probability
measure. Equivalently, this holds for the universal left [right] G-ambit.

1.3. Model-theoretic description of the universal G-ambit. The descrip-
tion of the universal left G-ambit given below comes from [5]. It can also be
found in [7, Fact 2.11]. In fact, this description is a model-theoretic interpreta-
tion of the Samuel compacti�cation, where �model-theoretic� refers to passing to
a �nonstandard model� or �elementary extension of the ground model�.
Let G be a topological group. Treat it as a �rst order structure M in any

language L in which we have a function symbol interpreted as the group law and
for every open subset U of G we have a unary relational symbol (also denoted by U)
interpreted as U . More generally, it is enough to work in any structureM in which
G is a ∅-de�nable group and all open subsets of G are ∅-de�nable. LetM∗ �M be
a monster model, G∗ := G(M∗), and U∗ := U(M∗). The group µ of in�nitesimals is
de�ned as

⋂
{U∗ : U an open neighborhood of the neutral element of G}. De�ne

a relation ∼ on G∗ by

a ∼ b ⇐⇒ ab−1 ∈ µ.
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Finally, de�ne Eµ on G∗ by

Eµ := ∼ ◦ ≡M = ≡M ◦ ∼,
where ≡M is the relation of having the same type over M . Then Eµ is the �nest
bounded, M -type-de�nable equivalence relation on G∗ coarsening ∼. Moreover, µ
is normalized by G, so

g · (a/Eµ) := (ga)/Eµ

is a well-de�ned action of G on G∗/Eµ, and it turns out (see [7, Fact 2.11]) that
(G,G∗/Eµ, e/Eµ) is exactly the universal left G-ambit, where G∗/Eµ is equipped
with the logic topology (i.e. the closed subsets of G∗/Eµ are those subsets whose
preimages under the quotient map are type-de�nable subsets of G∗).
From this, it is easy to get an analogous description of the universal right G-

ambit. It is clear that it will be (G,G∗/Eµ, e/Eµ) with the right action of G on
G∗/Eµ given by (a/Eµ) ∗ g := g−1 · (a/Eµ) = (g−1a)/Eµ. Now, applying the
group-theoretic inverse to everything, we get the relation

Er
µ := E−1

µ = ∼r ◦ ≡M = ≡M ◦ ∼r,

where a ∼r b ⇐⇒ a−1b ∈ µ, the right action of G on G∗/Er
µ given by

(a/Er
µ)g := ((a−1/Eµ) ∗ g)−1 = ((g−1a−1)/Eµ)−1 = (ag)/Er

µ,

and the universal right G-ambit is exactly (G,G∗/Er
µ, e/E

r
µ) with this action.

1.4. Structural Ramsey theory. In this paper, we will be talking about color-
ings of embeddings rather than of substructures (as in [12]; in particular, see [12,
Proposition 4.4]). Let C be a class of �nite structures in a language L. For two
�nite L-structures A and B, by Emb(A,B) we denote the set of all embeddings
from A to B; A ≤ B means that Emb(A,B) 6= ∅. We say that C has the embed-
ding Ramsey property (ERP), if for every A,B ∈ C with A ≤ B and for any r ∈ ω
there is C ∈ C with B ≤ C such that for any coloring c : Emb(A,C)→ r there is
f ∈ Emb(B,C) such that f ◦ Emb(A,B) is monochromatic with respect to c.
Now, we recall one of the fundamental results of Kechris, Pestov, Todor£evi¢

theory (see Theorem 5.1 in [12]), which we will reprove and generalize in Section
3.

Fact 1.1. If K is a Fraïssé class of �nite structures with Fraïssé limit K, then K
has the ERP if and only if Aut(K) is extremely amenable.

To recall the second main result describing universal minimal �ows of automor-
phism groups of some Fraïssé structures, we need to recall several notions. We will
work in the more general context from [9], with precompact relational expansions
in place of expansions by one symbol <.
Consider two countable languages L and L0, where L is obtained from L0 by

adding countably many relational symbols. Let K0 be a Fraïssé class in L0 con-
sisting of �nite structures. We say that a class K of L-structures is an expansion
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of K0 if each structure in K is an expansion of a structure from K0, and conversely,
each structure from K0 has an expansion to a structure in K. Whenever K is an
expansion of K0, K is said to have the expansion property relative to K0 if for every
A0 ∈ K0 there exists B0 ∈ K0 such that for every A,B ∈ K with A � L0 = A0 and
B � L0 = B0 one has A ≤ B.
Let K0 be the Fraïssé limit of a Fraïssé class K0 of �nite structures. We say

that an L-expansion K of K0 is precompact if each structure from K0 = Age(K0)
has only �nitely many expansions to structures in Age(K).
Denote L \L0 = {Ri : i ∈ I}. The set of L \L0-structures on a universe

K can be naturally treated as the compact space X :=
∏

i∈I{0, 1}K
ni with the

product topology, where ni is the arity of Ri. Now, if K0 is a Fraïssé structure
with an expansion K, then ~R := K � (L \L0) is naturally an element of X.
Moreover, we have a natural left [and right] action of Aut(K0) on X: the left
action is just given by the left translations of each relation from L\L0 on K (i.e.
gRi := {(gx1, . . . , gxni

) : (x1, . . . , xni
) ∈ Ri}), and the right action is the left action

by the inverse.
For the next fact see [9, Theorem 5]. We focus here only on one direction of this

theorem, yielding a description of the universal minimal �ow. The closure in this
paper is taken with respect to the product topology on X. In [9, Theorem 5], a
�ner topology is considered (see [9, Section 2]), which coincides with the product
topology when L \ L0 is �nite. In general, by the minimality of the �ow in the
conclusion of [9, Theorem 5], and the fact that cl(Aut(K0) · ~R) is compact in the
�ner topology (see [9, De�nition 1]), the version of the theorem with the �ner
topology is equivalent to the version with the product topology (more precisely,
the closure in the conclusion is the same for both topologies).

Fact 1.2. Let K0 be a locally �nite Fraïssé structure, and K be a Fraïssé pre-
compact, relational expansion of K0. Assume that the class Age(K) has the ERP
as well as the expansion property relative to Age(K0). Then the Aut(K0)-sub�ow

cl(Aut(K0) · ~R) of X is the universal minimal left Aut(K0)-�ow. Equivalently, the

Aut(K0)-sub�ow cl(~R·Aut(K0)) of X is the universal minimal right Aut(K0)-�ow.

The name �precompact� is used, because precompactness of an L-expansion K
of a Fraïssé structure K0 is equivalent to topological precompactness of the metric
subspace Aut(K0) · ~R of X equipped with a certain natural metric (see Section 2
of [9]) which induces a �ner topology (the one mentioned before Fact 1.2) on X
than the product one. But in this paper, we will not use this metric at all.
Let K be the Fraïssé limit of a Fraïssé class K of �nite structures. Zucker [12]

found a very interesting connection between metrizability of the universal minimal
Aut(K)-�ow and a Ramsey-theoretic property of K.
De�nition 1.3. A class C of �nite structures in some language has separately
�nite embedding Ramsey degree if for every A ∈ C there is a natural number k
such that for every B ∈ C with A ≤ B and for every r ∈ ω there is C ∈ C with
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B ≤ C such that for any coloring c : Emb(A,C)→ r there is f ∈ Emb(B,C) such
that c[f ◦ Emb(A,B)] is of size at most k.

We used the word �separately� to re�ect the fact that k depends on A. By
[12, Proposition 4.4], in this de�nition we could equivalently color substructures
instead of embeddings. The next result is [12, Theorem 8.7].

Fact 1.4. Let K be a locally �nite Fraïssé structure, and K = Age(K). Then the
following conditions are equivalent.

(1) The universal minimal Aut(K)-�ow is metrizable.
(2) K has separately �nite embedding Ramsey degree.

1.5. Structural Ramsey theory in this paper. Here, we extend the de�nitions
from the previous subsection in the form that we will be using in this paper.
Note that if A and B are structures in the same language, and we enumerate A

as ā, then each embedding f ∈ Emb(A,B) is naturally identi�ed with the tuple
ā′ = f(ā) contained in B, and in this way the set of embeddings of A to B is
the same thing as

(
B
ā

)qf
:= {ā′ : ā′ ⊆ B and ā′ ≡qf ā}. Hence, if K is a Fraïssé

class of �nite structures in a relational language with Fraïssé limit K, then K has
the ERP if and only if for any �nite tuple ā from K and a �nite set B ⊆ K
containing ā, for any r ∈ ω, there is a �nite C ⊆ K containing B such that for
every coloring c :

(
C
ā

)qf → r there is an isomorphic copy B′ ⊆ C of B such that(
B′

ā

)qf
is monochromatic with respect to c. But by ultrahomogeneity of K, for

any �nite ā in K and any B ⊆ K, we have
(
B
ā

)qf
:= {ā′ : ā′ ⊆ B and ā′ =

f(ā) for some f ∈ Aut(K)}. This classical situation leads us to the following
generalization, which will be used in our results.
LetM be an arbitrary (possible uncountable) structure in an arbitrary language.

For any tuple ā in M and B ⊆ M , by
(
B
ā

)
we will mean the set {ā′ : ā′ ⊆

B and ā′ = f(ā) for some f ∈ Aut(M)}; an analogous notation applies when ā
is replaced by a subset A of M . A family A of �nite subsets of M is said to be
co�nal (in M) if every �nite subset of M is contained in a member of A.
De�nition 1.5. (1) We will say that M has the embedding Ramsey property

(ERP) if for any �nite tuple ā in M (possibly with repetitions) and a �nite
set B ⊆M containing ā, for any r ∈ ω, there is a �nite C ⊆M containing
B such that for every coloring c :

(
C
ā

)
→ r there is B′ ∈

(
C
B

)
such that

(
B′

ā

)
is monochromatic with respect to c.

(2) A co�nal familyA of �nite subsets ofM has the embedding Ramsey property
(ERP) if for any tuple ā enumerating a member of A and a �nite set B ∈ A
containing ā, for any r ∈ ω, there is a �nite C ∈ A containing B such
that for every coloring c :

(
C
ā

)
→ r there is B′ ∈

(
C
B

)
such that

(
B′

ā

)
is

monochromatic with respect to c.

Remark 1.6. The following conditions are equivalent for an arbitrary structureM .
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(1) M has the ERP.
(2) Every structure M ′ with the same universe as M and the same group of

automorphisms has the ERP.
(3) Some co�nal family of �nite subsets of M has the ERP.
(4) Every co�nal family of �nite subsets of M has the ERP.

Proof. The implications (1)→ (2)→ (4)→ (3) are trivial.
(3) → (1). Suppose A is a co�nal family of �nite subsets of M with the ERP.
Consider any �nite tuple ᾱ in M . To show the ERP for ᾱ, we can clearly assume
that ᾱ does not have repetitions. As A is co�nal, ᾱ can be extended to a tuple
ā enumerating a member of A. Consider any �nite B ⊆ M containing ᾱ. As A
is co�nal, we can �nd B̃ ∈ A containing B and ā, and such that every ᾱ′ ∈

(
B
ᾱ

)
extends to an ā′ ∈

(
B̃
ā

)
. Consider any r ∈ ω. Since A has the ERP, we can �nd

C ∈ A containing B̃ such that for every coloring c̃ :
(
C
ā

)
→ r there is B̃′ ∈

(
C
B̃

)
such

that
(
B̃′

ā

)
is monochromatic. Now, consider any coloring c :

(
C
ᾱ

)
→ r. It extends

to a coloring c̃ :
(
C
ā

)
→ r by giving the color c of the subtuple corresponding to ᾱ.

Since B̃′ = σ[B̃] for some σ ∈ Aut(M), it is clear that B′ := σ[B] has the desired
property that

(
B′

ᾱ

)
is monochromatic with respect to c. �

We will return to this general context in Section 3. A similar discussion applies
to �nite embedding Ramsey degrees.

De�nition 1.7. (1) We will say that M has separately �nite embedding Ram-
sey degree if for any �nite tuple ā (possibly with repetitions) there exists
kā ∈ ω such that for every �nite B ⊆ M containing ā and for any r ∈ ω
there is a �nite C ⊆M containing B such that for every coloring c :

(
C
ā

)
→ r

there is B′ ∈
(
C
B

)
such that the set c[

(
B′

ā

)
] is of size at most kā.

(2) A co�nal family A of �nite subsets of M has separately �nite embedding
Ramsey degree if for any �nite tuple ā enumerating a member of A there
exists kā ∈ ω such that for every B ∈ A containing ā and for any r ∈ ω
there is a �nite C ∈ A containing B such that for every coloring c :

(
C
ā

)
→ r

there is B′ ∈
(
C
B

)
such that the set c[

(
B′

ā

)
] is of size at most kā.

Remark 1.8. The following conditions are equivalent for an arbitrary structureM .
(1) M has separately �nite embedding Ramsey degree.
(2) Every structure M ′ with the same universe as M and the same group of

automorphisms has separately �nite embedding Ramsey degree.
(3) Some co�nal family of �nite subsets of M has separately �nite embedding

Ramsey degree.
(4) Every co�nal family of �nite subsets of M has separately �nite embedding

Ramsey degree.

A similar discussion applies to the so-called convex embedding Ramsey property,
but this will be handled in Section 4.



ON THE TOPOLOGICAL DYNAMICS OF AUTOMORPHISM GROUPS 9

Note that in all these situations, without loss of generality one can pass to
the canonical expansion of M to an ultrahomogeneous structure. So, in fact, our
generalizations will be only to uncountable structures (as ultrahomogeneity can be
always assumed without loss of generality).
As a corollary of the above discussions we get that ifM is a locally �nite Fraïssé

structure, then M has the ERP [resp. convex embedding Ramsey property, or
separately �nite embedding Ramsey degree] if and only if Age(M) has it.

2. Model-theoretic description of the universal ambit

In this section, M is an arbitrary �rst order structure in a language L, and
G := Aut(M) is equipped with the pointwise convergence topology. We will give
a model-theoretic realization of the universal G-ambit.
LetM be the structure consisting of two disjoint sorts G andM with predicates

for all the subsets of all the �nite Cartesian products of sorts; we call this language
full. Note that the natural action of G on M is ∅-de�nable inM, all elements of
M are in dcl(∅), and all the L-de�nable subsets of the Cartesian powers of M are
∅-de�nable in M. Hence, L-formulas can naturally be identi�ed with equivalent
formulas from the full language. (If one prefers, to our full language one can add
all the symbols from L.) Types in this full language will be denoted by tpfull and
in the original language L by tpL. Let M∗ = (G∗,M∗, . . . ) � M be a monster
model (of the theory ofM). Then G∗ acts de�nably and faithfully as a group of
automorphisms of M∗ treated as an L-structure. Enumerate M as m̄. De�ne

ΣM := {tpfull(σ(m̄)) : σ ∈ G∗} = {tpfull(σ(m̄)/M) : σ ∈ G∗}.

Remark 2.1. Let SM := {p ∈ Sfull(∅) : tpL(m̄) ⊆ p}. Then:
(1) ΣM is a closed subset of SM.
(2) If M is a strongly ℵ0-homogeneous model of an ω-categorical theory (e.g.

the unique countable model), then ΣM = SM.

Proof. (1) follows from |M |+-saturation of M∗, as we get that ΣM is the closed
subset of SM given by the partial type (∃σ ∈ G)(x̄ = σ(m̄)). For (2) consider
any p ∈ ΣM. By ω-categoricity, for any �nite tuples of variables x̄ and ȳ of the
same length, the condition tpL(x̄) = tpL(ȳ) is de�nable by a formula ϕ(x̄, ȳ) in
the language L. By the strong ℵ0-homogeneity of M ,

M |= ϕ(x̄, ȳ)→ (∃σ ∈ G)(σ(x̄) = ȳ),

so the same sentence holds inM∗. Now, take any m̄′ ≡L m̄ in M∗. We conclude
that for every corresponding �nite subtuples ā′ and ā of m̄′ and m̄, respectively,
there is σ ∈ G∗ with σ(ā) = ā′. By |M |+-saturation ofM∗, we get some σ ∈ G∗
with σ(m̄) = m̄′. �

The main result of this section is the following description of the universal G-
ambit.
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Theorem 2.2. The formula tpfull(σ(m̄)) ·g := tpfull(σ(g(m̄))) yields a well-de�ned
right action of G on ΣM, and with this action (G,ΣM, tpfull(m̄)) is the universal
right G-ambit. In particular, this universal ambit is zero-dimensional.

Proof. First, we check that · is well-de�ned. Suppose tpfull(σ(m̄)) = tpfull(τ(m̄))
and g ∈ G (where σ, τ ∈ G∗). We need to show that tpfull(σ(g(m̄))) =
tpfull(τ(g(m̄))). By strong |M |+-homogeneity ofM∗, there is f ∈ Aut(M∗) such
that f(σ(m̄)) = τ(m̄). Since f �xes M pointwise and the action of G on M is
∅-de�nable in the full language, we get f(σ)(m̄) = f(σ)(f(m̄)) = f(σ(m̄)) = τ(m̄).
Hence, f(σ(g(m̄))) = f(σ)(f(g)(f(m̄))) = f(σ)(g(m̄)) = τ(g(m̄)), where the last
equality follows from the previous sentence, as g(m̄) is a permutation of m̄.
The fact that · is a right action is trivial. Next, let us check that · is continuous.

Consider a basic clopen subset of ΣM, i.e. a subset of the form [ϕ(x̄)] := {p ∈
ΣM : ϕ(x̄) ∈ p} for some formula ϕ(x̄) without parameters in the full language.
The goal is to show that the set

X := {(q, g) ∈ ΣM ×G : ϕ(x̄) ∈ q · g}
is open in the product topology. Although the tuple of variables x̄ is in�nite (corre-
sponding to m̄), the formula ϕ(x̄) uses only a �nite subtuple x̄′ of x̄ corresponding
to some �nite subtuple ā of m̄. Note that ϕ(x̄) ∈ q ·g if and only if there is σ ∈ G∗
such that ϕ(σ(g(ā))) and q = tpfull(σ(m̄)). Hence, for any q ∈ ΣM and g ∈ G,
we see that (q, g) ∈ X if and only if there is b̄ in M such that g(ā) = b̄ and the
formula ψb̄(x̄, b̄) := (∃σ of sort G)(ϕ(σ(b̄)) ∧ σ(b̄) = x̄b̄) belongs to q, where x̄b̄ is
the �nite subtuple of x̄ corresponding to the subtuple b̄ of m̄ (recall that b̄ is in
dcl(∅) in the full language, so we can use it as parameters). Therefore,

X =
⋃
b̄∈Gā

[ψb̄(x̄, b̄)]× {g ∈ G : g(ā) = b̄},

which is clearly open.
Note that tpfull(m̄)·G is dense in ΣM, as for any σ ∈ G∗ and ϕ(x̄) ∈ tpfull(σ(m̄)),

since M ≺ M∗, we get that there is g ∈ G with ϕ(g(m̄)), but this means that
ϕ(x̄) ∈ tpfull(g(m̄)) = tpfull(m̄) · g.
So we have already proved that (G,ΣM, tpfull(m̄)) is a right G-ambit. To see

that it is universal, it is enough to show that it is isomorphic to the universal right
G-ambit described as G∗/Er

µ in Subsection 1.3.
Let F : G∗ → ΣM be given by F (σ) := tpfull(σ(m̄)).

Claim 1: F (σ) = F (τ)⇐⇒ σEr
µτ .

Proof. (⇒) Assume F (σ) = F (τ). Then there is f ∈ Aut(M∗) with f(σ(m̄)) =
τ(m̄). Since f(σ(m̄)) = f(σ)(f(m̄)) = f(σ)(m̄), we conclude that (τ−1f(σ))(m̄)) =
m̄. Since µ = {σ ∈ G∗ : σ(m̄) = m̄}, we obtain τ ∼r f(σ) ≡full

M σ which means
that τEr

µσ.
(⇐) Assume σEr

µτ . Then there is f ∈ Aut(M∗) with f(σ) ∼r τ . This exactly
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means that f(σ)(m̄) = τ(m̄), so f(σ(m̄)) = τ(m̄), and hence tpfull(σ(m̄)) =
tpfull(τ(m̄)). �

By the claim, F induces a bijection F̃ : G∗/Er
µ → ΣM. F̃ is continuous, as

F̃−1[[ϕ(x̄)]] = {σ/Er
µ :|= ϕ(σ(m̄))} is closed in the logic topology (for any formula

ϕ(x̄) without parameters in the full language). Moreover, for any σ ∈ G∗ and
g ∈ G, F̃ ((σ/Er

µ)g) = F̃ ((σg)/Er
µ) = tpfull(σ(g(m̄))) = tpfull(σ(m̄)) · g. Also,

F̃ (id /Er
µ) = tpfull(m̄).

We have justi�ed that F̃ is an isomorphism of right G-ambits. �

Remark 2.3. One could signi�cantly shorten the above proof. Namely, everything
follows from Claim 1 and the computations following it: · is well-de�ned, because
the action of G on G∗/Er

µ is well-de�ned and F̃ maps the action of G on G∗/Er
µ to

·, and the fact that (G,ΣM, tpfull(m̄)) is a right G-ambit follows from the fact that
(G,G∗/Er

µ, id /E
r
µ) is and the observation that F̃ is a homeomorphism preserving

the actions of G and mapping id /Er
µ to tpfull(m̄).

Nevertheless, we decided to include a direct proof of the fact that (G,ΣM, tpfull(m̄))
is a right G-ambit in order to show what is really going on here, and also because
of the following remark (whose context generalizes the one from Theorem 2.2)
which follows by almost the same (direct) proof.

Remark 2.4. Let M′ be a structure (G,M, . . . ) in a language L′ such that
the action of G on M is de�nable in M′. Let M′∗ = (G∗,M∗, ·) � M′

be a monster model. Put ΣM
′

:= {tpL′
(σ(m̄)/M)) : σ ∈ G∗}. Then

(G,ΣM
′
, tpL

′
(m̄/M)) is a right G-ambit with the right action de�ned by

tpL
′
(σ(m̄)/M) · g := tpL

′
(σ(g(m̄))/M).

Since in this remark we work only over parameters from M (and not from all of
M′), the computation in the proof of the fact that · is well-de�ned must be modi�ed
as follows: f(σ(g(m̄))) = f(σ)(f(g)(f(m̄))) = f(σ)(f(g(m̄))) = f(σ)(g(m̄)) =
τ(g(m̄)), as g(m̄) is contained in M and f �xes M pointwise.
As an immediate corollary of Theorem 2.2, we get that the universal left G-ambit

is also (G,ΣM, tpfull(m̄)) with the left action given by

g · tpfull(σ(m̄)) := tpfull(σ(g−1(m̄))).

An important aspect of [12] was a presentation of the universal right G-ambit
(working with a Fraïssé structure) as a certain inverse limit. Here, we will see
that this is exactly the obvious presentation of the type space in in�nitely many
variables as the inverse limit of type spaces in �nitely many variables.
For any �nite tuple ā in M , put

ΣMā := {tpfull(σ(ā)) : σ ∈ G∗}.
In contrast with Theorem 2.2 and the last remark, there is no obvious structure
of a right G-ambit on ΣMā . However, the following remark is clear.
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Remark 2.5. The restriction maps yield a homeomorphism h : ΣM → lim←−̄
a

ΣMā .

More generally, ā can range over any given enumerations of the sets from a given
co�nal family of �nite subsets of M .

Via this homeomorphism we induce the structure of a right G-ambit on lim←−̄
a

ΣMā :

〈tpfull(σ(ā))〉ā · g := 〈tpfull(σ(g(ā)))〉ā.
In order to see that this is exactly the presentation from [12, Section 6], we have

to identify ΣMā with some Stone-�ech compacti�cations considered in [12].
For a �nite ā in M , let Aā be the orbit of ā under Aut(M). The proof of the

next result is left as an exercise.

Proposition 2.6. (1) βAā is homeomorphic to ΣMā via fā given by

fā(U) := {ϕ(x̄) in the full language : Aā ∩ ϕ(M) ∈ U};
the inverse map is given by

f−1
ā (tpfull(σ(ā))) = {U ⊆ Aā : U(x) ∈ tpfull(σ(ā))}.

(2) lim←−̄
a

fā is a homeomorphism from lim←−̄
a

βAā to lim←−̄
a

ΣMā , where for ā being a

subtuple of b̄ the bonding map from βAb̄ to βAā is induced by the restriction
map from Ab̄ to Aā.

We can now induce a structure of a right G-ambit on lim←−̄
a

βAā via lim←−̄
a

fā.

Recall that the Stone-�ech compacti�cation βG of G treated as a discrete group
is also the right universal G-ambit for G treated as a discrete group, with the right
action of G on βG given by right translation and with the distinguished point being
the principal ultra�lter [e] := {U ⊆ G : e ∈ U} (see pages 118-119 in [1]). Let
f̃ : βG→ ΣM be the unique continuous extension of the map f : G→ ΣM given by
f(g) := tpfull(g(m̄)); this is exactly the unique epimorphism of right G-ambits (for
G treated as a discrete group) from (G, βG, [e]) to (G,ΣM, tpfull(m̄)). (One can
check that for any basic clopen subset of βG of the form [U ] := {U ∈ βG : U ∈ U}
(where U ⊆ G), f̃ [[U ]] = {tpfull(σ(m̄)) : σ ∈ U∗}, but we will not use it.)
By the above comments and remarks, we have the following sequence of empi-

morphisms of right G-ambits (the �rst ambit is for G treated as a discrete group),
where j := (lim←−̄

a

fā)
−1.

(1) βG
f̃
−� ΣM

h
−� lim←−̄

a

ΣMā
j
−� lim←−̄

a

βAā.

So we see that the right G-action on lim←−̄
a

βAā induced via j is also induced from

the right G-action on βG via j ◦ h ◦ f̃ .
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For g ∈ G and [g] := {U ⊆ G : g ∈ U} we have:

(2) [g]
f̃−→ tpfull(g(m̄))

h−→ 〈tpfull(g(ā))〉ā
j−→ 〈[g(ā)]〉ā,

so j ◦ h ◦ f̃ : βG → lim←−̄
a

βAā is the unique continuous map extending the map

G→ lim←−̄
a

βAā given by [g] 7→ 〈[g(ā)]〉ā.

Now, if M is ultrahomogeneous, then for any �nite ā from M the elements of
the orbit Aā are exactly all the tuples in M with the same qf-type as ā, so they
can be identi�ed with the embeddings of ā into M . And so, in the case of Fraïssé
structures, the presentation of the universal right G-ambit as lim←−̄

a

βAā coincides

with the presentation from [12, Section 6]. But here we do not assume that M
is countable and instead of all initial �nite subtuples of M we can range over
any co�nal family of �nite subtuples. Also, ultrahomogeneity is not needed, but
we can always assume it anyway it by considering the canonical expansion of M
mentioned at the end of Subsection 1.1.
The point of the above discussion is that model-theoretically the presentation

of ΣM as lim←−̄
a

ΣMā is straightforward, and we will use it in Section 6 to give a rather

quick proof of metrizability theorem from [12, Section 8].

3. Extreme amenability

In this section, we give a quick proof of Fact 1.1, based on our description of the
universal right G-ambit from Theorem 2.2. In fact, our proof works more generally
for automorphism groups of arbitrary (possibly uncountable) structures. We take
the notation and terminology from Subsection 1.5 and Section 2.

Remark 3.1. A structure M has the ERP if and only if for any �nite tuple ā
from M and a �nite set B ⊆ M containing ā, for any r ∈ ω, for every coloring
c :
(
M
ā

)
→ r, there is B′ ∈

(
M
B

)
such that

(
B′

ā

)
is monochromatic with respect to c.

Proof. (→) is trivial. For the other direction, suppose for a contradiction that for
some ā, B and r as above, for every �nite C ⊆ M containing B, the set KC of
colorings

(
C
ā

)
→ r such that for no B′ ∈

(
C
B

)
the set

(
B′

ā

)
is monochromatic is

non-empty. Clearly each KC is �nite, and for C ⊆ C ′ there is a map KC′ → KC

induced by the restriction of the domains of the colorings. So we get a non-empty,
pro�nite space lim←−

C

KC . Take η ∈ lim←−
C

KC , and de�ne c :
(
M
ā

)
→ r by

c(ā′) := η(C)(ā′)

for any �nite C ⊆ M containing B and ā′. It is clear that c is well-de�ned. We
claim that c contradicts the right hand side of the remark, more precisely for no
B′ ∈

(
M
B

)
the set

(
B′

ā

)
is monochromatic with respect to c. Indeed, for such a B′
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we can take a �nite superset C ⊆ M of B ∪ B′, and the conclusion follows from
the fact that c�

(
C
ā

)
= η(C) ∈ KC . �

Theorem 3.2. Let M be an arbitrary �rst order structure. The following condi-
tions are equivalent.

(1) G := Aut(M) is extremely amenable as a topological group.
(2) M has the ERP.

Proof. The following conditions are equivalent.
(i) G is extremely amenable.
(ii) There is p ∈ ΣM such that p ·G = {p}.
(iii) There is σ ∈ G∗ such that for every g ∈ G one has tpfull(σ(g(m̄))) =

tpfull(σ(m̄)).
(iv) For every �nite tuple ā from M , for every natural numbers n, r, for every

g0, . . . , gn−1 ∈ G, for every formulas ϕ0(x̄), . . . , ϕr−1(x̄) of the full language
(with x̄ corresponding to ā), there exists σ ∈ G such that∧

i<r

∧
j<n

(ϕi(σ(gj(ā)))↔ ϕi(σ(ā))).

The equivalence of (i) and (ii) follows from Theorem 2.2; (ii) ↔ (iii) is trivial;
the equivalence of (iii) and (iv) follows from |M |+-saturation ofM.

(2) → (1). We will show that (iv) holds. So take data as in (iv). Consider the
coloring c :

(
M
ā

)
→ 2r given by

c(ā′)(i) :=

{
1 if |= ϕi(ā

′)
0 if |= ¬ϕi(ā′)

for i ∈ {0, . . . , r − 1}. Choose a �nite B ⊆ M so that ā, g0(ā), . . . , gn−1(ā) are all
contained in B. By the ERP, there is B′ ∈

(
M
B

)
such that

(
B′

ā

)
is monochromatic.

But this implies that for σ ∈ G such that σ[B] = B′ the conclusion of (iv) holds
(because the tuples σ(ā), σ(g0(ā)), . . . , σ(gn−1(ā)) all belong to

(
B′

ā

)
).

(1)→ (2). Consider any �nite tuple ā fromM and any �nite B ⊆M containing
ā. Let c :

(
M
ā

)
→ r be a coloring. The �bers of this coloring are subsets of M |ā|,

so they are de�ned by formulas (in fact predicates) ϕ0(x̄), . . . , ϕr−1(x̄) of the full
language. Let g0(ā), . . . , gn−1(ā) be all elements of

(
B
ā

)
(where the gi's are from

G). Using (iv), we get σ ∈ G for which
(
σ[B]
ā

)
is monochromatic. So we are done

by Remark 3.1. �

4. Amenability

In this section, we will reprove Moore's theorem [8] characterizing amenability of
the groups of automorphisms of Fraïssé structures via the convex Ramsey property
of the underlying Fraïssé classes. We extend the context to arbitrary structures,
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and also notice that the condition ε > 0 from the de�nition of the convex Ramsey
property can be replaced by ε = 0.
There are several equivalent de�nitions of a Fraïssé class to have the convex

Ramsey property (which we prefer to call the embedding convex Ramsey property),
e.g. items (1)-(5) in [8, Theorem 7.1]. We choose one of them (more precisely, our
choice is in between the equivalent conditions from items (2) and (5) of [8, Theorem
7.1], so it is equivalent to them) and generalize it to co�nal families of �nite subsets
of an arbitrary structure.
If B ⊆ C are subsets of a structure M and b̄ is an enumeration of B, by

〈
C
b̄

〉
we

denote the a�ne combinations of copies of b̄ in C, i.e. the set of all λ1b̄1+· · ·+λkb̄k,
where k ∈ ω \ {0}, b̄i ∈

(
C
b̄

)
, and λ1, . . . , λk ∈ [0, 1] with λ1 + · · · + λk = 1.

When ā is a tuple in B, ā′ ∈
(
B
ā

)
, and v = λ1b̄1 + · · · + λkb̄k ∈

〈
C
b̄

〉
, then

v ◦ ā′ := λ1ā
′
1 + · · · + λkā

′
k ∈ 〈 Cā 〉, where for σi ∈ Aut(M) with σi(b̄) = b̄i we

put ā′i = σi(ā
′). Finally, if c :

(
C
ā

)
→ 2r = {0, 1}r, then we de�ne c(v ◦ ā′) :=

λ1c(ā
′
1) + · · ·+ λkc(ā

′
k) ∈ [0, 1]r.

De�nition 4.1. (1) A structure M has the embedding convex Ramsey prop-
erty (ECRP) if for every ε > 0, for any �nite tuple ā from M and any
enumeration b̄ of a �nite set B ⊆M containing ā, for any r ∈ ω, there is a
�nite C ⊆M containing B such that for every coloring c :

(
C
ā

)
→ 2r there is

v ∈
〈
C
b̄

〉
such that for every ā′, ā′′ ∈

(
B
ā

)
one has |c(v◦ ā′)−c(v◦ ā′′)|sup ≤ ε,

where |x|sup is the supremum norm on [0, 1]r.
Let us say thatM has the strong ECRP if the de�nition holds with ε = 0.

(2) A co�nal family A of �nite subsets of a structure M has the embedding
convex Ramsey property (ECRP) if for every ε > 0, for any ā enumerating
a member ofA and any b̄ enumerating a member B ⊇ A ofA, for any r ∈ ω,
there is C ∈ A containing B such that for every coloring c :

(
C
ā

)
→ 2r there

is v ∈
〈
C
b̄

〉
such that for every ā′, ā′′ ∈

(
B
ā

)
one has |c(v◦ā′)−c(v◦ā′′)|sup ≤ ε

Let us say that A has the strong ECRP if the de�nition holds with ε = 0.

In De�nition 4.1, it is equivalent to consider ā with repetitions allowed or with-
out. Arguing as in the proof of Remark 1.6, one gets that Remark 1.6 holds with
ERP replaced by the [strong] ECRP.
By the same argument as in Remark 3.1, we get

Remark 4.2. In De�nition 4.1, the part �there is a �nite C ⊆ M containing B�
[�there is C ∈ A containing B�] can be removed and then, in the rest of the
statement, C should be replaced by M .

Theorem 4.3. Let M be an arbitrary �rst order structure. The following condi-
tions are equivalent.

(1) G := Aut(M) is amenable as a topological group.
(2) M has the ECRP.
(3) M has the strong ECRP.
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Proof. Claim 1: The following conditions are equivalent.
(i) G is amenable.
(ii) For every ε > 0, for every �nite tuple ā from M without repetitions, for

all n, r ∈ ω, for all g0, . . . , gn−1 ∈ G, for all formulas ϕ0(x̄), . . . , ϕr−1(x̄) of
the full language (with x̄ corresponding to ā), there exist λ1, . . . , λk ∈ [0, 1]
with λ1 + · · ·+ λk = 1 and h1, . . . , hk ∈ G such that for

µ := λ1 tpfull(h1(m̄)) + · · ·+ λk tpfull(hk(m̄))

for all j1, j2 < n and i < r one has |µ([ϕi(x̄)] · g−1
j1

)− µ([ϕi(x̄)] · g−1
j2

)| ≤ ε,
where [ϕi(x̄)] is the basic clopen set in ΣM consisting of the types containing
ϕi(x̄).

(iii) The same as in (ii) but with ε = 0.

Proof. (iii) → (ii) is trivial. To see (ii) → (i), it is enough to recall that regular
Borel probability measures on a zero-dimensional compact space (such as ΣM) are
the same thing as �nitely additive, probability measures on the Boolean algebra
of clopen subsets (e.g. see [4, 416Q(a)]), and the set of all such measures with
the topology inherited from the product [0, 1]clopens is a compact space. Then the
intersection of the closed sets of measures satisfying the inequalities in (ii) will be
non-empty, and any measure in the intersection of these sets will be invariant.
(i) → (iii). Take any invariant, Borel probability measure ν on ΣM, and

consider any data as in the assumptions of (iii). In particular, we have for-
mulas ϕ0(x̄), . . . , ϕr−1(x̄) and elements g0, . . . , gn−1 ∈ G. Let F0, . . . , Fnr−1 be
all the clopens [ϕi(x̄)] · g−1

j for i < r and j < n. We claim that we can �nd
λ1, . . . , λk ∈ [0, 1] with λ1 + · · · + λk = 1 and h1, . . . , hk ∈ G such that for
µ := λ1 tpfull(h1(m̄)) + · · ·+ λk tpfull(hk(m̄)) for all j < nr we have µ(Fj) = ν(Fj).
This will clearly imply (iii), as ν is G-invariant. In order to show the existence
of λs and hs, consider the atoms B1, . . . , Bk of the Boolean algebra generated by
F0, . . . , Fnr−1. By the density in ΣM of the types realized inM, we can �nd hs ∈ G
for s ≤ k such that tpfull(hs(m̄)) ∈ Bs. Then put λs := ν(Bs). �

Claim 2: Consider any �nite tuple ā fromM without repetitions, natural numbers
n, r, k, elements g0, . . . , gn−1 ∈ G, formulas ϕ0(x̄), . . . , ϕr−1(x̄) of the full language
(with x̄ corresponding to ā), λ1, . . . , λk ∈ [0, 1], elements h1, . . . , hk ∈ G, and

µ := λ1 tpfull(h1(m̄)) + · · ·+ λk tpfull(hk(m̄)).

Let c :
(
M
ā

)
→ 2r be given by c(ā′)(i) :=

{
1 if |= ϕi(ā

′)
0 if |= ¬ϕi(ā′)

. Let v := λ1h1(b̄) +

· · ·+ λkhk(b̄) for some b̄ enumerating a �nite B ⊆M containing ā, g0ā, . . . , gn−1ā.
Then for any j1, j2 < n:

|c(v ◦ (gj1(ā)))− c(v ◦ (gj2(ā)))|sup = sup
i
|µ([ϕi(x̄)] · g−1

j1
)− µ([ϕi(x̄)] · g−1

j2
)|.
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Proof. |c(v◦(gj1(ā)))−c(v◦(gj2(ā)))|sup = |c(
∑
λshs(gj1(ā)))−c(

∑
λshs(gj2(ā)))|sup =

|
∑
λsc(hs(gj1(ā)))−

∑
λsc(hs(gj2(ā)))|sup = supi |

∑
{λs : ϕi(x̄) ∈ tpfull(hs(gj1(ā)))}−∑

{λs : ϕi(x̄) ∈ tpfull(hs(gj2(ā)))}| = supi |µ([ϕi(x̄)] · g−1
j1

)− µ([ϕi(x̄)] · g−1
j2

)|. �

Now, we turn to the implications between (1)-(3). The implication (3) → (2) is
trivial.
(2) → (1). By Claim 1, it is enough to show that (ii) holds. But this follows

from Claim 2 and the ECRP of M .
(1) → (3). Consider any �nite ā from M without repetitions, and a �nite

B ⊆ M (enumerated as b̄) containing ā. Let c :
(
M
ā

)
→ 2r be a coloring. Then

there are formulas (in fact predicates) ϕ0(x̄), . . . , ϕr−1(x̄) of the full language such

that c(ā′)(i) :=

{
1 if |= ϕi(ā

′)
0 if |= ¬ϕi(ā′)

. Let g0(ā), . . . , gn−1(ā) be all elements of
(
B
ā

)
(where the gi's are from G). Now, take λ1, . . . , λk ∈ [0, 1] and h1, . . . , hk ∈ G
provided by Claim 1(iii). Then, by Claim 2, v := λ1h1(b̄) + · · ·+λkhk(b̄) witnesses
the strong ECRP (by Remark 4.2). �

5. Universal minimal flow

In this section, we reprove Fact 1.2 in the more general setting. Throughout,
L0 ⊆ L are two �rst order languages. Whenever M is an L-structure, its reduct
to L0 will be denoted by M0. Then clearly Aut(M) ≤ Aut(M0).

De�nition 5.1. Let M be a structure in L, and let A be a co�nal family of �nite
subsets of M . We say that A has:

(1) the right expansion property for (L0, L) if for every A ∈ A there is B ∈ A
such that for every σ ∈ Aut(M0) there is τ ∈ Aut(M) with τ [A] ⊆ σ[B],

(2) the left expansion property for (L0, L) if for every A ∈ A there is B ∈ A
such that for every σ ∈ Aut(M0) there is τ ∈ Aut(M) with τ [σ[A]] ⊆ B,

(3) the expansion property for (L0, L) if for every A ∈ A there is B ∈ A such
that for every σ1, σ2 ∈ Aut(M0) there is τ ∈ Aut(M) with τ [σ1[A]] ⊆ σ2[B].

De�nition 5.2. We will say that a structure M in L has the [right or left] expan-
sion property for L0 if the family of all �nite subsets of M has the [resp. right or
left] expansion property for (L0, L).

It is clear that M has the [right or left] expansion property for L0 if and only if
some (equivalently every) co�nal family of �nite subsets of M has the [resp. right
or left] expansion property for (L0, L).
The next remark is left as an exercise. (Recall from Subsection 1.4 that for �nite

structures A and B in the same language, A ≤ B means that Emb(A,B) 6= ∅.)

Remark 5.3. Assume M and M0 := M �L0 are locally �nite Fraïssé structures in
languages L ⊇ L0, respectively, where L \ L0 consists of relational symbols. Let
K := Age(M) and K0 := Age(M0). Then:
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(1) M has the expansion property for L0 if and only if K has the expansion
property relative to K0 in the sense of [9] (see Subsection 1.4);

(2) M has the right expansion property for L0 if and only if for every A ∈ K
there exists B0 ∈ K0 such that for every B ∈ K with B �L0 = B0 one has
A ≤ B;

(3) M has the left expansion property for L0 if and only if for every A0 ∈ K0

there exists B ∈ K such that for every A ∈ K with A �L0 = A0 one has
A ≤ B.

De�nition 5.4. We will say that a structure M in L is precompact for L0 if
each Aut(M0)-orbit on a �nite Cartesian power of M is a union of �nitely many
Aut(M)-orbits.

Clearly, if M and M0 are ultrahomogeneous, then the above orbits are the same
thing as tuples with the same quanti�er-free types.
Again, the following easy remark is left as an exercise.

Remark 5.5. Assume M and M0 := M �L0 are locally �nite Fraïssé structures in
languages L ⊇ L0, respectively, where L \ L0 consists of relational symbols. Then
M is precompact for L0 if and only if M is a precompact expansion of M0 in the
sense of [9] (see Subsection 1.4).

Remark 5.6. Let M be an L-structure which is precompact for L0. Then M has
the right expansion property for L0 if and only if it has the expansion property for
L0.

Proof. (←) is trivial. To show (→), consider any �nite A ⊆ M . By precom-
pactness, there are σ1, . . . , σn ∈ Aut(M0) such that for every σ ∈ Aut(M0)
there is τ ∈ Aut(M) with τ [σ[A]] = σi[A] for some i ∈ {1, . . . , n}. By the
right expansion property, we can �nd �nite B1, . . . , Bn ⊆ M such that for every
i ∈ {1, . . . , n}, for every σ ∈ Aut(M0), there is τ ∈ Aut(M) with τ [σi[A]] ⊆ σ[Bi].
Put B := B1 ∪ · · · ∪ Bn. We will show that it witnesses the expansion property
for A. For this, consider any g1, g2 ∈ Aut(M0). By the choice of the σi's, there
exists τ1 ∈ Aut(M) such that τ1[g1[A]] = σi[A] for some i ∈ {1, . . . , n}. Next, by
the choice of Bi, there exists τ2 ∈ Aut(M) such that τ2[σi[A]] ⊆ g2[Bi] ⊆ g2[B].
Hence, τ2 ◦ τ1 ∈ Aut(M) and (τ2 ◦ τ1)[g1[A]] ⊆ g2[B]. �

When M is an L-structure and M0 := M �L0, we have structuresM andM0

de�ned as at the beginning of Section 2. And ΣM is the universal right Aut(M)-
ambit, while ΣM0 is the universal right Aut(M0)-ambit. Note that ΣM can and
will be naturally treated as an Aut(M)-sub�ow of ΣM0 .
Now, we turn to the main results.

Theorem 5.7. Let M be a structure in L with the right expansion property for
L0. Assume Aut(M) �xes a point p = tpfull(σ(m̄)) ∈ ΣM (where σ ∈ Aut(M)∗),
i.e. p ·Aut(M) = {p} (by Theorem 3.2, this is equivalent to saying that M has the
ERP). Then cl(p · Aut(M0)) is the universal minimal right Aut(M0)-�ow.
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Proof. Suppose for a contradiction that there is q ∈ cl(p · Aut(M0)) such that
p /∈ cl(q · Aut(M0)). Then we can �nd ϕ(x̄) ∈ p such that

(3) q = lim
i
p · gi = lim

i
tpfull(σ(gi(m̄))) for some net (gi)i in Aut(M0),

and

(4) ϕ(x̄) /∈ q · h for all h ∈ Aut(M0).

The formula ϕ(x̄) uses only a �nite subtuple x̄′ of x̄ corresponding to a �nite
subtuple ā of m̄. Let A be the set of all coordinates of ā. Take a �nite B ⊆ M
witnessing the right expansion property for A. Choose h1, . . . , hn ∈ Aut(M0) so
that h1(ā), . . . , hn(ā) are all the Aut(M0) -conjugates of ā contained in B.
By (3), (4), and the continuity of the action of Aut(M0) on ΣM0 , there is i for

which

(5) ϕ(x̄) /∈ (p · gi) · hj for all j ∈ {1, . . . , n}.

By the choice of B and h1, . . . , hn, there exists τ ∈ Aut(M) such that τ(ā) =
gihj(ā) for some j ∈ {1, . . . , n}. On the other hand, since p · Aut(M) = {p}, we
have p = p · τ = tpfull(σ(τ(m̄))), so |= ϕ(σ(τ(m̄))), so |= ϕ(σ(τ(ā))). Therefore,
|= ϕ(σgihj(ā)) which means that ϕ(x̄) ∈ (p · gi) · hj, a contradiction with (5). �

Now, we reprove Fact 1.2, extending the context to uncountable structures.

Theorem 5.8. Let M be an ultrahomogeneous L-structure, and let L \L0 = {Ri :
i ∈ I} consist of relational symbols. Assume M is precompact for L0, has the ERP

and the [right] expansion property for L0. Let ~R := M � (L \ L0) be an element of
the right Aut(M0)-�ow X of all L \L0-structures on the universe of M . Then the

Aut(M0)-sub�ow cl(~R · Aut(M0)) is the universal minimal right Aut(M0)-�ow.

Proof. By Theorem 3.2, there is p = tpfull(σ(m̄)) ∈ ΣM (where σ ∈ Aut(M)∗)
with p · Aut(M) = {p}.
Let Φ: ΣM0 → X be given by declaring that Φ(tpfull(ρ(m̄))) (for ρ ∈ Aut(M0)∗)

is a structure Mρ with the same universe as M , where

Mρ |= Ri(ā) ⇐⇒ M∗ |= Ri(ρ(ā)).

It is clear that Φ is continuous and preserves the right Aut(M0)-actions. There-
fore, by Theorem 5.7, it remains to show that Φ � cl(p · Aut(M0)) is injective and
with the image equal to cl(~R · Aut(M0)). First, we need to prove some claims.
By the choice of p, we immediately get

Claim 1: For any tuple ᾱ in M , if β̄ ∈ Aut(M)ᾱ, then tpfull(σ(ᾱ)) = tpfull(σ(β̄)).
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The next claim is crucial.

Claim 2: For any �nite tuple ā in M , we have {tpqf
L (σ(ā′)) : ā′ ∈ Aut(M0)ā} =

{tpqf
L (ā′) : ā′ ∈ Aut(M0)ā}, where tpqf

L (ᾱ) denotes the qf-type of ᾱ in L.

Proof. (⊆) By precompactness ofM , the right hand side is �nite, so if the inclusion
fails, then there is a qf-formula ϕ(x̄) in L such that |= ϕ(σ(ā′)) for some ā′ ∈
Aut(M0)ā, but for every ā′′ ∈ Aut(M0)ā one has |= ¬ϕ(ā′′). But since M ≺
M∗, the former thing implies that there is g ∈ Aut(M) with |= ϕ(g(ā′)), which
contradicts the latter thing.
(⊇) Without loss of generality we can assume that ā does not have repetitions.
Suppose for a contradiction that for some ā0 ∈ Aut(M0)ā

(6) tpqf
L (ā0) /∈ {tpqf

L (σ(ā′)) : ā′ ∈ Aut(M0)ā}.
Let A be the set of coordinates of ā0. Choose a �nite B ⊆ M witnessing the

expansion property for A, and enumerate it as b̄. By (⊆) applied to b̄ in place
of ā, we can �nd g ∈ Aut(M0) with tpqf

L (σ(b̄)) = tpqf
L (g(b̄)). By the choice of B,

there is τ ∈ Aut(M) with τ(ā0) contained in g[B]. Hence, τ(ā0) = g(ā′0) for some
subtuple ā′0 of some permutation of the tuple b̄. Thus, tpqf

L (ā0) = tpqf
L (τ(ā0)) =

tpqf
L (g(ā′0)) = tpqf

L (σ(ā′0)). Also, ā′0 = g−1τ(ā0) ∈ Aut(M0)ā. All of this contradicts
(6). �

Claim 3: For any �nite tuple ā in M , for every ā′, ā′′ ∈ Aut(M0)ā, tpqf
L (σ(ā′)) =

tpqf
L (σ(ā′′)) if and only if ā′′ ∈ Aut(M)ā′.

Proof. (←) is trivial. Let us show (→). By the ultrahomogeneity of M , the size of
the right hand side of the equality in Claim 2 equals the number of Aut(M)-orbits
on Aut(M0)ā, which is �nite by precompactness. On the other hand, by Claim
1, any type tpqf

L (σ(ā′)) in the left hand side of the equality in Claim 2 depends
only on the Aut(M)-orbit of ā′. Hence, the conclusion of Claim 3 follows from the
equality in Claim 2. �

Note that the assignment Φ(tpfull(ρ(m̄))) 7→ tpqf
L (ρ(m̄)) yields a homeomorphic

identi�cation of Im(Φ) with a closed subset of the space of the qf-types in L.
We will show now that Φ � cl(p · Aut(M0)) is injective. Take any q, r ∈ cl(p ·

Aut(M0)) such that Φ(q) = Φ(r). We have q = limi tp
full(σ(gi(m̄))) and r =

limj tpfull(σ(hj(m̄))) for some nets (gi)i and (hj)j from Aut(M0). By continuity of
Φ and the last paragraph, we get limi tp

qf
L (σ(gi(m̄))) = limj tpqf

L (σ(hj(m̄))).
Take any �nite tuple ā in M . By precompactness and Claim 2, there are only

�nitely many qf-types in L of the elements of σAut(M0)ā. So, by the equality of the
above limits, we get that there are some i0 and j0 such that for all i > i0 and j > j0,
we have tpqf

L (σ(gi(ā))) = tpqf
L (σ(hj(ā))). By Claim 3, this implies that hj(ā) ∈

Aut(M)gi(ā), and so, by Claim 1, tpfull(σ(gi(ā))) = tpfull(σ(hj(ā))). Therefore,
limi tp

full(σ(gi(ā))) = limj tpfull(σ(hj(ā))). Since this holds for any �nite ā, we
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conclude that q = limi tp
full(σ(gi(m̄))) = limj tpfull(σ(hj(m̄))) = r, so injectivity is

proved.
It remains to check that Φ[cl(tpfull(σ(m̄))·Aut(M0))] = cl(~R·Aut(M0)). Consider

any tuple ā enumerating a �nite A ⊆M . By Claim 2, there is gā ∈ Aut(M0) such
that tpqf

L (σ(gā(ā))) = tpqf
L (ā). Hence,

tpqf

Φ(tpfull(σ(m̄)))
(gā(ā)) = tpqf

L\L0
(ā) = tpqf

~R
(ā),

where the �rst qf-type is computed in the (L \ L0)-structure Φ(tpfull(σ(m̄))) and
the last one in the (L \ L0)-structure ~R. This means that

(7) Φ(tpfull(σ(m̄))) · gā �A = ~R�A,

where the restrictions to A denote the induced (L \ L0)-structures on A. Take
a subnet (hi)i of (gā)ā such that the net (Φ(tpfull(σ(m̄))) · hi)i converges in X
to some M ′ ∈ cl(Φ(tpfull(σ(m̄))) · Aut(M0)) = Φ[cl(tpfull(σ(m̄)) · Aut(M0))]. By
(7), M ′ = ~R. Since Φ[cl(tpfull(σ(m̄)) ·Aut(M0))] is a minimal Aut(M0)-�ow (as an
image of a minimal Aut(M0)-�ow), we conclude that Φ[cl(tpfull(σ(m̄))·Aut(M0))] =

cl(~R · Aut(M0)). �

6. Metrizability of the universal minimal flow

We will reprove here Fact 1.4. This time we do not extend the context to
uncountable structures. We will be working in the context of De�nition 1.7, using
results and notations from Section 2.
The same argument as in the proof of Remark 3.1 yields

Remark 6.1. A structure M has separately �nite Ramsey degree with witnessing
numbers kā if and only if for any �nite tuple ā in M and a �nite set B ⊆ M
containing ā, for any r ∈ ω, for every coloring c :

(
M
ā

)
→ r, there is B′ ∈

(
M
B

)
such

that |c[
(
B′

ā

)
]| ≤ kā.

Lemma 6.2. Assume that a structure M has separately �nite embedding Ramsey
degree witnessed by numbers kā. Then for every �nite A ⊆ M , for every �nite
B ⊆ M containing A, and for any r ∈ ω, there is a �nite C ⊆ M containing B
such that for all colorings cᾱ :

(
C
ᾱ

)
→ r, with ᾱ ranging over the �nite tuples from

A, there is B′ ∈
(
C
B

)
such that each set cᾱ[

(
B′

ᾱ

)
] is of size at most kᾱ.

Proof. By induction on n, we will show that for every �nite tuples ā1, . . . , ān from
M , for every �nite B ⊆M containing all these tuples, and for any r ∈ ω, there is a
�nite C ⊆M containing B such that for all colorings cāi :

(
C
āi

)
→ r, i ∈ {1, . . . , n},

there is B′ ∈
(
C
B

)
such that each set cāi [

(
B′

āi

)
] is of size at most kāi .

The base induction step is obvious by the de�nition of separately �nite Ramsey
degree. For the induction step, consider any �nite tuples ā1, . . . , ān+1 from M and
a �nite subset B of M containing these tuples. Let r ∈ ω.
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By the base induction step, we can �nd a �nite Cn+1 ⊆ M containing B such
that for every coloring c :

(
Cn+1

ān+1

)
→ r there is B′ ∈

(
Cn+1

B

)
such that c[

(
B′

ān+1

)
] is of

size at most kān+1 . By the induction hypothesis applied to ā1, . . . , ān and to Cn+1

in place of B, we get a �nite C ⊆ M containing Cn+1 such that for all colorings
cāi :

(
C
āi

)
→ r, i ∈ {1, . . . , n}, there is C ′n+1 ∈

(
C

Cn+1

)
such that each set cāi [

(
C′

n+1
āi

)
]

is of size at most kāi .
Now, consider any colorings cāi :

(
C
āi

)
→ r, i ∈ {1, . . . , n + 1}. Choose C ′n+1 ∈(

C
Cn+1

)
provided by the last paragraph. Then we easily get that there is B′ ∈

(
C′

n+1

B

)
with cān+1 [

(
B′

ān+1

)
] of size at most kān+1 . Thus, by the choice of C ′n+1, we conclude

that for every i ∈ {1, . . . , n+ 1}, the size of cāi [
(
B′

āi

)
] is bounded by kāi . �

Theorem 6.3. Let M be a countable structure, and G := Aut(M). Then the
following conditions are equivalent.

(1) The universal minimal G-�ow is metrizable.
(2) M has separately �nite embedding Ramsey degree.

Proof. (2) → (1). Let the separately �nite Ramsey degree be witnessed by the
numbers kā. Consider any formulas ϕ1(x̄1), . . . , ϕn(x̄n) in the full language and
any �nite A ⊆M . Let ∆ = {ϕ1(x̄1), . . . , ϕn(x̄n)}. For each �nite tuple ᾱ ⊆ A, let
cᾱ :

(
M
ᾱ

)
→ 3n be given by

c(ᾱ)(i) :=

 1 if |= ϕi(ᾱ
′)

0 if |= ¬ϕi(ᾱ′)
2 if ᾱ′ is not in the domain of ϕi(x̄i), i.e. |ᾱ′| 6= |x̄i|.

By Lemma 6.2 applied to B := A, there exists A′ ⊆ M and σϕ̄,A ∈ G mapping
A to A′ such that for every �nite tuple ᾱ from A and for every g1, . . . , gm ∈
G such that g1(ᾱ), . . . , gm(ᾱ) ∈ A, there are at most kᾱ ∆-types of the tuples
σϕ̄,A(g1(ᾱ)), . . . , σϕ̄,A(gm(ᾱ)). By saturation ofM∗, this implies that there is σ ∈
G∗ such that for every �nite tuple ᾱ in M and for every �nite set ∆′ of formulas
in the full language in variables x̄ corresponding to ᾱ, one has |{tp∆′(σ(g(ᾱ))) :
g ∈ G}| ≤ kᾱ. Hence,

(8) |{tpfull(σ(g(ᾱ))) : g ∈ G}| ≤ kᾱ.

Remark 2.5 and the comments afterwards yield an isomorphism h : ΣM →
lim←−̄
a

ΣMā of right G-ambits, which satis�es

h[tpfull(σ(m̄)) ·G] ⊆ lim←−̄
a

Xā ⊆ lim←−̄
a

ΣMā ,

where Xā := {tpfull(σ(g(ā))) : g ∈ G}. By (8), each Xā is �nite, so the set in the
middle is a pro�nite space, so it is closed in lim←−̄

a

ΣMā . Also, the set on the left is
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clearly dense in the middle set. Hence,

h[cl(tpfull(σ(m̄)) ·G)] = lim←−̄
a

Xā.

Since M is countable, there are only countably many �nite ā's. Since also
each Xā is �nite, we conclude that lim←−̄

a

Xā is second countable and compact

and so metrizable (by Urysohn's metrization theorem, see [3, Theorem 4.2.8 or
4.2.9]), which means that h[cl(tpfull(σ(m̄)) · G)] is metrizable. This implies that
cl(tpfull(σ(m̄)) · G) is metrizable. But the last �ow is a sub�ow of the universal
right G-ambit, hence the universal minimal right G-�ow is a homomorphic image
of cl(tpfull(σ(m̄)) · G), and as such it is also metrizable (again by Urysohn's
metrization theorem, because the image of a second countable, compact space
under a continuous map to a Hausdor� space is second countable, which easily
follows using networks and [3, Therorem 3.1.19]).

(1)→ (2). The universal minimal right G-�ow is of the form cl(tpfull(σ(m̄)) ·G)
for some σ ∈ G∗. Consider any �nite ā inM . Let πā : ΣM → ΣMā be the restriction
map. By assumption, cl(tpfull(σ(m̄)) · G) is metrizable, so πā[cl(tpfull(σ(m̄)) · G)]
is also metrizable. On the other hand, by Proposition 2.6, ΣMā

∼= βAā. Recall also
that βX is not metrizable whenever X is an in�nite discrete space (if it was, then it
would by second countable [3, Theorem 4.2.8], so it would contain only countably
many clopen subsets, but there are clearly uncountably many basic clopen subsets
in βX). Hence, πā[cl(tpfull(σ(m̄)) · G)] is �nite, and so {tpfull(σ(g(ā))) : g ∈ G}
is �nite; denote its cardinality by kā. We check that the kā's witness that M has
separately �nite embedding Ramsey degree.
Consider any �nite B ⊆M containing ā and a coloring c :

(
M
ā

)
→ r for some r ∈

ω. The �bers of c are de�ned by formulas (in fact predicates) ϕ0(x̄), . . . , ϕr−1(x̄)
of the full language; put ∆ := {ϕ0(x̄0), . . . , ϕr−1(x̄r−1)}. Let g0(ā), . . . , gn−1(ā)
be all elements of

(
B
ā

)
(where the gi's are from G). By the choice of kā, we have

|{tp∆(σ(g(ā))) : g ∈ G}| ≤ kā. Hence, there is h ∈ G with |{tp∆(h(gi(ā))) : i ∈
n}| ≤ kā, which means that |c[

(
h[B]
ā

)
]| ≤ kā. So we are done by Remark 6.1. �

Let M be a countable structure and G := Aut(M). We �nish with another
characterization of metrizability of the universal minimal G-�ow. Remark 2.4 tells
us that for any language L′ in which the action of G on M is de�nable, we have
a natural structure of a G-ambit on ΣM

′
. For such a language L′, by L′′ we

will denote the relational language of the Morleyization restricted to M of the
theory of M′ = (G,M, . . . ) in the language L′ expanded by constants from M ,
i.e. for every L′-formula ϕ(x̄) with parameters from M and with x̄ corresponding
to some sorts of M , we have a relational symbol Rϕ(x̄) in L′′. Note that if L′ is
countable, so is L′′. Let X be the right G-�ow consisting of all the L′′-structures
with the universe M , where everything is de�ned in a standard way (as in the
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second paragraph above Fact 1.2). In particular, the right action of G on X is
given by: Rϕg := {(g−1a1, . . . , g

−1an) : (a1, . . . , an) ∈ Rϕ}.

Remark 6.4. The function Φ: ΣM
′ → X decribed by

Φ(tpL
′
(σ(m̄)/M)) |= Rϕ(ᾱ) ⇐⇒ M′ |= ϕ(σ(ᾱ))

is a monomorphism of right G-�ows.

Let M(G) be a universal minimal right G-�ow contained in ΣM.

Proposition 6.5. The following conditions are equivalent.

(1) M(G) is metrizable.
(2) There is a countable language L′ as above for which the restriction map

from ΣM to ΣM
′
restricted to M(G) is injective (then clearly the image of

M(G) under this map is the universal minimal right G-�ow).
(3) There is a countable language L′ and an L′′-structure N in X such that

cl(N ·G) is the universal minimal right G-�ow.

Proof. (3)→ (1) is obvious, and (2)→ (3) follows from Remark 6.4.
(1)→ (2). Since M(G) is assumed to be metrizable, and we know by Theorem

2.2 that it is zero-dimensional, it has a countable basis consisting of clopen sets.
These sets are given by formulas in a countable sublanguage L′ of the full language.
It is clear that such an L′ works in (2). �

In the proof of Theorem 6.3, the presentation of ΣM as lim←−̄
a

ΣMā from Remark

2.5 was essential. But there is also another natural presentation, namely

ΣM ∼= lim←−
L′

ΣM
′
,

where L′ ranges over the countable sublanguages of the full language in which
the action of G on M is de�nable, and where the isomorphism is given by the
restriction maps to the sublanguages. This clearly induces an isomorphism

M(G) ∼= lim←−
L′

ML′
(G),

where each ML′
(G) is the minimal G-sub�ow of ΣM

′
obtained from M(G) by the

restriction to L′.
An obvious corollary of Proposition 6.5 is thatM(G) is metrizable if and only if

for some countable language L′ (which can be assumed to be a sublanguage of the
full language) already the map M(G)→ML′

(G) is an isomorphism of G-�ows.

Remark 6.6. The following conditions are equivalent.
(1) M(G) is metrizable.
(2) Some G-sub�ow Σ of ΣM is metrizable.
(3) For some G-sub�ow Σ of ΣM and some coutnable language L′ as above,

the restriction map Σ→ ΣM
′
is injective.
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Proof. The equivalence of (1) and (2) follows from universality of the ambit ΣM.
The implication (3)→ (2) is obvious, and (1)→ (3) follows by Proposition 6.5. �
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