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1 Nim

Nim: finitely many piles of coins; a move comprises removing a positive
number of coins from a single pile; a player loses if they can’t move.

Remark:
For any nim position P , either it can be won by the player with the move,
or it can be won by the player without the move.

i.e. one of the two players has a ”winning strategy”, a way to play which
guarantees a win.

The ”nim sum”, n⊕m, of natural numbers n and m is the result of writing
the binary expansions of n and m and ”adding without carrying”. (In com-
puter science, this is called ”XORing the bitstrings”; in many programming
languages, it’s written as ”n^m”.)

Theorem:
The player without the move can win from the Nim position with piles of
sizes n1, ..., nk iff n1 ⊕ n2 ⊕ ...⊕ nk = 0

Proof:
Suppose inductively that this is true for all nim positions with fewer coins
involved.
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First, suppose
n1 ⊕ n2 ⊕ ...⊕ nk = b 6= 0.

We show that we can win if we have the move.

Consider binary expansions.
Some ni has a 1 in the same position as the leading 1 of b,
so

ni ⊕ b < ni.

So we can move by taking coins from the ith pile so as to leave ni(+)b coins
in that pile.

Then in the new position, the nim sum of the pile sizes is
n1 ⊕ ...⊕ ni−1 ⊕ ni ⊕ b⊕ ni+1 ⊕ ...⊕ nk
= b⊕ b
= 0

So by the induction hypothesis, the player without the move wins from here.
But that’s us!

Now suppose
n1 ⊕ n2 ⊕ ...⊕ nk = 0

and we don’t have the move.

If our opponent can’t move, we’ve won.
Else, suppose they move by taking coins from the ith pile, leaving m < ni.
But then m⊕ ni 6= 0, so

n1 ⊕ ...⊕m⊕ ...⊕ nk 6= n1 ⊕ ...⊕ ni ⊕ ...nk = 0,
so by the induction hypothesis, we’re left with a position won by the player
with the move, which is us.

2 Counting

Example:
If we draw 37 circles in the plane, such that every two circles intersect in two
points and such that no three circles intersect in the same point (”mutually
overlapping circles in general position”), how many regions in the plane do
we get (counting the region outside all the circles as one of the regions)?

Solution:
Let hn be the number of regions with n circles.
So h1 = 2,
and for n > 1: when we add the nth circle, it intersects the existing n − 1
circles in 2(n− 1) points; so the new circle is divided into 2(n− 1) arcs;
each arc divides a pre-existing region into two. So we get 2(n − 1) extra
regions compared to how many we had before, i.e. compared to hn−1. So

hn = hn−1 + 2(n− 1).

Applying this recursively, we have
hn = hn−1 + 2(n− 1)

= hn−2 + 2(n− 2) + 2(n− 1)
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= hn−3 + 2(n− 3) + 2(n− 2) + 2(n− 1)
= ...
= h1 + 2(1) + 2(2) + ...+ 2(n− 1)
= 2 + 2(1 + 2 + ...+ n− 1)
= 2 + 2(n(n− 1)/2)
= 2 + n(n− 1)
= n2 − n+ 2

(We can check this satisfies the recurrence relation:
((n− 1)2 − (n− 1) + 2) + 2(n− 1)

= n2 − 2n+ 1− n− 1 + 2 + 2n− 1
= n2 − n+ 2,

as required.)

So h37 = 372 − 37 + 2 = 1334.

Four principles of counting

We find ways to use descriptions of a finite set to determine its size in terms
of the sizes of the sets appearing in the description.

Addition principle

Suppose a set S is partitioned by subsets S1, ..., Sn;
this means that the sets cover S,
i.e. S = S1 ∪ ... ∪ Sn,
and are disjoint,
i.e. Si ∩ Sj = ∅ if i 6= j.
In other words, suppose S is the disjoint union of the Si.
Then |S| = |S1|+ ...+ |Sn|.

Example:
In a nim game with three piles of sizes 3, 7, and 27,
how many possible first moves are there?

Solution:
The first move has to be in one of the three piles, so the answer is the sum of
the numbers of moves available when the move is in each of the three piles.
The number of possible moves from a pile with n coins is n.
So the answer is 3 + 7 + 27 = 37.

Multiplication principle

Let S be a set of ordered pairs (a, b) where the first is picked from a set of
size p, and where for each such a there are q possible choices for b.
Then |S| = pq
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Example:
How many two-digit numbers have different digits?

Solution:
Think of a two-digit number as an ordered pair, e.g. 37↔ (3, 7).
Then the set of two-digit numbers with different digits corresponds to the
set of ordered pairs of numbers where the first number is from {1, ..., 9},
and the second number is then one of the 9 digits which is not equal to the
first digit. So there are 9 ∗ 9 = 81 possibilities.

Proof of the multiplication principle:
Partition S according to the first entry of the pair. Then there are p sets
each of size q, so by the addition principle
|S| = q + ...+ q (p times)

= pq

Of course it generalises to ordered triples and so on:

Example:
How many three digit numbers have no repeated digits?

Solution:
9 choices for the first digit, then 9 for the second, then 8 for the third; so
9 ∗ 9 ∗ 8 = 648 possibilities.

Example:
How many factors does 12600 have?

Solution:
Find prime factorisation:

12600 = 23 ∗ 32 ∗ 52 ∗ 7
So any factor has prime factorisation

2a ∗ 3b ∗ 5c ∗ 7d

with 0 ≤ a ≤ 3, 0 ≤ b ≤ 2, 0 ≤ c ≤ 2, 0 ≤ d ≤ 1.

By uniqueness of prime factorisation, each choice of (a, b, c, d) within these
bounds yields a unique factor of 12600.

So the number of factors is the number of such (a, b, c, d), which is
4 ∗ 3 ∗ 3 ∗ 2 = 72

Example:
How many two digit numbers have the sum of their digits odd, and don’t
end with 7?
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Solution:
We need one digit even and the other odd; the first digit can’t be 0, the
second can’t be 7.

If we pick the first digit first, the number of possibilities for the second digit
will depend on the parity of the first digit.

There are 5 possibilities for an odd first digit. The second then has to be
even: 5 possibilities.

With an even first digit, we have 4 possibilities for the first, and 4 for the
second.

So the answer is 5 ∗ 5 + 4 ∗ 4 = 41.

Subtraction principle

If S is a subset of U , then |S| = |U | − |U \ S|.

Proof: S and U \ S partition U , so |U | = |S|+ |U \ S|.

Example:
If we toss a coin 10 times, we get a sequence of Heads and Tails,
e.g. HTTHHTTHTH.
How many such sequences contain at least two Heads?

Solution:
The number of such sequences which don’t contain at least two Heads is
much easier to work out; it’s 11: 1 for TTTTTTTTTT, and 10 for each of
the ten positions a single Head could be.

The total number of sequences is, by the multiplication principle,
2 ∗ 2 ∗ ... ∗ 2 (10 times)
= 210 = 1024.

So the answer is
1024− 11 = 1013.

Division principle

If S is partitioned into k sets each with n elements, then k = |S|/n.
(Proof: by the multiplication principle, |S| = k ∗ n.)

Example:
740 pigeons are nesting in some pigeonholes. If there are 5 pigeons in each
pigeonhole, how many pigeonholes are there?

Solution:
740/5 = 148.
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Finite probability

If we toss a coin 10 times, what’s the probability of getting at least two
Heads? Answer: there are 210 = 1024 possible outcomes (sequences of
Heads and Tails), each equally likely. 1013 of them end up with at least two
heads, so the probability is 1013/1024.

General setup:
we have a sample space, a finite set S of possible outcomes, each equally
likely to occur. Then an event is a subset E of S, and we define the proba-
bility that E occurs to be

Prob(E) := |E|/|S|

Example: Suppose someone offers to play the following game with you: three
6-sided dice will be rolled, and you’ll set up a nim game with three piles, the
sizes of the piles being given by the dice roll. You will play first. Assuming
you both know the winning strategy for nim, what are your chances of
winning?

Solution:
The number of possible dice rolls is 63 = 216.

So we want to determine the number of triples (a, b, c) of numbers between
1 and 6 such that the nim sum is zero,

a⊕ b⊕ c = 0.

Nim-adding c to both sides, this is equivalent to
a⊕ b = c.

So once a and b are determined, there’s at most one choice for c. So we want
to see for how many (a, b),

1 ≤ a⊕ b ≤ 6.

This can only fail if, in binary,
a⊕ b = 000 or 111

i.e. if a = b or a+ b = 7.
So this precisely rules out two choices for b for each choice of a.

So there are 6 ∗ 4 = 24 bad rolls for us, so the probability we win is
216− 24/216 = 192/216 = 8/9.

3 Permutations

A permutation of a finite set S is an ordered list of its elements.

An r-permutation of S is an ordered list of r of its elements.

Warning:
there is another, related, meaning of ’permutation’: an element of the group
of bijections of S. We won’t use that meaning in this course.
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P (n, r) := number of r-permutations of a set of size n.

e.g. P (26, 5) = number of strings of 5 distinct letters from the Roman
alphabet.

By the multiplication principle,
P (n, r) = n∗ (n−1)∗ ...∗ (n− (r−1)) (n choices for first, n−1 for second...)

P (n, r) = n!/(n− r)!

P (n, n) = n!

Remark:
Can interpret ”P (n, r) = n!/(n− r)!” as follows:
We can obtain an r-permutation of S by taking the first r elements of a
permutation of S.
Partition the permutations of S according to the r-permutation which results
from this: we see that the elements of each set of the partition correspond to
the permutations of the left-over n− r elements, so we recover the formula
by the division principle.

A circular r-permutation of a set is a way of putting r of its elements around
a circle, with two such considered equal if one can be rotated to the other.

We can obtain a circular r-permutation from an r-permutation by ”joining
the ends into a circle”. Each circular r-permutation is obtained from r
different r-permutations, so by the division principle:
number of circular r-permutations of n elements

= P (n, r)/r
= n!/r(n− r)!

Example:
How many different kinds of necklace can be made from 7 spherical beads of
different colours? Consider two necklaces to be of the same kind when they
can be non-destructively manipulated to look the same.

Solution:
There are 7!/7 = 6! circular permutations of the 13 colours. Each kind
of necklace is obtained from exactly two circular permutations, because
flipping the necklace in space doesn’t change the kind. So the answer is

6!/2 = 360.

Example:
How many ways can 13 people be sat around a round table, if Professor Q
is not to be sat next to his arch-nemesis Inspector P?

Solution:
Without the restriction, there would be 12! seating arrangements.
Consider seating everyone but P; each such arrangement yields two forbidden
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arrangements of all 13, one by placing P to Q’s right and one by placing P
to Q’s left. We count each forbidden arrangement once in this way.

So the answer is 12!− 2 ∗ 11! = 10 ∗ 11! = 399168000

Subsets (”Combinations”)

An r-subset, or r-combination, of a set S is a subset of size r.

C(n, r) =
(
n
r

)
= number of r-subsets of a set of size n.

e.g.
(
26
5

)
= number of unordered selections of 5 letters from the roman

alphabet

Theorem:(
n
r

)
= n!/r!(n− r)!

Proof:
The r-permutations of a set are precisely the permutations of the r-subsets.
Each r-subset has r! permutations, so

P (n, r) = r! ∗
(
n
r

)
.

So (
n
r

)
= P (n, r)/r!
= n!/r!(n− r)!.(

n
r

)
is also called a ”binomial coefficient”.

Example:
If we expand out (x+ y)n and collect terms to obtain

a0x
n + a1x

n−1y + ...+ an−1xy
n−1 + any

n,
what are the coefficients ak?

Solution:
ak is the number of ways of choosing y k times when we have to choose
either x or y from each factor of the product

(x+ y)(x+ y)...(x+ y) (n times),
which is the number of subsets of this set of n factors.

So ak =
(
n
k

)
.

Theorem [Pascal’s Formula]:
If 0 < k < n,(

n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
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Proof:
|S| = n.
Fix x ∈ S; let S ′ := S \ {x}.
Partition the k-subsets of S according to whether they contain x.
Those which don’t correspond to k-subsets of S ′,
those which do correspond to (k − 1)-subsets of S ′.

Theorem:
Σn
k=0

(
n
k

)
= 2n

Proof:
|S| = n.
Σn
k=0

(
n
k

)
= number of subsets of S.

But to choose a subset of S is to choose for each element of S whether it
should or should not go in to the subset. That’s two choices for each of the
n elements, so by the multiplication principle there are 2 ∗ 2 ∗ ... ∗ 2 = 2n

subsets of S.

4 Multisets

Example:
A bag of Scrabble tiles contains 100 tiles: 10 A’s, 2 B’s, 2 C’s, 5 D’s and so
on.

When you start a game, you take 7 letters from the bag, and put them on a
rack. How many possible hands can you get, if we say that the order of the
tiles on the rack matters? How about if it doesn’t?

A multiset is a ”set with multiplicity”.

Notation: {2 ∗ a, 3 ∗ b, 1 ∗ c}

(Think of a ”bag” with 2 a’s, 3 b’s and a c in it.)

We also allow ”infinite multiplicity”, denoted {∞ ∗ a}.

Multiplicities are also called ”repetition numbers”.

The size of a multiset is the sum of the multiplicities (may be ∞).

An r-permutation of a multiset is an ordered list of r elements from the
multiset;
e.g. the 2-permutations of {2 ∗ a, 1 ∗ b} are

aa, ab, ba;
the 3-permutations of {∞ ∗ a, 2 ∗ b} are

aaa, aab, aba, baa, abb, bab, bba.

A permutation of a multiset of size n is an n-permutation.

Example: how many permutations are there of the unfortunate scrabble
hand {4 ∗ U, 1 ∗ J, 2 ∗K}?
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Theorem:
Let S be a multiset with k types with finite multiplicities n1, ..., nk.
Let n = Σini be the size of S.
Then the number of permutations of S is

n!/n1! ∗ n2! ∗ ... ∗ nk!.

Proof:
Label the elements 1, ..., n. Each permutation of {1, ..., n} yields a permu-
tation of S, and two yield the same permutation precisely when we can get
one from another by permuting the labels on elements of the same type.
So there are n1! ∗ n2! ∗ ... ∗ nk! permutations of {1, ..., n} per permutation of
S. We conclude by the division principle.

Example:
We have 4 black rooks and 4 white rooks. How many ways are there of
putting them on a chess board such that no two are attacking (/defending)
each other? e.g.

.......R 8

....r... 5

..R..... 3

......R. 7

...r.... 4

.R...... 2

.....r.. 6

r....... 1

Solution:
First, just choose the 8 squares for them to occupy.

By listing off the filled columns row-by-row, a choice corresponds to a per-
mutation of the columns, so there are 8!.

For a given such choice, a choice of colours corresponds to a permutation of
the multiset {4 ∗ r, 4 ∗R}.

So the answer is
8! ∗ (8!/4! ∗ 4!) = 2822400

An r-submultiset, or r-combination, of a multiset S is a multiset S ′ of size
r such that for all x,
the multiplicity of x in S ′ is at most the multiplicity of x in S.

e.g. the 2-submultisets of {3 ∗ a, b} are {2 ∗ a}, {1 ∗ a, 1 ∗ b}.
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Theorem:
The number of r-combinations of a multiset with k types each with multi-
plicity at least r is(

r+k−1
r

)
Example:
If we have a bag containing red, green and blue marbles, with many of each,
and we draw 5 marbles from the bag, how many possible results (numbers
of each colour drawn) are there?
Answer:

(
5+3−1

5

)
=
(
7
5

)
= 7!/2!5! = 21

Proof:
We can identify an r-submultiset with an arrangement of k − 1 partitions
interspersed among r identical objects, by counting the numbers of objects
between the partitions; e.g. with k = 6 and r = 8

oo|ooo||o|oo|

corresponds to
{2 ∗ a1, 3 ∗ a2, 0 ∗ a3, 1 ∗ a4, 2 ∗ a5, 0 ∗ a6}.

These arrangements correspond to choosing r of the r+ k− 1 characters to
be ’o’s, so the number of such arrangements is

(
r+k−1
r

)
.

5 Pigeonhole Principles

Pigeonhole Principle (PP):
If some pigeons are in some pigeonholes,
and there are fewer pigeonholes than there are pigeons,
then some pigeonhole must contain at least two pigeons.

// The ”pigeons” and ”pigeonholes” can be abstract!

Example:
If there are 367 people in a room,
there must be two who share a common birthday.

Interlude: maps and numbers

f : X → Y map between finite sets.

For y ∈ Y , f−1(y) = ”fibre of f over y” = {x | f(x) = y}.

Recall:
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• f is surjective aka onto,
written f : X � Y ,
if for all y ∈ Y , |f−1(y) | ≥ 1

• f is injective aka 1-1,
written f : X ↪−→ Y ,
if for all y ∈ Y , |f−1(y) | ≤ 1

• f is bijective aka a (1-1) correspondence aka invertible,

written f : X
≡−→ Y ,

if f is both injective and surjective,
i.e. if for all y ∈ Y , |f−1(y) | = 1

Remark:
If f is

• injective then |X| ≤ |Y | (Pigeonhole principle)

• surjective then |X| ≥ |Y |

• bijective then |X| = |Y |

Applications of the Pigeonhole principle

Example:
If I take 13 coins,
divide them into 9 piles, placed in a row,
then there will be a group of neighbouring piles within the row such that
there are exactly 4 coins in the group.
(Generally: n coins, m piles; must be k coins in a contiguous group if

n+ k < 2 ∗m
(this isn’t sharp))

Proof:
Let ai := number of coins in first i piles, 1 ≤ i ≤ 9.
Consider the 18 numbers

a1, a2, ..., a9, a1 + 4, a2 + 4, ..., a9 + 4.
Since 1 ≤ ai ≤ 13, these numbers are all between 1 and 17.
So by the PP, two must be equal.

Since no two ai are equal (since the piles are non-empty),
and similarly no two ai + 4 are equal,
we must have ai = aj + 4 for some i,j.

So ai − aj = 4,
so 4 is the sum of the sizes of the piles after i and up to j,
namely piles i+ 1, ..., j.

Example:
Using as many coins as I want,
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I make a row of k piles.
Then there is a group of neighbouring piles such that the number of coins
in the group is divisible by k.

Proof:
Let a1, ..., ak be as above.

Let ri be the remainder on dividing ai by k.
If any ri = 0, we’re done.
Else, 0 < ri < k,
so by the PP, two remainders are equal,
ri = rj.
But then ai−aj is divisible by 7, and we conclude as in the previous example.

Packed Pigeonhole Principle

Packed Pigeonhole Principle (PPP):
If there are more than k ∗ n pigeons in n pigeonholes,
then some pigeonhole contains more than k pigeons.
(Note: ”Packed” is not standard terminology. This principle is commonly
referred to as the pigeonhole principle. Brualdi calls something slightly more
general (but less pleasing) the ”strong pigeonhole principle”, but I don’t
think we need to cover it)

Example:
If a1, ..., an2+1 is a sequence of n2 + 1 real numbers,
there is a subsequence of length n + 1 which is monotonic, i.e. is either
(nonstrictly) increasing or (nonstrictly) decreasing.

Proof:
Suppose there is no increasing subsequence of length n+ 1.

Let li be the length of the longest increasing subsequence starting with ai.
So 1 ≤ li ≤ n.

So by the PPP, n+ 1 of these n2 + 1 numbers are equal;
say li1 = ... = lin+1 .

Now suppose aij < aij+1
.

Then we can extend the longest increasing subsequence starting with aij+1

to a longer one starting with aij , by prepending aij .
This contradicts lij = lij+1

.

So (aij)j is a decreasing sequence of length n+ 1.

Abstract version:
If f : X � Y is a surjection,
and if all fibres are of size at most k,
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i.e. |f−1(y) | ≤ k for all y,
then |X| ≤ k|Y |.

Remark (Division principle, map form):
If f : X � Y is a surjection,
and if all fibres have size exactly k,

i.e. |f−1(y) | = k for all y,
then |X| = k|Y |.

(Proof: partition X according to the value of f , apply division principle)

Averaging principle:
Given integers a1, ..., an,
some ai is at least the average,

ai ≥ (a1 + ...+ an)/n
(Note the average might not be an integer!)

Packed Pigeonhole follows from averaging:
if there are more than k ∗ n pigeons,
then the average number of pigeons per pigeonhole is more than k;
some pigeonhole has at least the average number of pigeons,
so has more than k pigeons.

Example:
Discs (p.75)

6 Ramsey Theory

Example:
Given 6 people,
either there are 3 who all like each other,
or there are 3 no two of whom like each other.

Abstract version:
Kn := ”complete graph on n vertices”

= n points with an edge between each pair.

Colour the edges of K6 each either red or blue,
then there’s a red copy of K3 or there’s a blue copy of K3;
i.e. there is a monochromatic triangle.

Denote this fact
K6 → K3, K3
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Proof:
Pick a vertex v0.
Consider the 5 edges from it.
3 of them are red or 3 of them are blue, since 5 > (3− 1) + (3− 1).
Say 3 are red, and consider the 3 other vertices of these red edges.
If the edges between them are all blue, they form a blue triangle and we’re
done.
Else, some edge is red; but then it along with the edges from v0 form a red
triangle, and we’re done.

Ramsey’s Theorem for 2-coloured graphs:
Given n and m positive integers,
there exists r such that for any red-blue colouring of the edges of Kr,
there are n vertices all edges between which are red or there are m vertices
all edges between which are blue.

Notation:
We write

Kr → Kn, Km

to mean that r has this property,
and we let r(m,n) (”the (m,n)th Ramsey number”) be the least such r.

Remarks:
We saw that K6 → K3, K3;
it’s easy to see that K5 6→ K3, K3,
so r(3, 3) = 6.

It has been shown that
r(3, 4) = 9
r(3, 5) = 14
r(4, 4) = 18

r(5, 5) is unknown! All we know is
43 ≤ r(5, 5) ≤ 49.

Erdös:
”Suppose aliens invade the earth and threaten to obliterate it in a year’s
time unless human beings can find the Ramsey number for red five and blue
five. We could marshal the world’s best minds and fastest computers, and
within a year we could probably calculate the value. If the aliens demanded
the Ramsey number for red six and blue six, however, we would have no
choice but to launch a preemptive attack.”

Proof of Theorem:
Suppose inductively that

Kb → Kn−1, Km

and
Kc → Kn, Km−1.
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We show that
Kb+c → Kn, Km.

So colour Kb+c, and suppose there’s no red Kn and no blue Km.

Pick a vertex v0; consider the b+ c− 1 edges from it.
Since b+ c− 1 > (b− 1) + (c− 1),
b of the edges are red or c of the edges are blue.

Say b are red.
Consider the Kb formed by the vertices these edges connect to v0.
By the inductive hypothesis, it contains a red Kn−1 or a blue Km.
If it contains a red Kn−1, adjoining v0 yields a red Kn;
contradiction.
If it contains a blue Km, then so does our original Kb+c;
contradiction.

A symmetrical argument applies in the case that c of the edges from v0 are
blue.

Remark:
This proof yields a recursive upper bound on the Ramsey numbers:

r(m,n) ≤ r(n− 1,m) + r(n,m− 1)
(but this is far from sharp).

7 Binomial coefficients

Miscellaneous Curiosities

Recall:

• For n a non-negative integer and r an integer,(
n
r

)
= number of subsets of size r of a set of size n
= n!

n!(n−r)! if 0 ≤ r ≤ n
= 0 else.

• Pascal’s triangle

• Pascal’s Formula:
(
n
r

)
=
(
n−1
r

)
+
(
n−1
r−1

)
•
(
n
r

)
=
(
n
n−r

)
•
∑n

r=0

(
n
r

)
= 2n

• (x+ y)n =
∑n

r=0

(
n
r

)
xn−ryr

Remark:(
n
r

)
= number of paths from root of Pascal’s triangle to the (n, r) position.
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Further identities:

• k
(
n
k

)
= n

(
n−1
k−1

)
(immediate from

(
n
k

)
= n(n−1)...(n−k+1)

k(k−1)...1 )

• (x+ 1)n =
∑n

r=0

(
n
r

)
xr

• 0 = ((−1) + 1)n =
∑n

r=0

(
n
r

)
(−1)r;

so alternating sum of binomial coefficients is 0;
so sum of even coefficients = sum of odd coefficients = 2n−1.

Yet further identities:

(i)
(
n+1
r+1

)
=
∑n

s=0

(
s
r

)
(ii)

∑n
r=0

(
n
r

)2
=
(
2n
n

)
(iii)

∑n
r=0 r

(
n
r

)
= n2n−1

Proofs:

(i) Iteratively apply Pascal’s formula:(
n+1
r+1

)
=
(
n
r+1

)
+
(
n
r

)
=
(
n−1
r+1

)
+
(
n−1
r

)
= ...
=
(

0
r+1

)
+
(
0
r

)
+ ...+

(
n−1
r

)
=
(
0
r

)
+ ...+

(
n−1
r

)
Alternative inductive proof:
Easily holds for n = r = 0.
Suppose inductively it holds for smaller n+ r.
Then using Pascal’s formula, we have:(
n+1
r+1

)
=
(
n
r+1

)
+
(
n
r

)
=
∑n−1

k=0

(
k
r

)
+
∑n−1

k=0

(
k
r−1

)
=
∑n−1

k=0(
(
k
r

)
+
(
k
r−1

)
)

=
∑n−1

k=0

(
k+1
r

)
=
∑n

k=1

(
k
r

)
=
∑n

k=0

(
k
r

)
(ii) Consider diamonds in Pascal’s triangle.

OR: Given a set S of size 2n, arbitrarily split it into two sets S1, S2 of
size n.
Then an n-subset S ′ of S corresponds to the pair (S ′ ∩ S1, S

′ ∩ S2).
The pairs of subsets arising in this way are precisely those of sizes
summing to n,
so (

2n
n

)
=
∑n

r=0

(
n
r

)(
n
n−r

)
=
∑n

r=0

(
n
r

)2
(iii) Neat algebraic proof:

n(x+ 1)n−1 = d
dx

(x+ 1)n = d
dx

∑n
r=0

(
n
r

)
xr

=
∑n

r=0 r
(
n
r

)
xr.

This holds for all x; taking x = 1 gives the result.
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Examples of (i):

•
(
n
1

)
=
∑n−1

s=0

(
s
0

)
=
∑n−1

s=0 1 = n

•
(
n
2

)
=
∑n−1

s=0

(
s
1

)
=
∑n−1

s=0 s = nth triangular number

•
(
n
3

)
=
∑n−1

s=0

(
s
2

)
= nth pyrimidal number

Multinomial theorem

What is the coefficient ar,s,t of xryszt in the expansion of (x+ y + z)n?

Clearly ar,s,t 6= 0 only if r + s+ t = n.

ar,s,t is the number of ways of choosing r x’s, s y’s, and t z’s from the n
factors (x+ y + z);
i.e. the number of strings like ”xyzzyxyzzy” with this many of each letter;
i.e. the number of permutations of the multiset {r ∗ x, s ∗ y, t ∗ z}.

So as we saw before,
ar,s,t = n!

r!s!t!
.

Write
(
n
r s t

)
for this number.

Generalising to arbitrarily many variables, we have

Theorem:
(x1 + ...+ xt)

n =
∑

ni≥0,n1+...+nt=n

(
n

n1 n2 ... nt

)
xn1
1 x

n2
2 ...x

nt
t

Here,
(

n
n1 n2 ... nt

)
= n!

n1!...nt!
are the multinomial coefficients (only defined if

n1 + ...+ nt = n).

Note:(
n
r

)
=
(

n
r n−r

)
.

The number of terms in the multinomial expansion of (x1 + ...+ xt)
n is the

number of n-combinations with t types in unlimited supply, which we saw
is (

n+t−1
n

)
.

Unnatural exponents: (x+ y)α

Theorem [Newton’s Binomial Theorem]:
Let α be a real (or even complex) number.
Suppose 0 ≤ |x| < |y|.
Then

(x+ y)α =
∑∞

k=0

(
α
k

)
xkyα−k

where(
α
k

)
= α(α−1)...(α−k+1)

k!
.

Note that for α natural, this agrees with our previous definition.
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Proof (not on syllabus):
Dividing through by yα, sufficient to show that for |z| < 1,

(1 + z)α =
∑∞

k=0

(
α
k

)
zk.

We show this for complex z with |z| < 1.
(1 + z)α = exp(α log(1 + z)) for any choice of branch.
This is holomorphic on the domain |z| < 1,
so the Taylor series at 0 converges to the value of the function on this domain.

Since d
dz

(1 + z)α = α(1 + z)α−1 and (1 + 0)α = 1,
this gives

(1 + z)α = ((1 + z)α|z=0)
z0

0!
+

(α(1 + z)α−1|z=0)
z1

1!
+

(α(α− 1)(1 + z)α−2|z=0)
z2

2!
+ ...

=
∑∞

k=0(α(α− 1)...(α− k + 1)) z
k

k!

=
∑∞

k=0

(
α
k

)
zk

�

Examples:

• 1
1+z

= (1 + z)−1

=
∑∞

k=0

(−1
k

)
zk

=
∑∞

k=0
(−1)∗(−2)∗...∗(−k)
k∗(k−1)∗...∗1 zk

=
∑∞

k=0(−1)kzk

= 1− z + z2 − z3 + ...

• √
37 =

√
62 + 1 = 6

√
1 + 1/36 = 6(1 + 1/36)1/2

= 6(
∑∞

k=0

(
1/2
k

)
(1/36)k)

Now for k > 0,(
1/2
k

)
=

1
2

1−2
2
...

1−2(k−1)
2

k!

= (−1)k−11∗3∗5∗...∗(2k−3)
2kk!

= (−1)k−1(2k−2)!
2k(2∗4∗...∗(2k−2))k!

= (−1)k−1(2k−2)!
22k−1(k−1)!k!

= (−1)k−1

k22k−1

(
2k−2
k−1

)
So √

1 + z = 1 +
∑∞

k=1
(−1)k−1

k22k−1

(
2k−2
k−1

)
zk

= 1 + 1
2
z − 1

8
z2 + 1

16
z3 − 1

25
z4 + ...

So
√

37 = 6(1 + 1/36)1/2

≈ 6(1 + 1/(2 ∗ 36)− 1/(8 ∗ 362) + 1/(16 ∗ 363)− 1/(25 ∗ 364))
= 6.0828

(Error is very small: (6 ∗ (1 + 1/(2 ∗ 36)− 1/(8 ∗ 362) + 1/(16 ∗ 363)−
1/(25 ∗ 364)))2 = 36.99999992692224)
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8 Partial Orders

Basics

A partial order on a set X is a binary relation ≤ which is

• reflexive (x = y => x ≤ y)

• transitive (if x ≤ y and y ≤ z then x ≤ z)

• antisymmetric (if x ≤ y and y ≤ x then x = y).

A set X equipped with a partial order ≤, denoted (X;≤), is called a
partially ordered set or a poset.

”x ≥ y” means ”y ≤ x”.
”x < y” means ”x ≤ y and x 6= y”.

Examples:

(i) The usual order ≤ on the integers.

(ii) The relation of divisibility is a partial order on the natural numbers;
(N; |) is the corresponding poset.

(iii) If A is a set, the set of subsets of A is partially ordered by inclusion,
⊆.

Hasse diagrams:
x covers y if x > y and there is no z such that x > z > y.

The Hasse diagram of a finite poset (X,≤) consists of points for the elements
of X and a line drawn upwards from y to x whenever x covers y.

(We will see below that every finite poset has a Hasse diagram.)

x is minimal if x > y for no y.
x is maximal if x < y for no y.

Lemma:
< is transitive: if x < y and y < z then x < z.

Proof:
x ≤ z by transitivity of ≤.
Suppose x = z.
Then y ≤ x and x ≤ y, so x = y by antisymmetry, contradicting x < y.
So x 6= z. �

Lemma:
Any finite poset has at least one minimal element, and at least one maximal
element.
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Proof:
Suppose (X;≤) has no minimal element.
Then there exist arbitrarily long chains x1 > x2 > x3 > ... > xn.
By transitivity of >, the xi are distinct, so we contradict finiteness. �

A partial order ≤ on a set X is total (aka linear) if for all x and y in X,
either x ≤ y or y ≤ x.

Lemma:
Any finite total order (X;≤) can be enumerated as X = {x1, ..., xn} with
xi ≤ xj iff i ≤ j.

(i.e. (X;≤) is isomorphic to {1, ..., n} with the usual order.)

Proof:
If x is minimal in a total order, then x ≤ y for any y.

Let x1 be minimal in X, then let x2 be minimal in X \ {x1},
and so on.

Then xi ≤ xj for i ≤ j.
By antisymmetry, xi 6≤ xj for i 6≤ j. �

Lemma:
Any finite poset (X;≤) can be linearised,
i.e. there exists a total order ≤′ such that x ≤ y => x ≤′ y.

Proof:
Let x1, ..., xn be the minimal elements of (X;≤).
Let X ′ := X \ {x1, ..., xn}.
By induction, (X ′;≤) can be linearised, say to ≤′.
Extend ≤′ to X by defining

• xi ≤′ xj iff i ≤ j

• xi ≤′ y for any y ∈ X ′

This is total. �

Consequence:
Any finite poset has a Hasse diagram:
draw the points with heights ordered according to a linearisation of the
partial order,
then draw a line whenever x covers y, which implies that x is above y.
(Nudge the points horizontally if there are any overlapping lines).
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Chains and antichains

Definition:
Let (X;≤) be a poset.

∅ 6= C ⊆ X is a chain if (C;≤) is a total order.

∅ 6= A ⊆ X is an antichain if a1 ≤ a2 => a1 = a2 for ai ∈ A.

A chain partition is a partition X = C1 ∪ ... ∪ Cn by disjoint chains.

An antichain partition is a partition X = A1∪ ...∪An by disjoint antichains.

Theorem:
In a finite poset (X;≤),

(i) The maximal size of a chain is equal to the minimal size of an antichain
partition.

(ii) [Dilworth’s theorem] The maximal size of an antichain is equal to the
minimal size of a chain partition.

Proof:
First observe that a chain and an antichain can have no more than 1 point
in common,
|C ∩ A | ≤ 1.

So given an antichain partition and a chain,
each element of the chain is in precisely one of the antichains,
and no two elements of the chain are in the same antichain,
so

size of any chain ≤ size of any antichain partition
so

maximal size of a chain ≤ minimal size of an antichain partition.

Similarly for (ii): given a chain partition, each element of an antichain is in
exactly one of the chains in the partition,
and no two elements of the antichain are in the same chain, so

maximal size of an antichain ≤ minimal size of a chain partition.

So it remains to see

(i) There exists an antichain partition of size the maximal size of a chain;

(ii) There exists a chain partition of size the maximal size of an antichain.

These require separate arguments.

(i) Let C be a chain of maximal length.
Say C = {c1, ..., cn} with ci ≤ cj iff i ≤ j.

For i = 1, ..., n, recursively define
Ai := the set of minimal elements of X \ (A1 ∪ ... ∪ Ai−1).

Then Ai is an antichain,
and ci ∈ Ai so no Ai is empty.
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If x ∈ X \ ∪iAi then x ≥ ci for all i,
so we could extend C to a larger chain by adjoining x,
contradicting maximality of C.
So X = ∪iAi.

So the Ai form an antichain partition of size n = |C| as required.

(ii) By induction on the size of X.

First, suppose some antichain A of maximal size m is not the set of
maximal elements and is not the set of minimal elements.

Let
A+ :=

⋃
a∈A{x | x ≥ a}

A− :=
⋃
a∈A{x | x ≤ a}.

Then A+ ∪ A− = X by maximality of A,
and A+ ∩ A− = A.

Now A is a maximal-size antichain in A+,
and A+ 6= X since A is not the set of maximal elements,
so by induction, A+ has a chain partition of size |A|.

Similarly, we have a chain partition of A−.

For each element a ∈ A, a is in one of the chains of A+ and one of the
chains of A−, and the union of these two chains is a chain Ca in X.

Then {Ca | a ∈ A} is a chain partition of X of size m = |A|.

For the remaining case,
suppose every maximal-size antichain is either the set of maximal ele-
ments or the set of minimal elements.

Let x be minimal and y be maximal, with x ≤ y.

(To see that such that such x and y exist:
we proved above that maximal and minimal elements always exist,
so we only need to see that some minimal element is comparable with
(and hence ≤) some maximal element.
Otherwise, the minimal elements and the maximal elements together
form an antichain,
which contradicts our assumption unless the set of minimal elements
is equal to the set of maximal elements,
in which case we can take x = y.)

Then X \ {x, y} has no antichains of size m but has an antichain of
size m− 1,
so by induction it has a chain partition of size m− 1.
Adjoining the chain {x, y}, we obtain a chain partition of X of size m.

�



9 INCLUSION-EXCLUSION 24

Bonus: Sperner’s Theorem

Example:
Inductively define ”symmetric” chain partitions Sn of the set of subsets of
{1, ..., n}:

Let S1 be the partition with only one chain,
∅ ( {1}.

Given a chain partition Sn of {1, ..., n},
let Sn+1 have, for each chain A1 ( ... ( Ak of Sn,

• the chain A1 ( ... ( Ak ( Ak ∪ {n+ 1},

• and, if k > 1, the chain A1 ∪ {n+ 1} ( ... ( Ak−1 ∪ {n+ 1}.

Each chain A1 ( ... ( Ak in Sn has subsequent elements differing in size by
one,
and |A1|+ |Ak| = n.

Hence each chain contains a subset of size bn
2
c,

so |Sn| =
(
n
bn
2
c

)
.

(bn
2
c = n/2 ”rounded down”)

So by Dilworth, we obtain ”Sperner’s Theorem”:
The set of subsets of {1, ..., n} of size bn

2
c is a maximal-size antichain.

9 Inclusion-Exclusion

Let A1 and A2 be finite subsets of a set X.
If A1 and A2 are disjoint, the addition principle tells us |A1∪A2| = |A1|+|A2|.

If they’re not disjoint, this ”double-counts” the elements of the intersection;
we can fix this by subtracting the size of the intersection,
yielding the general formula |A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.

For three finite subsets A1,A2,A3 of some set X, similar reasoning yields
|A1 ∪ A2 ∪ A3| =
|A1|+ |A2|+ |A3|−(|A1∩A2|+ |A2∩A3|+ |A1∩A3|)+ |A1∩A2∩A3|.

Example:
How many integers in [1,100] are divisible by 2, 5, or 7?

Let Dn := {k ∈ Z ∩ [1, 100] : n | k}.

Note |Dn| = b100n c.

By inclusion-exclusion,
|D2 ∪D5 ∪D7| = |D2|+ |D5|+ |D7|
−(|D2 ∩D5|+ |D5 ∩D7|+ |D2 ∩D7|)
+|D2 ∩D5 ∩D7|

= |D2|+ |D5|+ |D7| − (D10 +D35 +D14) +D70
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= 50 + 20 + 14− (10 + 2 + 7) + 1
= 66.

Theorem [Inclusion-Exclusion Principle]:
Let A1, ..., An be finite subsets of a set X.
Then
|A1 ∪ ... ∪ An| =∑

i |Ai|
−
∑

i<j |Ai ∩ Aj|
+
∑

i<j<k |Ai ∩ Aj ∩ Ak|
−...
+(−1)n−1|A1 ∩ ... ∩ An|

Proof:
Let x ∈ A1 ∪ ... ∪ An.
We show that x ”contributes 1” to the right hand side.
Say x is in m ≥ 1 of the n sets.
Then x contributes 1 to m =

(
m
1

)
of the |Ai|,

to
(
m
2

)
of the |Ai ∩ Aj|,

to
(
m
3

)
of the |Ai ∩ Aj ∩ Ak|,

and so on.

So x contributes∑
k>0(−1)k−1

(
m
k

)
= −

∑
k>0(−1)k

(
m
k

)
= 1−

∑
k≥0(−1)k

(
m
k

)
= 1− 0
= 1

Remark:
Neat alternative expression:
|
⋃
iAi| =

∑
∅6=I⊆{1,...,n}(−1)|I|−1

∣∣⋂
i∈I Ai

∣∣.
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Bonus:
Version of the proof using this notation:∣∣∣∣∣⋃

i

Ai

∣∣∣∣∣ =
∑

x⊆
⋃

i Ai

1

=
∑

x⊆
⋃

i Ai

(
−
∑
k>0

(−1)k
(

#{i | x ∈ Ai}
k

))

=
∑

x⊆
⋃

i Ai,I⊆{i | x∈Ai}

(−1)|I|−1

=
∑

{(x,I) | x∈
⋃

i Ai,I⊆{1,...,n},x⊆
⋂

i∈I Ai}

(−1)|I|−1

=
∑

∅6=I⊆{1,...,n}

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
Example:
How many strings of 8 letters from the Roman alphabet contain ’j’, ’q’, ’x’,
’y’ and ’z’?

We could do this positively, but it would be fiddly.

Instead, let’s count the number of strings which don’t contain all of these
letters, i.e. which omit ’j’ or omit ’q’ or... .

Let Oj be the strings which omit ’j’, Ojq the strings which omit ’j’ and ’q’,
and so on.

Then by inclusion-exclusion,
|Oj ∪Oq ∪Ox ∪Oy ∪Oz| = |Oj|+ |Oq|+ ...
−(|Ojq|+ |Ojx|+ ...)
+(|Ojqx|+ |Ojqy|+ ...)
−(|Ojqxy|+ |Ojqxz|+ ...)
+|Ojqxyz|

Now |Oj| = |Oq| = ... = 258,
and |Ojq| = |Ojx| = ... = 248,
and so on.

So
|Oj ∪Oq ∪Ox ∪Oy ∪Oz| =(

5
1

)
258 −

(
5
2

)
248 +

(
5
3

)
238 −

(
5
4

)
228 +

(
5
5

)
218

and the answer to the original question is 268 − |Oj ∪ Oq ∪ Ox ∪ Oy ∪ Oz|,
which comes to 87408720.
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Combinations of multisets, revisited

Recall:
The number of r-combinations of a multiset with at least r of each of its t
types is

(
r+t−1
t−1

)
.

If there are fewer than r of some of the types, we can use inclusion-exclusion.

This is clearest if we transform the problem.

An r-combination of a multiset
{c1 ∗ a1, ..., ct ∗ at}

corresponds to a solution in non-negative integers of the equation
x1 + ...+ xt = r

subject to the constraints
x1 ≤ c1, ..., xt ≤ ct.

Concrete example:
I take 8 marbles from a bag containing 3 red marbles, 2 blue marbles, and
10 green marbles. How many possibilities are there for the numbers of each
colour I get? Equivalently, what is

|{(r, b, g) | r + b+ g = 8, 0 ≤ r ≤ 3, 0 ≤ b ≤ 2}|?

So we want to count the number of such solutions,
and we know that the answer is

(
r+t−1
t−1

)
if there are no constraints.

By the subtraction principle,
the number of solutions in the constrained case is the number in the uncon-
strained case minus the number which fail at least one constraint,(

r+t−1
t−1

)
− |F1 ∪ ... ∪ Ft|,

where Fi := {(x1, ..., xt) | x1 + ...+ xt = r, xi > ci}.

So we can use the inclusion-exclusion principle if we can determine the sizes
of the intersections of the Fi.

If ci ≥ r, then Fi = ∅.
Otherwise, subtracting ci+1 from xi puts Fi in correspondence with {(y1, ..., yt) | y1+
...+ yt = r − (ci + 1), yi ≥ 0},
so |Fi| =

(
r−(ci+1)+t−1

t−1

)
.

Similarly, |Fi ∩ Fj| =
(
r−(ci+1)−(cj+1)+t−1

t−1

)
, and so on.

So inclusion-exclusion yields∑
I⊆{1,...,t}(−1)|I|

(
r−(

∑
i∈I(ci+1))+t−1

t−1

)
.

Marble example:(
8+2
2

)
−
(
8−(3+1)+2

2

)
−
(
8−(2+1)+2

2

)
+
(
8−(3+1)−(2+1)+2

2

)
=
(
10
2

)
−
(
6
2

)
−
(
7
2

)
+
(
3
2

)
= 12
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Scrabble example:
How many 7-tile hands can be drawn from a standard 100-tile bag of scrabble
tiles?
Using the above formula, my computer calculates it as 3199724.

(for the curious, here’s the Haskell code I used to calculate this:

import Math.Combinatorics.Binomial (choose)

combs :: Int -> [Int] -> Int

combs r cs =

let

t = length cs

subs = subs’ [] cs

-- subs’: returns relevant subsequences of cs, omitting those which

-- will contribute 0 to the final sum (without this, the algorithm

-- would have complexity exponential in t)

subs’ sub [] = [sub]

subs’ sub _ | (sum (map (+1) sub) > r) = []

subs’ sub (c:cs) = subs’ (c:sub) cs ++ subs’ sub cs

in sum [ (-1)^(length sub) *

choose (r - sum (map (+1) sub) + t-1) (t-1) | sub <- subs ]

scrabbleBag :: [Int]

scrabbleBag = concat [ replicate n c | (n,c) <-

[(5,1), (10,2), (1,3), (4,4), (3,6), (1,8), (2,9), (1,12)] ]

main :: IO ()

main = print $ combs 7 scrabbleBag

)

Derangements

A derangement is a permutation which leaves nothing in its original position.

e.g.

(5,3,4,2,1) is a derangement of
(1,2,3,4,5), and
”endgreatmen” is a derangement of
”derangement”.

Dn := the number of derangements of a sequence of length n,
= number of derangements of (1, 2, ..., n).

We can use inclusion-exclusion to determine Dn.

A derangement of (1, ..., n) is a permutation (a1, ..., an) which satisfies the
conditions a1 6= 1, ..., an 6= n.

Let Pi be the set of permutations which fail the ith of these conditions,
i.e. such that ai = i.
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Easily, for I ⊆ {1, ..., n},
|
⋂
i∈I Pi| = (n− |I|)!.

So by inclusion-exclusion,
Dn = n!− |

⋃
i Pi|

= n!−
∑
∅6=I⊆{1,...,n}(−1)|I|−1|

⋂
i∈I Pi|

= n!−
∑
∅6=I⊆{1,...,n}(−1)|I|−1(n− |I|)!

= n!−
∑n

i=1(−1)i−1
(
n
i

)
(n− i)!

=
∑n

i=0(−1)i
(
n
i

)
(n− i)!

=
∑n

i=0(−1)i n!
i!

= n!
∑n

i=0
(−1)i
i!

Note then that the probability that a random n-permutation is a derange-
ment is

Prn = |Dn|
n!

=
∑n

i=0
(−1)i
i!

,
so

limn→∞ Prn =
∑∞

i=0
(−1)i
i!

= e−1 ≈ 0.368

The convergence is very fast;
e.g. Prn ≈ 0.368 to 3 significant figures for n ≥ 6.

Example:
A deranged scientist removes the heads from a large number of different
animals and re-attaches them at random. What is the probability that
every resulting creature is a chimera, i.e. that no head is reattached to its
own body?

Answer:
About e−1.

10 Number sequences

A number sequence is simply an infinite sequence h0, h1, h2, ... of numbers.
For us, hi will typically be an integer.

Examples:
1,2,3,4,5,...
2,4,8,16,32,...
2,3,5,7,13,...
1,1,2,3,5,8,13,...
1,5,10,10,5,1,0,0,0,0,...
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Generating functions

The generating function of a number sequence h0, h1, .... is the formal power
series g(x) =

∑∞
n=0 hnx

n.

Technical remark:
Despite the notation and terminology, we do not assume any convergence;
we do not need g(a) to make sense for a a real number,
so g doesn’t really have to be a function in the usual sense.
for example,

∑∞
n=0 n

nxn doesn’t converge for x 6= 0,
but it’s a perfectly good generating function.

We use the usual algebraic notation for generating functions. We can make
sense of algebraic operations as follows:

Given formal power series g(x) =
∑∞

n=0 hnx
n and g′(x) =

∑∞
n=0 h

′
nx

n, and a
number c, we define

g(x) + g′(x) :=
∑∞

n=0(hn + h′n)xn

cg(x) :=
∑∞

n=0 chnx
n

g(x)g′(x) :=
∑∞

n=0(
∑n

j=0 hjh
′
n−j)x

n.

We also write c(x) = a(x)
b(x)

to mean that a(x) = b(x)c(x) (this is well-defined).

We can often use this algebraic structure to write generating functions com-
pactly.

Example 1:
Consider the binomial coefficients

(
m
n

)
for a fixed m.

This is a finite number sequence, but we can make it infinite by appending
0s, (

m
0

)
,
(
m
1

)
, ...,

(
m
m

)
, 0, 0, 0, ....

So the generating function is(
m
0

)
+
(
m
1

)
x+

(
m
2

)
x2...+

(
m
m

)
xm

= (x+ 1)m

Example 2:
The generating function of the number sequence

1, 1, 1, ...
is g(x) =

∑∞
n=0 x

n = 1 + x+ x2 + ....

Now, multiplying out,
(1 + x+ x2 + ...)(1− x) = 1 + (−1 + 1)x+ (−1 + 1)x2 + ...,

so g(x) = 1/(1− x).
�

Generating functions provide an efficient notation for describing and manip-
ulating classes of combinatorial problems.
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Example 3:
Given t, let hn be the number of n-combinations of a multiset with t types
and infinite multiplicity for each type.

We know hn =
(
n+t−1
t−1

)
, so the generating function is

g(x) =
∑∞

n=0 hnx
n =

∑∞
n=0

(
n+t−1
t−1

)
xn.

But note also that
g(x) = (1 + x+ x2 + ...)t,

since when we multiply the right hand side out,
the coefficient of xn is precisely the number of ways of obtaining xn as
xe1xe2 ...xet ,
which is the number of solutions in non-negative integers to e1 + ...+ek = n,
which (as we’ve seen before) is hn.

So as in the previous example,
g(x) = (1 + x+ x2 + ...)t =

(
1

1−x

)t
= 1

(1−x)t .
�

Note we found here the power series expansion of 1
(1−x)t , which will come in

handy later.

Lemma 1:
1

(1−x)t =
∑∞

n=0

(
n+t−1
t−1

)
xn

If we have restrictions on how many of each type we’re allowed to take in a
combination, we can incorporate these into an algebraic expression for the
generating function.

Example 4:
Find the generating function for the number hn of bags of n marbles consist-
ing of an even number of red marbles, at least 1 green marble, at most 36
blue marbles, and an odd number of yellow marbles.

Arguing as in the previous example, the generating function is
g(x) = (1+x2+x4+...)(x+x2+x3+...)(1+x+x2+...+x36)(x+x3+x5+...)

= 1
1−x2

x
1−x

1−x37
1−x

x
1−x2 .

= x2(1−x37)
(1−x2)2(1−x)2 .

Example 5:
Find the generating function for the number hn of bags of n marbles con-
sisting of an even number of red marbles, a multiple of 3 of green marbles,
at most 2 blue marbles, and at most one yellow marble. Hence explicitly
determine hn.

g(x) = (1 + x2 + x4 + ...)(1 + x3 + x6 + ...)(1 + x+ x2)(1 + x)
= 1

1−x2
1

1−x3
1−x3
1−x (1 + x)

= 1+x
(1−x2)(1−x)
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= 1+x
(1+x)(1−x)(1−x)

= 1
(1−x)2

=
∑∞

n=0

(
n+2−1
2−1

)
xn (by Lemma 1)

=
∑∞

n=0(n+ 1)xn.

So there are n+ 1 such bags of n marbles!

(Exercise: find a direct proof of this, without going via generating functions.)

Example 6:
Find the generating function for the number hn of ways of making n cents
out of Canadian coins.

The coins in current circulation are worth 5,10,25,100, and 200 cents each.

So hn is the number of solutions in non-negative integers to
5N + 10D + 25Q+ 100L+ 200T = n.

Equivalently, hn is the number of solutions to
e1 + e2 + e3 + e4 + e5 = n

where e1 is a multiple of 5, e2 is a multiple of 10, etc.

So as above,
g(x) = (x5 + x10 + x15 + ...)(x10 + x20 + ...)...(x200 + x400 + ...)

= 1
(1−x5)(1−x10)...(1−x200) .

Exponential Generating Functions

The exponential generating function of a number sequence h0, h1, ... is the
formal power series

g(e)(x) =
∑∞

n=0 hn
xn

n!
.

While ordinary generating functions are useful for counting combinations,
exponential generating functions are useful for counting permutations.

Example 7:
The exponential generating function of

(m, 0), P (m, 1), ..., P (m,m), 0, 0, 0, ...
is

g(e) =
∑m

n=0
m!

(m−n)!
xn

n!

=
∑m

n=0

(
m
n

)
xn

= (1 + x)m

Example 8:
Let hn be the number of n-permutations of a multiset with k different types,
each with infinite multiplicity,
{∞ · a1, ...,∞ · ak}.

So hn = kn.
Then the exponential generating function is : g(e)(x) =

∑∞
n=0

knxn

n!
= ekx.
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(remark for anyone who might worry what exactly we mean by this last
equality: we can just define eax to be the formal power series

∑∞
n=0

an

n!
xn.

This obeys the usual law eaxebx = e(a+b)x. We could define more, but this
will suffice for our purposes.)

Theorem:
Let hn be the number of n-permutations of the multiset

S := {n1 · a1, ..., nk · ak},
with ni ∈ N ∪ {∞}.

Then the exponential generating function is
g(e) = fn1(x)fn2(x)...fnk

(x)
where

fn(x) =
∑n

i=0
xi

i!

and in particular, f∞(x) = ex.

Proof:
hn =

∑
S′ an n-combination of S(number of permutations of S ′)

=
∑
{(m1,...,mk) | m1+...+mk=n, 0≤mi≤ni}

(number of permutations of {m1 ∗ a1, ...,mk ∗ ak}
=
∑
{(m1,...,mk) | m1+...+mk=n, 0≤mi≤ni}

n!
m1!...mk!

= n!
∑
{(m1,...,mk) | m1+...+mk=n, 0≤mi≤ni}

1
m1!...mk!

Meanwhile, if we multiply out fn1(x)fn2(x)...fnk
(x), we find the coefficient

of xn is
=
∑
{(m1,...,mk) | m1+...+mk=n, 0≤mi≤ni}

1
m1!...mk!

.

So this is indeed the exponential generating function.
�

Just as we saw with ordinary generating functions, if we have restrictions on
how many of each type we are allowed in a permutation, we can incorporate
these restrictions into the factors in the above expression for the exponential
generating function, by only including the appropriate powers of x.

Often, expanding out the resulting power series will give us a solution to the
combinatorial problem, as the following example demonstrates.

Example 9:
How many n-digit numbers can be written using only the digits ’1’,’2’, and
’3’, using an even number of ’2’s and at least 1 ’3’?

The exponential generating function is
g(e)(x) = (

∑∞
n=0

xn

n!
)(
∑∞

n=0
x2n

(2n)!
)(
∑∞

n=1
xn

n!
)

= (ex)( e
x+e−x

2
)(ex − 1)

= 1
2
(e3x + ex − e2x − 1)

=
∑∞

n=1
3n+1−2n

2n!

So the answer is 3n+1−2n
2
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11 Recurrence relations

Warm-up: The Fibonacci sequence

The Fibonacci sequence is the sequence fn satisfying
f0 = 0, f1 = 1
fn+2 = fn + fn+1

so
0,1,1,2,3,5,8,13,21,34,55,...

Such an expression for a term in a sequence as a function of previous terms
is called a recurrence relation.

Other examples:
h0 = 1
hn+1 = hn + 3

h0 = 1
hn+1 = 3hn

In these cases, we can easily find an expression for hn in terms of n.

Can we do this for fn?

To do so, we should consider the more general problem where we vary the
initial values f0 and f1, and just consider sequences fn satisfying the recur-
rence relation fn+2 = fn + fn+1.

If fn and f ′n are two such sequences, then so is c1fn + c2f
′
n for any c1, c2 (i.e.

the solutions form a vector space).

So if we can find some solutions to the Fibonacci recurrence relation, we
can easily generate more - perhaps including the Fibonacci sequence itself.

(In fact, if you recall your linear algebra, you should be able to see that
we only need to find two linearly independent sequences to generate all of
them)

Let’s look for solutions of the particularly simple form
fn = qn

with q 6= 0. Then the recurrence relation becomes
qn+2 = qn + qn+1

↔ qn(q2 − q − 1) = 0
↔ (q2 − q − 1) = 0 (since q 6= 0)

This is a quadratic equation, so it has two solutions.

They are
φ = 1+

√
5

2
, φ′ = 1−

√
5

2
.

(φ is known as the Golden Ratio; it is the unique positive real satisfying
1+φ
φ

= φ)
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So for any c1 and c2,
c1φ

n + c2φ
′n

satisfies the Fibonacci recurrence relation.

Let’s find such a sequence which satisfies the initial conditions of the Fi-
bonacci sequence, f0 = f1 = 1; then it must be the Fibonacci sequence.

c1 + c2 = 0
c1φ+ c2φ

′ = 1

We can solve this system of simultaneous equations

(
1 1
φ φ′

)(
c1
c2

)
=

(
0
1

)
(
c1
c2

)
=

1

φ′ − φ

(
φ′ −1
−φ 1

)(
0
1

)
=

1√
5

(
−1
1

)
So we obtain

Theorem:
The Fibonacci numbers are

fn = φn−φ′n√
5

where
φ = 1+

√
5

2
, φ′ = 1−

√
5

2
.

Note that φ′ = 1− φ, so we could also write this as
fn = φn−(1−φ)n√

5
.

Homogeneous Linear Recurrence Relations with Con-
stant Coefficients

A homogeneous linear recurrence relation with constant coefficients is an equa-
tion

hn+k = a0hn + a1hn+1 + ...+ ak−1hn+k−1,
with ai complex numbers.

k is the order of the recurrence relation.
A number sequence hn satisfying the recurrence relation is called a solution
to the recurrence relation.

If we add initial conditions
h0 = c0, ..., hk−1 = ck−1,

this clearly uniquely determines a solution.

Examples:

(i) The Fibonacci sequence.

(ii) Geometric sequences, hn+1 = ahn.
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(iii) The life-cycle of inventioni exemplicus is as follows:
a new hatchling remains in the larval stage until its first summer,
then spends a year maturing, and in the subsequent summer lays a
clutch of 7 eggs (which quickly hatch into larvae),
then in the summer after lays a second clutch of 6 eggs, then dies.

All excemplicus are female (they reproduce parthenogenetically).

Suppose no exemplicus die except at the end of their life cycle.

If 100 exemplicus hatchlings are introduced one summer, how many
exemplicus larvae will there be at the end of the nth summer there-
after?

Solution:
At the end of the nth summer, there are 7 larvae born from each 2-
year-old exemplicus, and 6 from each 3-year-old.

So hn = 6hn−3 + 7hn−2 for n ≥ 3,
i.e. hn+3 = 6hn + 7hn+1 for n ≥ 0.

We also have the initial conditions
h0 = 100, h1 = 0, h2 = 700.

So we get
h3 = 600, h4 = 4900, h5 = 8400, h6 = 37900, ...

We proceed to generalise the solution to the Fibonacci recurrence relation
to solve general homogeneous linear recurrence relation with constant coef-
ficients.

Given a recurrence relation
hn+k = a0hn + a1hn+1 + ...+ ak−1hn+k−1,
i.e. hn+k =

∑k−1
j=0 ajhn+j,

we again look for solutions hn = qn.

Clearly hn = qn is a solution iff
qk = a0 + a1q + ...+ ak−1q

k−1,
i.e. qk − ak−1qk−1 − ...− a1q − a0 = 0.

The polynomial xk−ak−1xk−1−...−a1x−a0 is called the characteristic polynomial
of the recurrence relation.
It is a degree k polynomial, so has k roots in the complex numbers (counting
multiplicities).

Suppose that it has k distinct roots, q1, ..., qk.
(See the ”Bonus” section for what happens when we have repeated roots.)

Claim:
the k vectors ((q01, ..., q

k−1
1 ), ..., (q0k, ..., q

k−1
k )) are linearly independent in Ck,

Proof:
Otherwise, considering the columns of the k-by-k matrix whose rows are
these vectors,
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the k vectors ((q01, ..., q
0
k), ..., (q

k−1
1 , ..., qk−1k )) are linearly dependent.

i.e. there are b0, ..., bk−1 ∈ C not all 0, such that the polynomial
b0 + b1x+ ...+ bk−1x

k−1

has roots q1, ..., qk.

But a degree k − 1 polynomial can’t have k distinct roots;
contradiction.
�

So any given initial conditions h0 = c0, ..., hk−1 = ck−1 can be written as a
linear combination

hn = b1q
n
1 + ...+ bkq

n
k =

∑k
i=1 biq

n
i .

Taking this as a definition of hn for all n,
we see that not only does it satisfy the initial conditions by choice of bi,
but it satisfies the recurrence relation; indeed

hn+k =
∑k

i=1 biq
n+k
i

=
∑k

i=1 biq
n
i q

k
i

=
∑k

i=1 biq
n
i (
∑k−1

j=0 ajq
j
i )

=
∑k−1

j=0

∑k
i=1 biq

n
i ajq

j
i

=
∑k−1

j=0 aj
∑k

i=1 biq
n+j
i

=
∑k−1

j=0 ajhn+j

Example:
Let’s solve the exemplicus example.

hn+3 = 6hn + 7hn+1,
h0 = 100, h1 = 0, h2 = 700.

The characteristic polynomial is
x3 − 7x− 6 = (x− 3)(x+ 2)(x+ 1)

so the solutions are of the form
hn = b13

n + b2(−2)n + b3(−1)n.

Solving
100 = h0 = b1 + b2 + b3
0 = h1 = 3b1 − 2b2 − b3
700 = h2 = 9b1 + 4b2 + b3

gives
b1 = 45, b2 = 80, b3 = 25.

So the solution is
hn = 45 ∗ 3n + 80 ∗ (−2)n − 25 ∗ (−1)n.

�
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Bonus: Solving recurrence relations with generating
functions

Generating functions provide a convenient device for solving recurrence re-
lations (although in theoretical terms, they only provide a different way to
package the same linear algebra).

If g(x) is the generating function for the sequence hn,
i.e. the coefficient of xn in g(x) is hn,
then the coefficient of xn+1 in xg(x) is hn.

So if hn satisfy a recurrence relation
hn+k = a0hn + a1hn+1 + ...+ ak−1hn+k−1

then in
g(x)− a0xkg(x)− a1xk−1g(x)− ...− ak−1xg(x),

xn+k has coefficient 0 for n ≥ 0,
i.e. this is a polynomial of order k − 1.

Using initial conditions, we can find this polynomial, and so express g(x) as
a rational function.

For example, consider the Fibonacci relations fn+2 = fn + fn+1, f0 = 0, f1 =
1.

If g(x) is the generating function, then
g(x)−xg(x)−x2g(x) = f0+f1x+f2x

2+f3x
3+...−f0x−f1x2−f2x3−...−

f0x
2 − f1x3 − ...

= f0 + (f1 − f0)x+ (f2 − f1 − f0)x2 + (f3 − f2 − f1)x3 + ...
= f0 + (f1 − f0)x
= 0 + (1− 0)x
= x,

so
(1− x− x2)g(x) = x

so
g(x) = x

1−x−x2 .

Furthermore, by factoring the denominator and finding partial fractions, we
can expand this as a power series and so solve the recurrence equations.
In this case, the solutions to 1−x−x2 = 0 are the reciprocals of the solutions
φ, φ′ to x2 − x− 1, so

g(x) = x
1−x−x2

= x
(x−φ−1)(x−φ′−1)

= φφ′x
(1−φx)(1−φ′x)

= a
1−φx + b

1−φ′x
where

0 = a+ b
φφ′ = −φ′a− φb
=> b = −a
=> φφ′ = a(φ− φ′)

=> a = 1√
5

(using the definitions of φ, φ′)

=> b = −1√
5

so
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g(x) = 1√
5
((1− φx)−1 − (1− φ′x)−1)

= 1√
5
((
∑∞

n=0 φ
n)− (

∑∞
n=0 φ

′n))

= 1√
5

∑∞
n=0(φ

n − φ′n)
so we reclaim the formula we found before,

fn = φn−φ′n√
5

,
and we had to do the same algebra to get there.

Bonus: abstract reformulation, and handling repeated
roots

Consider the (infinite dimensional) complex vector space of complex number
sequences h = h0, h1, .... Let σ be the downshift operator, which from a
sequence h obtains the new sequence (σh)n = hn+1. Note that this is a
linear map.

Then a linear homogeneous constant coefficient recurrence relation, which
we can write as

∑k
i=0 aihn+i = 0, with ak 6= 0, can be rewritten as

(
∑k

i=0 aiσ
i)h = 0.

The subspace of solutions to this is then the kernel of the linear operator∑k
i=0 aiσ

i. This is a finite dimensional vector space. The solution method
described above is a matter of finding a basis of eigenvectors of σ on this
space. Note that eigenvectors are precisely geometric series cqn.

In general of course, the eigenvectors of σ won’t span the space. But its
generalised eigenvectors will. One can check inductively that the kth gener-
alised q-eigenspace of σ, i.e. the kernel of (σ − q)k,
is the space of sequences f(n)qn where f is a polynomial of degree at most
k − 1. So if the characteristic polynomial factors as∑k

i=0 aiσ
i = Π(σ − qi)ki ,

the space of solutions has a basis of eigensequences
njqni where j < ki,

so any solution can be expressed as a linear combination of these.

We might as well note that this abstract formulation also applies to homo-
geneous linear differential equations over the constants: replace the space
of sequences with, say, the space of complex analytic functions in one vari-
able, and replace σ with the differentiation operator. The kth generalised
λ-eigenspace consists of f(x)eλx for f(x) a polynomial of degree at most
k − 1.

12 Difference sequences, sums of powers, and

Stirling numbers

Difference sequences

Notation:
If h0, h1, ... is a number sequence, we will sometimes refer to the sequence
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just as h.

Definition:
∆ is the operator on number sequences of taking successive differences;
for a number sequence h, the number sequence ∆h is defined by

∆hn = hn+1 − hn.

∆2hn = ∆∆hn, etc.

We write out a sequence and its iterated differences as an infinite triangle;
e.g. if hn = n2, the iterated differences are as follows:

1 4 9 16 25 ...

3 5 7 9 ...

2 2 2 ...

0 0 ...

0 ...

Remark:
∆ is a linear operator, i.e. for sequences h and h′ and numbers c and c′,

∆(ch+ c′h′)n = c∆hn + c′∆h′n.

Hence the powers ∆k are also linear.

Lemma:
Let f be a polynomial of degree at most d, and let hn = f(n) be the sequence
of its values on natural numbers.

Then ∆d+1hn = 0 for all n.

Proof:
By linearity, it suffices to show this for monomials f(x) = xd.

So let hn = nd, and suppose inductively that the lemma holds for polyno-
mials of degree less than d.

Then
∆hn = hn+1 − hn = (n+ 1)d − nd

= nd + dnd−1 +
(
d
2

)
nd−2 + ...+ 1− nd

=
(
d
1

)
nd−1 +

(
d
2

)
nd−2 + ...+ 1

which has degree d− 1.

So by the inductive hypothesis,
0 = ∆d∆hn = ∆d+1hn. �

Now suppose hn = f(n) with f a polynomial of degree d.
By the above lemma, the numbers h0,∆h0, ...,∆

dh0 determine the whole
sequence h,
since we can generate the whole triangle from the initial diagonal h0,∆h0, ...,∆

dh0, 0, 0, ....
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Let’s find a formula for hn in terms of h0,∆h0, ...,∆
dh0.

Generating the triangle is a linear process,
so if we can find a formula for hn generated from an initial diagonal 0, 0, ..., 0, 1, 0, 0, ...,
with ∆kh0 = 1 and all other ∆ih0 = 0,
we can then take a linear combination.

We get a ”twisted Pascal’s triangle”, e.g.:

0 0 0 0 1 5 15 35 70 ...

0 0 0 1 4 10 20 35 ...

0 0 1 3 6 10 15 ...

0 1 2 3 4 5 ...

1 1 1 1 1 ...

0 0 0 0 ...

and so we see that hn =
(
n
k

)
.

To prove this: let f(x) := x(x−1)(x−2)...(x−(k−1))
k!

;
then f(0) = f(1) = ... = f(k − 1) = 0 and f(k) = 1,
so the difference triangle of f(n) also starts with

0 0 0 0 1

0 0 0 1

0 0 1

0 1

1

, and since by the lemma it also has 0s thereafter,
we must have hn = f(n).

Then we directly calculate that f(n) =
(
n
k

)
.

So, taking linear combinations, we conclude :

Theorem:
If the initial diagonal of the difference triangle of hn is c0, c1, ..., cd, 0, 0, ...
(i.e. if ∆kh0 = ci for k ≤ d, and ∆kh0 = 0 for k > d),
then

hn =
∑d

k=0 ck
(
n
k

)
.

Sums of powers

We can use this theorem to give neat formulae for sums of powers
∑k

n=0 n
d,

generalising the formulae you know and love for d = 1 and d = 2 (and maybe
even d = 3, if you’re that generous with your affections),
and more generally to give formulae for

∑k
n=0 f(n) where f is any polyno-

mial.

First recall the formula (from the section on Binomial Coefficients)(
k+1
r+1

)
=
∑k

n=0

(
n
r

)
.
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So to find
∑k

n=0 f(n), we can first use the above theorem to find an expres-
sion for f(n) in terms of binomial coefficients, then use this formula to sum
them.

Example:
Let’s find a formula for

∑k
n=0 n

4.

Drawing the start of the difference triangle,

0 1 16 81 256

1 15 65 175

14 50 110

36 60

24

, and recalling that all further rows are 0 since n4 has degree 4,
we see that the initial diagonal is 0, 1, 14, 36, 24, 0, 0, ....

So by the above theorem,
n4 =

(
n
1

)
+ 14

(
n
2

)
+ 36

(
n
3

)
+ 24

(
n
4

)
.

So using the formula(
k+1
r+1

)
=
∑k

n=0

(
n
r

)
,

we find∑k
n=0 n

4

=
∑k

n=0

((
n
1

)
+ 14

(
n
2

)
+ 36

(
n
3

)
+ 24

(
n
4

))
=
(
k+1
2

)
+ 14

(
k+1
3

)
+ 36

(
k+1
4

)
+ 24

(
k+1
5

)
Exercise:
Repeat this procedure for n1, n2 and n3, and check that the answers you get
agree with the standard formulae.

Stirling numbers

We would like to understand the mysterious numbers which appear in the
formula for

∑k
n=0 n

p,
i.e the numbers c(p, k) defined by

c(p, k) := ∆kh0 where hn = np.

So as we saw, these are the numbers c(p, k) such that
np =

∑p
k=0 c(p, k)

(
n
k

)
.

We observe (and will eventually prove) that c(p, k) seems to be divisible by
k!, so set

S(p, k) := c(p, k)/k!.

So, introducing the notation [n]k := P (n, k) = k!
(
n
k

)
,

np =
∑p

k=0 S(p, k)[n]k.

These numbers S(p, k) are the Stirling numbers of the second kind.
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Here’s a table, written in Pascal triangle format with k going across and p
going down, and starting with S(1, 1) = 1:

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

This corresponds to the formulae
n1 = [n]1
n2 = [n]1 + [n]2
n3 = [n]1 + 3[n]2 + [n]1
...

All values of S(p, k) not shown in the triangle are 0, except S(0, 0) = 1.

Lemma:
For all p > 0, and all k,

S(p, k) = S(p− 1, k − 1) + kS(p− 1, k).

Proof:
First, note that S(p, k) = 0 when k > p, by considering degrees of polyno-
mials.
Also S(p, k) = 0 when k < 0, by definition.

Now
np = nnp−1 = n

∑p−1
k=0 S(p− 1, k)[n]k

=
∑p−1

k=0 S(p− 1, k)((n− k) + k)[n]k
=
∑p−1

k=0 S(p− 1, k)[n]k+1 +
∑p−1

k=0 kS(p− 1, k)[n]k
=
∑p

k=1 S(p− 1, k − 1)[n]k +
∑p−1

k=0 kS(p− 1, k)[n]k
=
∑p

k=0 S(p− 1, k − 1)[n]k +
∑p

k=0 kS(p− 1, k)[n]k
(using S(p− 1,−1) = 0 = S(p− 1, p))

=
∑p

k=0(S(p− 1, k − 1) + kS(p− 1, k))[n]k,

so we conclude by comparing coefficients with
np =

∑p
k=0 S(p, k)[n]k. �

Theorem:
S(p, k) is the number of partitions of a set of p objects into k indistinguish-
able boxes in which no box is empty,
i.e. the number of partitions of a set of size p into a set of k non-empty
subsets,
i.e. the number of sets of non-empty subsets of {1, ..., p} which are disjoint
and have union {1, ..., p}.

Proof:
Write S ′(p, k) for this number.
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Suppose p ≥ 1 and 1 ≤ k ≤ p.
Consider a partition of {1, ..., p} into a set of k non-empty subsets,
and consider removing p.
First, suppose the set in the partition which contains p is just {p}.
Then on removing p, we obtain a partition of {1, ..., p−1} into k−1 subsets.
Otherwise, on removing p we obtain a partition of {1, ..., p−1} into k subsets.
In the first case, the map is bijective, but in the second case there are k
ways of obtaining the same partition of {1, ..., p − 1}, since p could have
been removed from any of the k sets in that partition.

So
S ′(p, k) = S ′(p− 1, k − 1) + kS ′(p− 1, k).

Clearly S ′(p, k) = 0 for k < 0 or k > p or p < 0, and S(0, 0) = 1.
So by induction on p, S(p, k) = S ′(p, k) for all p and k.
�

So now we know that S(p, k) is an integer.

Moreover, we can now reason combinatorially to find a formula for S(p, k):

Theorem:
For p ≥ 0 and 0 ≤ k ≤ p,

S(p, k) =
k∑
i=0

(−1)i
(k − i)p

i!(k − i)!

Proof:
Fix p and k.

Let P be the number of partitions of {1, ..., p} into an ordered sequence
of k non-empty subsets.
So P = k!S(p, k).

A partition of {1, ..., p} into an ordered sequence of k subsets,
with no restrictions on the subsets being non-empty,
just corresponds to a k-colouring of {1, ..., p},
i.e. a choice of which of the k sets in the partition each element should go
in,
so there are kp such partitions.

Let Ai be the partitions of {1, ..., p} into an ordered sequence of k subsets,
where the ith is empty.

Such a partition corresponds to a partition into k−1 possibly empty subsets,
by ignoring the one which is required to be empty.
So |Ai| = (k − 1)p.

Similarly, |Ai∩Aj| = (k−2)p for i 6= j, and generally |
⋂
i∈I Ai| = (k−|I|)p.

So by inclusion-exclusion,

S(p, k) = 1
k!
P
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= 1
k!

(kp − |
⋃
iAi|)

= 1
k!

(kp −
∑
∅6=I⊆{1,...,k}(−1)|I|−1|

⋂
i∈I Ai|)

= 1
k!

(kp −
∑k

i=1(−1)i−1
(
k
i

)
(k − i)p)

= 1
k!

(
∑k

i=0(−1)i
(
k
i

)
(k − i)p)

=
∑k

i=0(−1)i (k−i)
p

i!(k−i)!) �

13 Heterosexuality, and Hall’s Marriage The-

orem

Basic ”marriage” problem

A set A of men;
a set B of women;
certain pairings (a, b) are ”compatible”.

A matching is a choice of some compatible pairings (”marriages”),
such that no man is paired to multiple women and no woman to multiple
men.

Can we find a matching in which every woman is paired with some man?

Graphical formulation

(You can skip this if you don’t know what a graph is.)

Bipartite graph: two collections of A and B of vertices; all edges have one
vertex in A and the other in B.

A matching is a set of edges such that no vertex is incident to more than
one of the edges.

Can we find a matching such that every b ∈ B is incident to one of the
edges?

SDR formulation

Given a family of subsets (Ai)i∈B of a set A,
can we find elements ai ∈ Ai which are distinct, i.e. ai 6= aj when i 6= j?

Such a selection of ai ∈ Ai for i ∈ B is called a system of distinct representatives
(SDR).

Other instances

Example:
Given an m× n board with certain squares missing,
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can we place a rook on each row such that no row or column contains two
rooks?

Here we marry rows and columns, consecrating the marriage with the sym-
bolic placing of a rook.

Example:
Certain jobs are to performed by certain people, one job by each;
not all people are suitable for all jobs.
Can we assign each job to some person?

Example:
Various classes are to be scheduled at various times in various rooms;
some classes require certain rooms,
and some times are unsuitable for some classes.

Suppose all classes are to start on the hour.

Can all classes be scheduled?

Here, we marry classes and hour-room pairs.

Hall’s Marriage Theorem

Definition:
A family (Ai)i∈B of sets satisfies the marriage condition if for any k, the
union of any k of the sets in the family has size at least k;
i.e. for every B′ ⊆ B, ∣∣∣∣∣⋃

i∈B′
Ai

∣∣∣∣∣ ≥ |B′|.
Theorem [Philip Hall, 1935]:
A family (Ai)i∈B of finite sets has a system of distinct representatives iff it
satisfies the marriage condition.

Proof:
The marriage condition is necessary, since if ai ∈ Ai is an SDR and B′ ⊆ B⋃

j∈B′ Aj ⊇ {aj | j ∈ B′}
so, by distinctness,∣∣∣⋃j∈B′ Aj

∣∣∣ ≥ |{aj | j ∈ B′}| = |B′|.
Now suppose the marriage condition holds, and suppose inductively that the
theorem holds when B is smaller.
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Suppose first that for all B′ ( B,∣∣∣∣∣⋃
i∈B′

Ai

∣∣∣∣∣ ≥ |B′|+ 1.

Let i0 ∈ B,
and let a0 ∈ Ai0 . We proceed by deleting i0 and a.
Let A′i := Ai \ {a0};
then (A′i)i∈B\{i0} also satisfies the marriage condition.
Indeed, for any B′ ⊆ B \ {i0},
|
⋃
j∈B′ A

′
i| ≥ |

⋃
j∈B′ Ai| − 1

≥ (|B′|+ 1)− 1
= |B′|.

So by the inductive hypothesis, this family has an SDR,
adjoining a0 to which yields an SDR for (Ai)i∈B.

Otherwise, say B0 ( B with ∣∣∣∣∣ ⋃
i∈B0

Ai

∣∣∣∣∣ = |B0|.

Let A0 :=
⋃
i∈B0 Ai.

We proceed by deleting B0 and A0.
Let A′i := Ai \ A0, and consider (A′i)i∈(B\B0).
Then for B′ ⊆ B \B0,
|
⋃
j∈B′ A

′
i| ≥ |

⋃
j∈B′∪B0 Ai| − |B0|

≥ |B′ ∪B0| − |B0|
= |B′|

So by the inductive hypothesis, this family has an SDR.

Now (Ai)i∈B0 also satisfies MC,
and B0 ( B,
so by the inductive hypothesis,
this family also has an SDR.

Since A′i ∩ Aj = ∅ for j ∈ B0,
the union of these two SDRs is an SDR for (Ai)i∈B.
�

Dominoes on a chessboard

Consider an m× n chequered board,
meaning that each square is either white or black, and no two neighbouring
squares are of the same colour,
and suppose we delete some squares.

e.g.

, . , ,
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, . . , .

. , .

, . , .

(here I use dots for white squares, commas for black squares, and spaces for
deleted squares.).

Can we put 2 × 1 dominoes on the non-deleted squares of the board, such
that the dominoes don’t overlap and every non-deleted square is covered?

e.g. here’s a solution in the case of the above example, using 8 dominoes
denoted by the corresponding numbers:

3 3 4 5

2 2 4 6 5

1 7 6

1 7 8 8

.

We can view this as a marriage problem: we want to marry white squares
to black squares, and only adjacent squares are compatible.

So we can solve the problem iff there are as many white squares as black
squares and the family of sets of (say) black squares adjacent to the white
squares satisfies MC.

Exercise:
Draw the corresponding bipartite graph for the example board above.

Find some boards which don’t satisfy the marriage condition,
then try (and fail) to cover them with dominoes.

Latin squares

Definition:
A Latin rectangle is an m× c array with each entry an element of {1, ..., n},
such that no number appears twice in any row or column.

Theorem:
Any m×n Latin rectangle with m < n can be completed by adding rows to
form an n× n Latin square.

Proof:
By induction, it suffices to show that we can add a row to form an m×n+1
Latin rectangle.

Let Ai, for i = 1, ..., n, be the set of numbers in {1, ..., n} not appearing in
the ith column.
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Then (Ai)i∈{1,...,n} satisfies the marriage condition.
Indeed suppose I ⊆ {1, ..., n}.
Each number in {1, ..., n} occurs in each of the m rows,
and so occurs in at most n−m of the Ai.
Each Ai has size n−m.
So
|I|(n−m) =

∑
i∈I |Ai| ≤ (n−m)|

⋃
i∈I Ai|,

so
|
⋃
i∈I Ai| ≥ |I|.

So by Hall’s Marriage Theorem, an SDR (ai ∈ Ai)i∈{1,...,n} exists;
by distinctness and the definition of Ai, adding this as a row yields an
m× n+ 1 Latin rectangle. �

14 Impartial Games

An impartial game is a two-player game in which players take turns to make
moves, and where the moves available from a given position don’t depend
on whose turn it is.

A player loses if they can’t make a move on their turn (i.e. a player wins if
they move to a position from which no move is possible).

In games which are not impartial, the two players take on different roles
(e.g. one controls white pieces and the other black), so the moves available
in a given position depend on whose turn it is. Before we treat these more
complicated games, we first consider the special case of impartial games.

Any nim position is an impartial game. Write ∗n for the nim position with
a single heap of size n.

In particular, ∗0 is the ”zero game”, written 0: the player to move immedi-
ately loses.

We consider a position in a game as a game in itself.
We can specify a game by giving the set of its options - the games to which
the first player can move.
e.g. 0 = ∅, ∗1 = {0}, ∗n = {∗0, ∗1, ∗2, ..., ∗(n− 1)}.

For impartial games G and H, G+H is the game where the two games are
played side-by-side, with a player on their turn getting to decide which of
the two to move in.

So e.g. ∗2 + ∗2 + ∗3 is the nim position with two heaps of size 2 and one of
size 3.

If G = {G1, ..., Gn} and H = {H1, ..., Hn}, then
G+H = {G1 +H, ..., Gn +H,G+H1, ..., G+Hn}.

Remark:
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• G+H = H +G

• (G+H) +K = G+ (H +K)

We refer to the player who is to move first as ”Player 1”, and their opponent
as ”Player 2”. So after a move, Player 1 in the new game was Player 2 in
the original game, and vice versa.

The finite (or short) games are defined recursively by:

• 0 is finite

• if G1, ..., Gn are finite, then {G1, ..., Gn} is finite.

Lemma:
In any finite impartial game G, either Player 1 has a winning strategy,
or Player 2 has.

We say that G is a ”first/second-player win” accordingly,
and that the outcome of G is a win for Player 1/2.

Proof:
Suppose inductively that the lemma holds for all options of G.

If some option of G is a win for Player 2, then Player 1 can win in G by
making that move.

Else, Player 2 can win in G, since they have a winning strategy in whatever
game Player 1 moves to.

Green Hackenbush

A green hackenbush game consists of some dots joined by lines, with some
dots ”on the ground”; a move comprises deleting a line, and then deleting
all lines which are no longer connected to the ground.

Example:

* * * * *

| | | | |

| | | | |

* * * * * *

/ \ \ / / \ / \ / \

/ \ \ / / \ / \ / \

* * = { * * , * * , * * , * * , * * }

\ / \ / \ / / \ \ /

\ / \ / \ / / \ \ /

____*____ ____*____ ____*____ ____*____ ____*____ ____*____
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* *

| |

| |

* * *

/ \ \ / \

/ \ \ / \

* * = { * , * * , * , }

/ / / /

/ / / /

____*____ ____*____ ____*____ ____*____ ____*____

P +Q = [picture where we draw P and Q side by side, with no connections
between them]

Equivalence of impartial games

Definition:
Two games G and H are equivalent, G ≡ H,
if for any game K,
G+K has the same outcome as H +K.

Remark:

• If G ≡ H then G has the same outcome as H;

• 0 +G ≡ G;

• if G ≡ H then G+K ≡ H +K for any K.

Lemma:
G ≡ 0 iff G is a second-player win.

Proof:
⇒:
If G ≡ 0, then G = G + 0 has the same outcome as 0 + 0 = 0, which is a
second-player win.

⇐:
Suppose G is a second player win, and K is any game.
We want to show G+K has the same outcome as 0 +K = K.
The following is a winning strategy in G + K for whichever player has the
winning strategy in K:

On our turn, play the next move in the winning strategy for K,
unless our opponent just played in G - then play the next move in the
winning strategy for G as Player 2. �
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Example:
G+G ≡ 0

Indeed, the second player wins by mirroring any move made in one copy of
G in the other copy of G.

Lemma:
G+H ≡ 0 iff G ≡ H

Proof:
If G ≡ H, then G+H ≡ G+G ≡ 0 by the above example.

If G+H ≡ 0, then
G = G+ 0 ≡ G+H +H ≡ 0 +H = H. �

Exercise:
Confirm, by finding a winning strategy for Player 2 in the sum, that

*

|

|

*

/ \ == *1

/ \

* *

\ /

\ /

____*____

Remark:
One easily checks that games with equivalent options are equivalent,
i.e. if Gi ≡ G′i, then {G1, ..., Gn} ≡ {G′1, ..., G′n}.

From now on, we will just write = in place of ≡ - we are only interested in
games up to equivalence.

Our winning strategy for nim tells us how to add nim heaps:

Proposition:
∗n+ ∗m = ∗(n⊕m)

Proof:
n⊕m⊕ (n⊕m) = 0,
so as we proved when discussing Nim,
∗n+ ∗m+ ∗(n⊕m) is a second-player win. �

It follows that every nim game is equivalent to a single heap, with size the
nim sum of the sizes of the heaps in the original game.
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Example:

* *

| \

| \

* *

/ \ / = *1 + *3 = *(1 (+) 3) = *2

/ \ /

* * *

\ / |

\ / |

____*______*_

Impartial games are secret heaps

Now we show that not only every Nim game, but every impartial game is
equivalent to a Nim heap.

Theorem [Sprague-Grundy]:
Any finite impartial game G is equivalent to a nim heap;
G = ∗n where n is the smallest non-negative integer such that G has no
option equivalent to ∗n.

Proof:
Suppose inductively that the theorem holds for all options of G.

We show that we can win in G+ ∗n as the second player.

If Player 1 moves in ∗n, say to ∗m with m < n,
then by definition of n we can move in G to a game equivalent to ∗m,
yielding a game equivalent to ∗m+ ∗m = 0.
So we win.

If Player 1 moves in G, picking an option Gi of G,
then by the inductive hypothesis, Gi is equivalent to some ∗m.

So we have to win as first player in ∗m+ ∗n,
but by definition of n, m 6= n, so ∗m+ ∗n = ∗(m⊕ n) 6= ∗0.
Again, we win. �
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Exercise:
Confirm by using the Sprague-Grundy theorem that

*

|

|

*

/ \ = *1

/ \

* *

\ /

\ /

____*____

Exercise:
By using the Sprague-Grundy theorem to find the nim heaps equivalent to
each component, and then applying the winning strategy from nim, find a
winning move for the first player in the following Green Hackenbush game.

*

|

|

* * * *

/ \ \ / / \

/ \ \ / / \

* * * *-----*

\ / | \ /

\ / | \ /

____*________*_______*____
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15 Bonus: Games

Now, we consider dropping the impartiality condition.

A (combinatorial) game is played by two players, Left and Right, taking
turns.
A player who can’t move loses.

A game is given by the moves available to Left (Left-options) and to Right
(Right-options).

We write G = {L1, ..., Ln | R1, ..., Rm} for the game with Left-options Li
and Right-options Ri, which are themselves games.

Finiteness is defined as in the impartial case.

A game is impartial iff the set of Right-options is equal to the set of Left-
options, and all options are impartial.

Real-life games

Chess nearly fits into this framework - but it’s possible for the game to end
in a draw, which we haven’t allowed in our formalism, and it isn’t finite.

Go fits even better, though rare loopy situations make it technically infinite.

Some other games of variable notoriety which fit, at least roughly, our defi-
nition of a game: draughts/chequers, pente, gess, khet, dots-and-boxes,
sprouts, connect 4, gomoku, tic-tac-toe, hex, Y, shogi, xiàngq́ı, hnefatafl.
See https://en.wikipedia.org/wiki/List of abstract strategy games

for many more.

Red-Blue Hackenbush

Like Green Hackenbush, but each line is either red or blue. Only Right can
cut Red lines, only Left can cut bLue lines.

Domineering

Played on an 8x8 (say) chess board; players take turns to place 2x1 domi-
noes on free squares. Left places her dominoes vertically, Right places his
horizontally.

Basic theory

We still have the impartial games ∗n,
∗n = {∗0, ∗1, ..., ∗(n− 1) | ∗ 0, ∗1, ..., ∗(n− 1)}.

We call these nimbers.
We write ∗ for ∗1 = {0 | 0}.
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G+H is the game where players choose which of G and H to move in;
Left plays as Left in both, Right as Right in both.

Outcomes:
Now there are four possibilities:

• Right wins (whoever moves first);

• Left wins (whoever moves first);

• Player 1 (whether that’s Left or Right) wins;

• Player 2 (whether that’s Left or Right) wins.

Exercise:
Determine the outcomes of these four basic domineering games:

***

* ** ** *

* * *

We define equivalence (”G = H”) as in the impartial case, but with this
notion of outcome.

By the same arguments as in the impartial case, we have:

Lemma:
G = 0 iff G is a second-player win.

Definition:
The negative of a game G = {L1, ..., Ln | R1, ..., Rm} is the game −G in
which Left and Right switch roles, i.e.
−G := {−R1, ...,−Rm | − L1, ...,−Ln}.

Note that G is impartial iff −G = G.

Write G−H for G+ (−H).

G−G = G+ (−G) is a second-player win, by mirroring moves made in one
component in the other.

Just as in the impartial case, we have

Lemma:
G−H = 0 iff G = H
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Proof:
If G = H, then G−H = H −H = 0.

If G−H = 0, then
G = G+ 0 = G+H −H = G−H +H = 0 +H = H. �

Definition:
For games G and H, we say

• G > H if G−H is a win for Left;

• G < H if G−H is a win for Right;

• G = H if G−H is a win for Player 2;

• G ‖ H (”G is confused with H”) if G−H is a win for Player 1.

Lemma:
≤ is a partial order, and addition respects it,
i.e. G ≤ H ⇒ G+K ≤ H +K.

Numbers

1 = {0 | },
2 = {1 | },
3 = {2 | },
etc.

So −1 = { | 0},
−2 = { | − 1},
−3 = { | − 2},
etc.

1
2

= {0 | 1}.

Exercise:
By e.g. considering the following red-blue hackenbush position (L means
bLue, R means Red), prove

1
2

+ 1
2
− 1 = 0

* *

R| R|

| |

* * *

L| L| R|

| | |

____*_______*______*____

1
4

= {0 | 1
2
}.
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Exercise:
Confirm that

*

R|

|

* 1

R| = -

| 4

*

L|

|

____*___

Generally, we can define
1

2n+1 = {0 | 1
2n
}.

and then for m ∈ N,
m
2n

= m 1
2n

= [the sum of m copies of 1
2n

]
−m
2n

= −(m 1
2n

)

Definition:
A finite game is a number if it is equivalent to one of these games m

2n
(with

m ∈ Z, n ∈ N).

Lemma:
The usual ordering on numbers agrees with the definition of < for games.

Lemma:
If G is a finite game,
and every Left-option is less than every Right-option,
then G is the simplest number m

2n
which is greater than every Left-option

and less than every Right-option,
where m

2n
is simpler than m′

2n′
if n < n′, or if n = n′ and |m| < |m′|.

Proof:
We show m

2n
−G = 0.

Say Left plays first.

If she plays in −G, it is to a number −k with k > m
2n

,
so Right wins the resulting game m

2n
− k.

If she plays in m
2n

, it follows from the definitions (exercise) that it must be
to a simpler number k < m

2n
.

So since m
2n

is simplest,
k must be less than some Left-option H of G.

So Right can play the Right-option −H of −G,
and win the resulting game k −H.
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Exercise:
Use this lemma to confirm the following values of domineering games:

** 1 -1 *** 3

* = - *** = - * * = -

* 2 * 2 * 4

Lemma:
The usual addition of numbers agrees with addition of games.

Exercise:
Confirm, both by using addition and by thinking through strategies, that

*** ***

* * * * ** *** = 0

* * *

More on Domineering

Exercise:
Confirm

*

** ***

** = * * = { 1 | 1 } = 1 + *

*

There is however much more to games than numbers and nimbers.

Consider

**

** = { 1 | -1 } =: +/- 1

Whoever moves in this game gets a free move for their efforts.

Exercise:
Confirm that for a number x,

• ±1 > x if x < 1,

• ±1 < x if x > 1,

• ±1 ‖ x if −1 ≤ x ≤ 1.



15 BONUS: GAMES 60

Games like ±1, where there is an advantage to moving, are called hot games.

For a positive number x, define ±x := {x | − x}. These games are called
switches.

Lemma:
If x and y are numbers with x ≥ y, then
{x | y} = x+y

2
± x−y

2
.

Example:

***

*** = { 2 | -1/2 } = 3/4 +/- 5/4.

Roughly, it is sound strategy to play in the ”hottest” component first.

Certainly this is true of games which are sums of switches, numbers and
nimbers:
on your turn, you should play in the largest switch if there is one,
else if there are impartial components you should use the nim strategy to
deal with them,
and finally you should (always) only play in a number if there’s nothing else
left.

This advice is far from being enough to let you win any domineering game
(it’s actually a hard game, tournaments have been played), but it’s a start!

See pp114-121 of ”On Numbers and Games” for much more on Domineering.

Further reading

The classic texts are

• E. Berlekamp, J. Conway, and R. Guy, ”Winning Ways for your Math-
ematical Plays, vol 1”;

• John Conway, ”On Numbers and Games”.

There are also two more recent books,

• M. Albert, R. Nowakowski, D. Wolfe, ”Lessons in Play: An Introduc-
tion to Combinatorial Game Theory”;

• Aaron Siegel, ”Combinatorial Game Theory”.
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