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APPROXIMATE SUBGROUPS

by Jean-Cyrille Massicot & Frank O. Wagner

Abstract. — Given a definably amenable approximate subgroup A of a (local) group in some
first-order structure, there is a type-definable subgroup H normalized by A and contained in A4

such that every definable superset of H has positive measure.

Résumé (Sous-groupes approximatifs). — Étant donné un sous-groupe approximatif A défi-
nissablement moyennable d’un groupe (local) dans une structure du premier ordre, il y a un
sous-groupe H type-définissable normalisé par A et contenu dans A4 tel que tout ensemble
définissable contenant H est de mesure positive.
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Introduction

Let G be a group and K > 0 an integer, a subset A ⊆ G closed under inverse is
a K-approximate subgroup if there is a finite subset E ⊆ G with |E| 6 K such that
A2 = {ab : a, b ∈ A} ⊆ EA. Then An ⊆ En−1A.

Following work of Hrushovski [6] and many others, Breuillard, Green and Tao [1]
have classified finite approximate subgroups of local groups (see [2] for an excellent
survey). In particular, they show that there is an approximate subgroup A∗ ⊆ A4 and
an actual A∗-invariant subgroup H∗ ⊆ A∗ such that

– finitely many left translates of A∗ cover A, and
– 〈A∗〉/H∗ is nilpotent.

Mathematical subject classification (2010). — 11B30, 20N99, 03C98, 20A15.
Keywords. — Approximate subgroup, definability, definable amenability.
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The result and its proof are inspired not only by Gleason’s and Yamabe’s solution
of Hilbert’s 5th problem [4, 10] and its extension to the local context by Goldbring [5],
but also by Gromov’s Theorem on groups with polynomial growth, and is indeed a
way to generalize this theorem. The three articles [6, 1, 2] provide some applications
to geometric group theory.

The proof proceeds by considering a non-principal ultraproduct of a sequence of
finite counterexamples (An : n < ω) with |An| → ∞, giving rise to a pseudofinite
counterexample A. Then an A-invariant subgroup H ⊆ A4 is constructed such that
〈A〉/H is locally compact. From Yamabe’s theorem on the approximation of locally
compact groups by Lie groups, it follows that there are suitable A∗ and H∗ such that
〈A∗〉/H∗ is a real Lie group; using pseudofiniteness, the final result is obtained.

The construction of the locally compact quotient 〈A〉/H and the Lie model
〈A∗〉/H∗ was first shown by Hrushovski [6] by model-theoretic means inspired by and
reminiscent of stability theory. Breuillard, Green and Tao use instead a (subsequent)
theorem of Sanders [9] from finite combinatorics, constructing successively the traces
of the definable supersets of H on the various finite approximate groups An. Using
the ultraproduct construction, the pseudofinite counting measure and the translation-
invariant ideal of measure zero sets, Hrushovski’s theorem allows to recover Sanders’
result at least qualitatively.

Definability. — The topology of 〈A〉/H was constructed analytically in [1], but has
a natural model-theoretic interpretation already given in [6]. Recall that a subset of
the ultraproduct is definable if it is the set of realizations of some first-order formula
(usually involving quantifiers); it is type-definable if it is given as the intersection of
a countable (say) family of definable sets. For instance, the centralizer of a group
element g is defined by the formula xg = gx, and if G is a group defined by a for-
mula ϕ(x), its centre Z(G) is defined by the formula ϕ(x)∧∀y (ϕ(y)→ xy = yx). On
the other hand, the group generated by an element g, or the centre of a type-definable
group, are in general not even type-definable.

If H is a type-definable normal subgroup of 〈A〉, it has bounded index if any de-
finable superset of H covers any definable subset of 〈A〉 in finitely many translates.
We can then endow the quotient 〈A〉/H with the logic topology whose proper closed
subsets are precisely those subsets whose preimage in 〈A〉 is type-definable; this will
turn it into a locally compact topological group.

Of course, (type-)definability strongly depends on the language: if we expand the
structure, for instance by adding predicates for certain subsets, there will be more de-
finable sets. While the group H constructed by Hrushovski is naturally type-definable
in the structure given, it only becomes so in Sanders’ Theorem (either in the ultra-
product or in a suitable version using a bi-invariant measure instead of cardinality)
after such an expansion of language. Hrushosvki, on the other hand, assumes the ex-
istence of a bi-invariant S1 ideal (which should be thought of as the ideal of sets of
measure zero) which in addition is automorphism invariant; in order for an ideal to be-
come automorphism invariant, one would generally also have to expand the language.
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Such an expansion does not matter much if the structure to start with is arbitrary,
but should be avoided if the initial structure has particular model-theoretic properties
one wants to preserve.

For example, Eleftheriou and Peterzil [3] construct H type-definably without
expanding the language in the case when A is definable in an o-minimal expansion of
an ordered group (such as the field of real numbers with exponentiation), provided
that 〈A〉 is abelian. Pillay [8], generalizing an argument in [7], generalizes this result
if A is definable in a theory without the independence property, and is definably
amenable (see below). In fact, in this setting there is a unique minimal choice for H,
namely the unique minimal type-definable subgroup of bounded index, 〈A〉00.

Definable amenability. — We shall call A definably amenable if 〈A〉 carries a finitely
additive left-invariant measure µ on its definable subsets such that µ(A) = 1. We can
now state the main theorem of our paper.

Theorem 1. — In any group G, a definably amenable approximate subgroup A gives
rise to a type-definable subgroup H ⊆ A4, such that finitely many left translates of any
definable superset of H cover A. Hence a definably amenable approximate subgroup
allows a real Lie model without expanding the language.

Our proof follows the ideas of Sanders, except that we use the measure not to
define the subgroup we obtain, but only to show that the formulas we construct in
the original language have the necessary properties. We conjecture that even without
the definable amenability assumption a suitable Lie model exists.

The classification of approximate subgroups of real Lie groups is still an open
problem. Since in a real Lie group any compact neighbourhood of the identity is an
approximate subgroup, in particular no nilpotency (or even solubility) result can hold
in general. We hope that under additional model-theoretic assumptions on the original
structure, a partial classification might be easier to achieve.

We will end this introduction with two useful remarks. The first one concerns
essentially the only (but crucial) use of model theory in this paper. The second one
is an easy generalization which played a key role in the conclusion of [1], and thus
seems worth noticing.

We shall assume that all structures under consideration are ω+-saturated, which
means that any countable intersection of definable sets is non-empty as soon as all
finite subintersections are. All non-principal ultraproducts are ω+-saturated; the com-
pactness theorem of model theory implies that we can replace any structure M by
a superstructure M∗ satisfying the same first-order sentences with parameters in M
(an elementary extension) which in addition is ω+-saturated.

As in [1], the results in this paper remain true if G is only a local group, i.e. a set
closed under inverse and endowed with a multiplication such that the product of up to
100 elements is well-defined and fully associative. For this, one can check throughout
the proofs that one never needs to multiply more than 100 elements of A.

J.É.P. — M., 2015, tome 2



58 J.-C. Massicot & F. O. Wagner

1. A type-definable version of Sanders’ Theorem

Definition 2. — A subset A of a (local) group G is symmetric if 1 ∈ A, and a−1 ∈ A
for all a ∈ A.

If K < ω, a symmetric subset A of G is a K-approximate subgroup if

A2 = {aa′ : a, a′ ∈ A}

is contained in K left cosets of A. An approximate subgroup is a symmetric subset
which is a K-approximate subgroup for some K < ω.

From a model-theoretic point of view, a definable approximate subgroup A is just
a symmetric generic set in 〈A〉, i.e. a definable symmetric subset of 〈A〉 such that
every definable subset of 〈A〉 is covered by finitely many left translates of A.

Definition 3. — A definable approximate subgroup A is definably amenable if there is
a left translation-invariant finitely additive measure µ on the definable subsets of 〈A〉
with µ(A) = 1.

Note that by ω+-saturation, for any definable subset X of 〈A〉 there is n < ω

with X ⊆ An. So if A is a definably amenable approximate subgroup, then
µ(X) 6 µ(An) <∞.

Remark 4. — If limn→∞ µ(An) <∞, then there is n < ω with An = 〈A〉.

Proof. — Suppose not. Then for every n < ω there is an ∈ An+1 r An. But then
(a3kA : k 6 n) is a sequence of disjoint left translates of A inside A3n+2, whence
µ(A3n+2) > (n+ 1)µ(A) = n+ 1, a contradiction. �

For the remainder of the paper we fix a K-approximate subgroup A of a (local)
group G, and consider the structure whose domain is G, with a predicate for A, and
with group multiplication (which is a partial map in case G is only local). We assume
that An ⊆ G for all n < ω (in fact n 6 100 would be enough). Definability and
type-definability will be with respect to this structure.

We assume that A is definably amenable with limn→∞ µ(An) = ∞. We also fix a
set E of size K with A2 ⊆ EA.

Fact 5 (Ruzsa’s covering lemma). — Let X,Y ⊆ G be definable such that
µ(XY ) 6 Kµ(Y ). Then X ⊆ ZY Y −1 for some finite Z ⊆ X with |Z| 6 K.

Proof. — If X = ∅ there is nothing to show. Otherwise, consider a finite subset
Z ⊆ X such that zY ∩ z′Y = ∅ for all z 6= z′ in Z. By left invariance,

|Z|µ(Y ) = µ(ZY ) 6 µ(XY ) 6 Kµ(Y ),

so |Z| 6 K, and there is a maximal such Z. But then for any x ∈ X there is z ∈ Z
with zY ∩ xY 6= ∅ by maximality, whence x ∈ zY Y −1. �
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Approximate subgroups 59

Definition 6. — A definable subset B ⊂ 〈A〉 is wide in A if A is covered by finitely
many translates of B.

Two approximate subgroups are said to be equivalent if each one is contained in
finitely many translates of the other.

We will sometimes make explicit the finite constants and say that B is L-wide in A,
or that A and A∗ are L-equivalent.

Lemma 7. — Let B ⊂ 〈A〉 be definable.
(1) If µ(B) > 0, then BB−1 is wide in A and symmetric.
(2) If B is wide in A and symmetric, then B is also an approximate subgroup

equivalent to A.

Proof

(1) Clearly, BB−1 is symmetric. Since AB is a definable subset of 〈A〉, we have
µ(AB) <∞ and there is L < ω with µ(AB) 6 Lµ(B). By Fact 5, at most L translates
of BB−1 are needed to cover A.

(2) There is n < ω such that B2 ⊆ A2n ⊆ E2n−1A. Suppose Y is finite with
A ⊆ Y B. Then

B2 ⊆ E2n−1A ⊆ E2n−1Y B.

Thus B is an approximate subgroup; being wide in A, it must be equivalent to A. �

Definition 8. — A type-definable subgroup H of a (local) group G has bounded index
if there is some cardinal κ such that in any elementary extension the index |G : H| is
bounded by κ.

Remark 9. — By ω+-saturation H has bounded index in G if and only if for every
definable subset X of G and every definable superset Y of H, finitely many left
translates of Y cover X.

Lemma 10. — If A and A∗ are equivalent, there exists an approximate subgroup in
which both are wide, and another one which is wide in both. In particular, 〈A〉 ∩ 〈A∗〉
will have bounded index in both 〈A〉 and 〈A∗〉.

Proof. — Suppose A∗2 ⊆ E∗A∗, and put B = AA∗A, a symmetric set containing A
and A∗. If A ⊆ XA∗ and A∗ ⊆ X∗A, then

B = AA∗A ⊆ XA∗A∗A ⊆ XE∗A∗A ⊆ XE∗X∗AA ⊆ XE∗X∗EA ⊆ XE∗X∗EXA∗,

so A and A∗ are wide in B. Moreover

B2 ⊆ XE∗X∗EAB = XE∗X∗EAAA∗A ⊆ XE∗X∗E2AA∗A = XE∗X∗E2B,

so B is also an approximate subgroup. As 〈A〉 and 〈A∗〉 have bounded index in 〈B〉,
the intersection 〈A〉 ∩ 〈A∗〉 has bounded index in 〈B〉, and thus in 〈A〉 and in 〈A〉∗.

Now note that 〈A〉 ∩ 〈A∗〉 =
⋃

n<ω(A
n ∩ A∗n). By ω+-saturation there is n < ω

such that finitely many translates of An ∩ A∗n cover B. So An ∩ A∗n is wide in B,
whence in A and in A∗. �
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We now turn to the main result. We shall need the following Lemma due to Sanders.

Lemma 11. — Let f : ]0, 1] → [1,K] and ε > 0. Then there exists n < ω depending
only on K, ε and t > 1/(2K)2

n−1 such that

f(t2/2K) > (1− ε)f(t).

Proof. — Define a sequence (tn) by t0 = 1 and tk+1 = t2k/2K, so tn = 1/(2K)2
n−1.

For n < ω suppose that for all i < n we have f(ti+1) < (1− ε)f(ti). Then

f(tn) < (1− ε)nf(t0) 6 (1− ε)nK.

But f(tn) > 1, so if n < ω is such that (1− ε)nK < 1, there must be some i < n with
f(ti+1) > (1− ε)f(ti). �

Theorem 12. — Let A be a K-approximate subgroup. For any m < ω there is a
definable L-wide approximate subgroup S with Sm ⊆ A4, where L depends only on K
and m.

Proof. — Let us show first that if B ⊆ A is definable with µ(B) > tµ(A) for some
0 < t 6 1 and s = t/2K, then A is covered by N = b1/sc translates of

X = {g ∈ A2 : µ(gB ∩B) > stµ(A)}

by elements of A. So suppose not. Then inductively we find a sequence (gi : i 6 N)

of elements of A such that µ(giB ∩ gjB) < stµ(A) for all i < j 6 N , since for j 6 N
the set

⋃
i<j giX cannot cover A. But then

Kµ(A) > µ(A2) > µ
( ⋃

i6N

giB
)

> (N + 1)µ(B)−
∑

i<j6N

µ(giB ∩ gjB)

> (N + 1)tµ(A)− N(N + 1)

2
stµ(A) = (1−N s

2
)(N + 1)tµ(A)

> (1− 1

s

s

2
)
1

s
tµ(A) =

1

2

2K

t
tµ(A) = Kµ(A),

a contradiction.
However, as µ is not supposed to be definable, X need not be definable either. We

shall hence look for definable sets with similar properties. To this end, consider the
following conditions P t

n(X) on definable subsets of A, for n < ω and 0 < t 6 1:
– P t

0(B) if B 6= ∅.
– P t

n+1(B) if P t
n(B), and A is covered by b2K/tc translates of

Xt
n+1(B) = {g ∈ A2 : P t2/2K

n (gB ∩B) and P t2/2K
n (g−1B ∩B)}.

Clearly, if (Bx)x is a family of uniformly definable subsets of A, then P t
n(Bx) is

definable by a formula θtn(x) for all n < ω and 0 < t 6 1. As Xt
n+1(B) ⊆ A2, the

translating elements for the covering of A must come from A3, so the P t
n are definable

even in a local group (where we can only quantify over finite powers of A).
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For 0 < t 6 1 we consider the family Bt of definable subsets B of A with P t
n(B)

for all n < ω. The first paragraph implies inductively that for definable B ⊆ A, if
µ(B) > tµ(A) then P t

n(B) holds, whence B ∈ Bt. In particular, A ∈ Bt so Bt is
non-empty. Note that P t

n implies P t′

n for t > t′, so Bt ⊆ Bt′ .
Define a function f : ]0, 1]→ R by

f(t) = inf
{µ(BA)
µ(A)

: B ∈ Bt

}
.

Fix ε > 0. Since 1 6 f(t) 6 K for all 0 < t 6 1, by Lemma 11 there is t > 0 depending
only on K and ε such that

f(t2/2K) > (1− ε)f(t).

Choose B ∈ Bt with µ(BA)/µ(A) 6 (1 + ε)f(t). Put

Xn = Xt
n(B) = {g ∈ A2 : P t2/2K

n (gB ∩B) and P t2/2K
n (g−1B ∩B)}

and X =
⋂

n<ωXn. Then Xn is symmetric, Xn+1 ⊆ Xn and b2K/tc translates of Xn

cover A, for all n < ω. By ω+-saturation, b2K/tc translates of X cover A, so X is
nonempty. Moreover, for g ∈ X we have gB ∩B ∈ Bt2/2K , whence

µ(gBA ∩BA) > µ((gB ∩B)A) > f(t2/2K)µ(A)

> (1− ε)f(t)µ(A) > 1− ε
1 + ε

µ(BA).

Hence for g ∈ X,

µ(gBA4BA) 6 4 ε

1 + ε
µ(BA) < 4 ε µ(BA).

It follows that for g1, . . . , gm ∈ X,
µ(g1 · · · gmBA4BA)

6 µ((BA4g1BA) ∪ g1(BA4g2BA) ∪ · · · ∪ g1 · · · gm−1(BA4gmBA))
6 µ(BA4g1BA) + µ(BA4g2BA) + · · ·+ µ(BA4gmBA)
< 4mεµ(BA).

In particular, if ε 6 1/4m, then g1 · · · gmBA ∩ BA 6= ∅, whence Xm ⊆ A4. By
ω+-saturation there is n < ω such that Xm

n ⊆ A4. Note that S := Xn is b2K/tc-wide
in A, and thus an approximate subgroup equivalent to A by Lemma 7. �

Corollary 13. — There is a type-definable subgroup H ⊆ A4 such that every definable
superset of H contained in 〈A〉 is wide in A.

Proof. — Put S0 = A and apply inductively Theorem 12 for m = 8 with Si instead
of A, in order to obtain a sequence of approximate subgroups (Si : i < ω) with Si+1

wide in Si (whence in A) and S8
i+1 ⊆ S4

i . Then H =
⋂

i<ω S
4
i is a type-definable

subgroup of A4. Any definable superset of H must contain some S4
i by ω+-saturation,

and hence be wide in A. �
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2. Normality

Since we want to consider the quotient 〈A〉/H, we shall look for a stronger version
of Theorem 12 where H will be normal.

Lemma 14. — Let X1, . . . , Xn be definable subsets of A with Ni µ(Xi) > µ(A) for
some Ni < ω. Then there is a definable D ⊆ A such that

D−1D ⊆ (X1X
−1
1 )2 ∩ · · · ∩ (XnX

−1
n )2 and Kn−1N1 · · ·Nn µ(D) > µ(A).

Proof. — Since µ(AX2) 6 K µ(A) 6 KN2 µ(X2), by Fact 5 there are g1, . . . , gKN2

such that

A ⊆
KN2⋃
i=1

giX2X
−1
2 .

Then there is an i such that

KN1N2 µ(X1 ∩ giX2X
−1
2 ) > µ(A).

We set D0 = X1 ∩ giX2X
−1
2 and note that D−10 D0 ⊆ X−11 X1 ∩ (X2X

−1
2 )2.

Then we can iterate the construction, replacing X1 by D0 and X2 by X3. Induc-
tively we obtain a suitable D with Kn−1N1 · · ·Nn µ(D) > µ(A) such that

D−1D ⊆ X−11 X1 ∩ (X2X
−1
2 )2 ∩ · · · ∩ (XnX

−1
n )2.

Notice that D−1D is Kn−1N1 · · ·Nn-wide in A by Fact 5. �

Theorem 15. — Let A be a K-approximate subgroup, and R a definable N -wide sym-
metric subset with R4 ⊆ A4. Then there exists a definable L-wide symmetric subset S
with (S8)A ⊆ R4, where L depends only on K and N .

Proof. — If A ⊆ XR, then

R2 ⊆ A4 ⊆ E3A ⊆ E3XR,

so R is a K3N -approximate subgroup. Theorem 12 yields the existence of some
T ⊆ R4 equivalent to R with T 48 ⊆ R4. Then T is wide in A and there exists
n < ω depending only on K and N and some elements ai of A such that

A ⊆
n⋃

i=1

aiT.

Consider the measure µ on definable subsets of 〈A〉 defined by

µ(X) :=
1

n

n∑
i=1

µ(Xai).

Clearly µ is left translation invariant, we have

µ(A) =
1

n

n∑
i=1

µ(Aai) 6
n

n
µ(A2) 6 Kµ(A),

and
µ(aiTa

−1
i ) >

1

n
µ(T ) >

1

n2
µ(A) >

1

Kn2
µ(A).
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Since all the aiTa−1i are subsets of A6 and

K6n2µ(aiTa
−1
i ) > K5µ(A) > µ(A6),

Lemma 14 applied to the K6-approximate subgroup A6 yields a subset D ⊆ A6 with

(K6)n−1(K6n2)nµ(D) > µ(A6)

such that for i = 1, 2, . . . , n we have

S := D−1D ⊆ aiT 4a−1i .

Then S is symmetric, wide in A and Sai ⊆ T 4 for i = 1, . . . , n. Since A ⊆
⋃
aiT , this

means that SA ⊆ T 6, so (S8)A ⊆ T 48 ⊆ R4. �

Corollary 16. — There is a type-definable normal subgroup H of 〈A〉 contained in A4

such that every definable superset of H contained in 〈A〉 is wide in A.

Proof. — As Corollary 13, using Theorem 15 instead of Theorem 12. �
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