Principles for Deforming Nonnegative Curvature

joint work with Peter Petersen

June 4, 2009

This talk is not about

- Theorem The Gromoll-Meyer exotic sphere admits positive sectional curvature.

This talk is not about

- Theorem The Gromoll-Meyer exotic sphere admits positive sectional curvature.
- Per say

This talk is not about

- Theorem The Gromoll-Meyer exotic sphere admits positive sectional curvature.
- Per say
- Goal-to isolate some abstract principles that are used to prove this theorem, and to understand how they might be put together to make a proof.

Principles

- Short term Cheeger Deformations-within the realm of nonnegative curvature

Principles

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- Long term Cheeger Deformations-with arbitrary initial curvature

Principles

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- Long term Cheeger Deformations-with arbitrary initial curvature
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)

Principles

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- Long term Cheeger Deformations-with arbitrary initial curvature
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,

Principles

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- Long term Cheeger Deformations-with arbitrary initial curvature
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,
- Exploiting rigidity of totally geodesic, to make a "partial conformal change" that behaves (much) like a conformal change

Cheeger Deformations

- In 1973, Cheeger formulated a method to deform the metric of a nonnegatively curved manifold that tends to increase the curvature and decrease the symmetry.

Cheeger Deformations

- In 1973, Cheeger formulated a method to deform the metric of a nonnegatively curved manifold that tends to increase the curvature and decrease the symmetry.
- Cheeger's Method-Let G act isometrically on M, and assume that $\sec _{M} \geq 0$. Then G acts freely on $G \times M$ via

$$
\begin{aligned}
G \times(G \times M) & \longrightarrow(G \times M) \\
(g, h, m) & \longmapsto\left(h g^{-1}, g m\right)
\end{aligned}
$$

Cheeger Deformations

- In 1973, Cheeger formulated a method to deform the metric of a nonnegatively curved manifold that tends to increase the curvature and decrease the symmetry.
- Cheeger's Method-Let G act isometrically on M, and assume that $\sec _{M} \geq 0$. Then G acts freely on $G \times M$ via

$$
\begin{aligned}
G \times(G \times M) & \longrightarrow(G \times M) \\
(g, h, m) & \longmapsto\left(h g^{-1}, g m\right)
\end{aligned}
$$

- The quotient is diffeomorphic to M. Give G a biinvariant metric and $G \times M$ the product metric. Then the quotient inherits a new metric $g_{\text {Cheeg }}$ of nonnegative curvature.

The "Cheeger reparameterization"

- To understand how a Cheeger deformation effects questions about nonnegative or positive curvature it is urged that you consider the "Cheeger reparameterization" of the tangent bundle of M.

The "Cheeger reparameterization"

- To understand how a Cheeger deformation effects questions about nonnegative or positive curvature it is urged that you consider the "Cheeger reparameterization" of the tangent bundle of M.
- The correspondence is

$$
T M \xrightarrow{\text { Hat }} T(G \times M) \xrightarrow{d \pi_{\text {Cheeg }}} T M
$$

The "Cheeger reparameterization"

- To understand how a Cheeger deformation effects questions about nonnegative or positive curvature it is urged that you consider the "Cheeger reparameterization" of the tangent bundle of M.
- The correspondence is

$$
T M \xrightarrow{\text { Hat }} T(G \times M) \xrightarrow{d \pi_{\text {Cheeg }}} T M
$$

- Where $\pi_{\text {Cheeg }}$ is the "Cheeger submersion" $\pi_{\text {Cheeg }}: G \times M \longrightarrow M$, and

The "Cheeger reparameterization"

- To understand how a Cheeger deformation effects questions about nonnegative or positive curvature it is urged that you consider the "Cheeger reparameterization" of the tangent bundle of M.
- The correspondence is

$$
T M \xrightarrow{\text { Hat }} T(G \times M) \xrightarrow{d \pi_{\text {Cheeg }}} T M
$$

- Where $\pi_{\text {Cheeg }}$ is the "Cheeger submersion" $\pi_{\text {Cheeg }}: G \times M \longrightarrow M$, and
- Hat (v)

$$
\operatorname{Hat}(v) \equiv \hat{v}
$$

is the unique vector in $T(G \times M)$ that is horizontal for $d \pi_{\text {Cheeg }}$ has the form

$$
\hat{v}=(? ? ?, v)
$$

Modulo the "Cheeger reparameterization"

- Any plane of positive curvature remains positively curved.

Modulo the "Cheeger reparameterization"

- Any plane of positive curvature remains positively curved.
- Any plane whose projection to the orbits of G corresponds to a positively curved plane of G becomes positively curved.

Modulo the "Cheeger reparameterization"

- Any plane of positive curvature remains positively curved.
- Any plane whose projection to the orbits of G corresponds to a positively curved plane of G becomes positively curved.
- So if $G=S^{3}$, any plane whose projection to the orbits of G is nondegenerate becomes positively curved.

Applications

- There are numerous applications of these principles in the literature

Applications

- There are numerous applications of these principles in the literature
- Notably in [Wilh] and [Esch-Ker] to get positive curvature almost everywhere on the Gromoll-Meyer sphere.

Long Term Cheeger Principle

- Now drop the hypothesis that M is nonnegatively curved.

Long Term Cheeger Principle

- Now drop the hypothesis that M is nonnegatively curved.
- By scaling the bi-invariant metric on the G-factor in $G \times M$ we obtain a one parameter familly of metrics on M.

Long Term Cheeger Principle

- Now drop the hypothesis that M is nonnegatively curved.
- By scaling the bi-invariant metric on the G-factor in $G \times M$ we obtain a one parameter familly of metrics on M.
- If " l " is the scaling factor, then as $I \rightarrow \infty$, the new metrics converge to the old one.

Long Term Cheeger Principle

- If v is fixed, and if the ??? in

$$
\hat{v}=(? ? ?, v)
$$

is k_{v}, when $I=1$, then for general I,

$$
\hat{v}=\left(\frac{k_{v}}{1^{2}}, v\right) .
$$

Long Term Cheeger Principle

- If v is fixed, and if the ??? in

$$
\hat{v}=(? ? ?, v)
$$

is k_{v}, when $I=1$, then for general I,

$$
\hat{v}=\left(\frac{k_{v}}{1^{2}}, v\right) .
$$

- So as $I \rightarrow 0$, the "group" part of v dominates.

Long Term Cheeger Principle

- If v is fixed, and if the ??? in

$$
\hat{v}=(? ? ?, v)
$$

is k_{v}, when $I=1$, then for general I,

$$
\hat{v}=\left(\frac{k_{v}}{1^{2}}, v\right) .
$$

- So as $I \rightarrow 0$, the "group" part of v dominates.
- So for a plane $P=\operatorname{span}\{v, w\}$, if $\operatorname{curv}_{G}\left(k_{v}, k_{w}\right)>0$, then $\operatorname{curv}_{G \times M} \hat{P}>0$ if I is sufficiently small.

Long Term Cheeger Principle

- If v is fixed, and if the ??? in

$$
\hat{v}=(? ? ?, v)
$$

is k_{v}, when $I=1$, then for general I,

$$
\hat{v}=\left(\frac{k_{v}}{1^{2}}, v\right) .
$$

- So as $I \rightarrow 0$, the "group" part of v dominates.
- So for a plane $P=\operatorname{span}\{v, w\}$, if $\operatorname{curv}_{G}\left(k_{v}, k_{w}\right)>0$, then $\operatorname{curv}_{G \times M} \hat{P}>0$ if l is sufficiently small.
- So $\operatorname{curv}_{M} d \pi_{\text {Cheeg }}(\hat{P})>0$ if $/$ is sufficiently small.

Long Term Cheeger Principle

- If v is fixed, and if the ??? in

$$
\hat{v}=(? ? ?, v)
$$

is k_{v}, when $I=1$, then for general I,

$$
\hat{v}=\left(\frac{k_{v}}{r^{2}}, v\right) .
$$

- So as $I \rightarrow 0$, the "group" part of v dominates.
- So for a plane $P=\operatorname{span}\{v, w\}$, if $\operatorname{curv}_{G}\left(k_{v}, k_{w}\right)>0$, then $\operatorname{curv}_{G \times M} \hat{P}>0$ if l is sufficiently small.
- So $\operatorname{curv}_{M} d \pi_{\text {Cheeg }}(\hat{P})>0$ if I is sufficiently small.
- Aside-if either k_{v} or k_{w} is nonzero, then the sectional curvature of \hat{P} is "almost nonnegative" as $l \rightarrow 0$.

Fiber Scaling

- The key step to get positive curvature on the Gromoll-Meyer sphere, Σ^{7}, is scaling the fibers of the Gromoll-Meyer submersion

$$
S p(2) \longrightarrow S^{4}
$$

Fiber Scaling

- The key step to get positive curvature on the Gromoll-Meyer sphere, Σ^{7}, is scaling the fibers of the Gromoll-Meyer submersion

$$
S p(2) \longrightarrow S^{4}
$$

- The new metric $g_{\text {new }}$ has some negative curvatures

Fiber Scaling

- The key step to get positive curvature on the Gromoll-Meyer sphere, Σ^{7}, is scaling the fibers of the Gromoll-Meyer submersion

$$
S p(2) \longrightarrow S^{4}
$$

- The new metric $g_{\text {new }}$ has some negative curvatures
- However, over any of the totally geodesic flat tori of $g_{\text {old }}$, the integral of the curvature of $g_{\text {new }}$ is positive.

Structure of the zero planes of the GM-Sphere

- The isomstry group of Σ^{7} (with almost positive curvature) is $S O$ (3).

Structure of the zero planes of the GM-Sphere

- The isomstry group of Σ^{7} (with almost positive curvature) is $S O$ (3).
- The action is by symmetries of $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.

Structure of the zero planes of the GM-Sphere

- The isomstry group of Σ^{7} (with almost positive curvature) is $S O$ (3).
- The action is by symmetries of $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.
- The induced action on S^{4} respects a join decomposition, $S^{4}=S^{1} * S^{2}$.

Structure of the zero planes of the GM-Sphere

- The isomstry group of Σ^{7} (with almost positive curvature) is $S O$ (3).
- The action is by symmetries of $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.
- The induced action on S^{4} respects a join decomposition, $S^{4}=S^{1} * S^{2}$.
- The action is the join of the trivial action on S^{1} with the standard action on S^{2}.

Structure of the zero planes of the GM-Sphere

- The isomstry group of Σ^{7} (with almost positive curvature) is $S O$ (3).
- The action is by symmetries of $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.
- The induced action on S^{4} respects a join decomposition, $S^{4}=S^{1} * S^{2}$.
- The action is the join of the trivial action on S^{1} with the standard action on S^{2}.
- Hence the intrinsic metrics on the $S^{2} s$ in S^{4} are round.

Structure of the zero planes of the GM-Sphere

- The isomstry group of Σ^{7} (with almost positive curvature) is $S O$ (3).
- The action is by symmetries of $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.
- The induced action on S^{4} respects a join decomposition, $S^{4}=S^{1} * S^{2}$.
- The action is the join of the trivial action on S^{1} with the standard action on S^{2}.
- Hence the intrinsic metrics on the $S^{2} s$ in S^{4} are round.
- Each 0-plane has the form
$\operatorname{span}\{\zeta, W\}$,
where ζ is a horizontal geodsic field for $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.

Structure of the zero planes of the GM-Sphere

- The isomstry group of Σ^{7} (with almost positive curvature) is $S O$ (3).
- The action is by symmetries of $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.
- The induced action on S^{4} respects a join decomposition, $S^{4}=S^{1} * S^{2}$.
- The action is the join of the trivial action on S^{1} with the standard action on S^{2}.
- Hence the intrinsic metrics on the $S^{2} s$ in S^{4} are round.
- Each 0-plane has the form

$$
\operatorname{span}\{\zeta, W\}
$$

where ζ is a horizontal geodsic field for $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.

- On S^{4}, ζ can be viewed as the gradient of the distance from two points in S^{1} (its mulitvalued in places and not in a zero plane in others).

Structure of the zero planes of the GM-Sphere

- The isomstry group of Σ^{7} (with almost positive curvature) is $S O$ (3).
- The action is by symmetries of $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.
- The induced action on S^{4} respects a join decomposition, $S^{4}=S^{1} * S^{2}$.
- The action is the join of the trivial action on S^{1} with the standard action on S^{2}.
- Hence the intrinsic metrics on the $S^{2} s$ in S^{4} are round.
- Each 0-plane has the form

$$
\operatorname{span}\{\zeta, W\}
$$

where ζ is a horizontal geodsic field for $p_{G M}: \Sigma^{7} \longrightarrow S^{4}$.

- On S^{4}, ζ can be viewed as the gradient of the distance from two points in S^{1} (its mulitvalued in places and not in a zero plane in others).
- W is typically neither horizontal nor vertical for $p_{G M}$. Its horizontal part $H=W^{\text {horiz }}$ is a killing field for the isometric $S O$ (3)-action along any fixed geodesic tangent to a particular ζ.

Curvature after fiber scaling

- If $g_{\text {new }}$ is obtained from $g_{\text {old }}$ by scaling the lengths of the fibers by $\sqrt{1-s^{2}}$, then

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

Curvature after fiber scaling

- If $g_{\text {new }}$ is obtained from $g_{\text {old }}$ by scaling the lengths of the fibers by $\sqrt{1-s^{2}}$, then

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

- where H_{w} is the horizontal part of W.

Curvature after fiber scaling

- If $g_{\text {new }}$ is obtained from $g_{\text {old }}$ by scaling the lengths of the fibers by $\sqrt{1-s^{2}}$, then

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

- where H_{w} is the horizontal part of W.
- W is vertical over the singular S^{1} in $S^{4}=S^{1} * S^{2}$, and

Curvature after fiber scaling

- If $g_{\text {new }}$ is obtained from $g_{\text {old }}$ by scaling the lengths of the fibers by $\sqrt{1-s^{2}}$, then

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

- where H_{w} is the horizontal part of W.
- W is vertical over the singular S^{1} in $S^{4}=S^{1} * S^{2}$, and
- Along any integral cuve of $\zeta,\left|H_{w}\right|$ is maximal at the point that's furthest from the singular S^{1}.

Curvature after fiber scaling

- If $g_{\text {new }}$ is obtained from $g_{\text {old }}$ by scaling the lengths of the fibers by $\sqrt{1-s^{2}}$, then

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

- where H_{w} is the horizontal part of W.
- W is vertical over the singular S^{1} in $S^{4}=S^{1} * S^{2}$, and
- Along any integral cuve of $\zeta,\left|H_{w}\right|$ is maximal at the point that's furthest from the singular S^{1}.
- So

$$
\begin{aligned}
\int_{c}-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right) & =\left.s^{2}\left|H_{w}\right|\left[D_{\zeta}\left|H_{w}\right|\right]\right|_{c\left(S^{1}\right)} ^{c(\max)} \\
& =0
\end{aligned}
$$

Curvature after fiber scaling

- If $g_{\text {new }}$ is obtained from $g_{\text {old }}$ by scaling the lengths of the fibers by $\sqrt{1-s^{2}}$, then

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

- where H_{w} is the horizontal part of W.
- W is vertical over the singular S^{1} in $S^{4}=S^{1} * S^{2}$, and
- Along any integral cuve of $\zeta,\left|H_{w}\right|$ is maximal at the point that's furthest from the singular S^{1}.
- So

$$
\begin{aligned}
\int_{c}-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right) & =\left.s^{2}\left|H_{w}\right|\left[D_{\zeta}\left|H_{w}\right|\right]\right|_{c\left(S^{1}\right)} ^{c(\max)} \\
& =0
\end{aligned}
$$

- and

$$
\int_{c} \operatorname{curv}_{g_{s}}(\zeta, W)=\int_{c} s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}>0
$$

Point-wise Curvature

- The first term in

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

is

$$
-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)=-s^{2}\left[\left(D_{\zeta}\left|H_{w}\right|\right)^{2}+\left(\left|H_{w}\right| D_{\zeta} D_{\zeta}\left|H_{w}\right|\right)\right]
$$

Point-wise Curvature

- The first term in

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

is

$$
-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)=-s^{2}\left[\left(D_{\zeta}\left|H_{w}\right|\right)^{2}+\left(\left|H_{w}\right| D_{\zeta} D_{\zeta}\left|H_{w}\right|\right)\right]
$$

- negative near the singular circle

Point-wise Curvature

- The first term in

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

is

$$
-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)=-s^{2}\left[\left(D_{\zeta}\left|H_{w}\right|\right)^{2}+\left(\left|H_{w}\right| D_{\zeta} D_{\zeta}\left|H_{w}\right|\right)\right]
$$

- negative near the singular circle
- and positive away from this circle.

Point-wise Curvature

- The first term in

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}
$$

is

$$
-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right| D_{\zeta}\left|H_{w}\right|\right)\right)=-s^{2}\left[\left(D_{\zeta}\left|H_{w}\right|\right)^{2}+\left(\left|H_{w}\right| D_{\zeta} D_{\zeta}\left|H_{w}\right|\right)\right]
$$

- negative near the singular circle
- and positive away from this circle.
- Its much larger than the term $s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2}$ whose integral is positive.

Conformal Change Almost works

- Use the fact that along each torus H_{w} is a Killing field to re-write

$$
H_{w}=w_{h} k
$$

where k is a killing field with standard normalization for this action.

Conformal Change Almost works

- Use the fact that along each torus H_{w} is a Killing field to re-write

$$
H_{w}=w_{h} k
$$

where k is a killing field with standard normalization for this action.

- Then $\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta} \psi\right)\right)+s^{4} w_{h}^{2}\left(D_{\zeta} \psi\right)^{2}$,

Conformal Change Almost works

- Use the fact that along each torus H_{w} is a Killing field to re-write

$$
H_{w}=w_{h} k
$$

where k is a killing field with standard normalization for this action.

- Then $\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta} \psi\right)\right)+s^{4} w_{h}^{2}\left(D_{\zeta} \psi\right)^{2}$,
- where ψ is the function that describes the scaling of the $S^{2} s$ in S^{4} from the unit metric.

Conformal Change Almost works

- Use the fact that along each torus H_{w} is a Killing field to re-write

$$
H_{w}=w_{h} k
$$

where k is a killing field with standard normalization for this action.

- Then $\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta} \psi\right)\right)+s^{4} w_{h}^{2}\left(D_{\zeta} \psi\right)^{2}$,
- where ψ is the function that describes the scaling of the $S^{2} s$ in S^{4} from the unit metric.
- If the ratio $\frac{w_{h}}{|W|}$ were constant, we could then do a conformal change that would cancel the leading order term $-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta}|\psi|\right)\right)$.

Conformal Change Almost works

- Use the fact that along each torus H_{w} is a Killing field to re-write

$$
H_{w}=w_{h} k
$$

where k is a killing field with standard normalization for this action.

- Then $\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta} \psi\right)\right)+s^{4} w_{h}^{2}\left(D_{\zeta} \psi\right)^{2}$,
- where ψ is the function that describes the scaling of the $S^{2} s$ in S^{4} from the unit metric.
- If the ratio $\frac{w_{h}}{|W|}$ were constant, we could then do a conformal change that would cancel the leading order term $-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta}|\psi|\right)\right)$.
- Since the ratio $\frac{w_{h}}{|W|}$ varies from torus to torus, we actually do a modification of a conformal change called a "partial confomral change".

Higher order positivity

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.

Higher order positivity

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.
- It is therefore insufficient to verify positivity on the old zero curvature locus. Instead we have to verify positivity for an entire neighborhood of the old zero locus.

Higher order positivity

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.
- It is therefore insufficient to verify positivity on the old zero curvature locus. Instead we have to verify positivity for an entire neighborhood of the old zero locus.
- Some long term Cheeger Deformations allow us to simplify this problem, however,

Higher order positivity

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.
- It is therefore insufficient to verify positivity on the old zero curvature locus. Instead we have to verify positivity for an entire neighborhood of the old zero locus.
- Some long term Cheeger Deformations allow us to simplify this problem, however,
- It seems impossible to get positive curvature with the deformations we have discussed so far.

Higher order positivity

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.
- It is therefore insufficient to verify positivity on the old zero curvature locus. Instead we have to verify positivity for an entire neighborhood of the old zero locus.
- Some long term Cheeger Deformations allow us to simplify this problem, however,
- It seems impossible to get positive curvature with the deformations we have discussed so far.
- We therefore need a further deformation which we called the "redistribution".

Rigidty of Totally Geodesic Flat Tori

- Exercise(5.4 in [Pet]) Let γ be a geodesic in (M, g). Let \tilde{g} be another metric on M which satisfies

$$
g(\dot{\gamma}, \cdot)=\tilde{g}\left(\dot{\gamma}_{,} \cdot\right): T M \longrightarrow \mathbb{R}
$$

Then γ is also a geodesic with respect to \tilde{g}.

Rigidty of Totally Geodesic Flat Tori

- Exercise(5.4 in [Pet]) Let γ be a geodesic in (M, g). Let \tilde{g} be another metric on M which satisfies

$$
g(\dot{\gamma}, \cdot)=\tilde{g}(\dot{\gamma}, \cdot): T M \longrightarrow \mathbb{R}
$$

Then γ is also a geodesic with respect to \tilde{g}.

- Proposition Let \mathcal{S} be a family of totally geodesic submanifolds of (M, g). Let \tilde{g} be another metric on M which satisfies

$$
g(X, \cdot)=\tilde{g}(X, \cdot): T M \longrightarrow \mathbb{R}
$$

for all vectors tangent to a totally geodesic submanifold in \mathcal{S}, then \mathcal{S} is also a family of totally geodesic submanifolds of (M, \tilde{g}).

Rigidty of Totally Geodesic Flat Tori

- Exercise(5.4 in [Pet]) Let γ be a geodesic in (M, g). Let \tilde{g} be another metric on M which satisfies

$$
g(\dot{\gamma}, \cdot)=\tilde{g}(\dot{\gamma}, \cdot): T M \longrightarrow \mathbb{R}
$$

Then γ is also a geodesic with respect to \tilde{g}.

- Proposition Let \mathcal{S} be a family of totally geodesic submanifolds of (M, g). Let \tilde{g} be another metric on M which satisfies

$$
g(X, \cdot)=\tilde{g}(X, \cdot): T M \longrightarrow \mathbb{R}
$$

for all vectors tangent to a totally geodesic submanifold in \mathcal{S}, then \mathcal{S} is also a family of totally geodesic submanifolds of (M, \tilde{g}).

- Proof: If γ is any geodesic in $S \in \mathcal{S}$ with respect to g, then by the preceding exercise, γ is a geodesic of (M, \tilde{g}).

Rigidty of Totally Geodesic Flat Tori

- Corollary If the totally geodesic family \mathcal{S} of the preceding proposition consists of totally geodesic flat submanifolds for (M, g), then it also consists of totally geodesic flat submanifolds for (M, \tilde{g}).

Rigidty of Totally Geodesic Flat Tori

- Corollary If the totally geodesic family \mathcal{S} of the preceding proposition consists of totally geodesic flat submanifolds for (M, g), then it also consists of totally geodesic flat submanifolds for (M, \tilde{g}).
- Proof: The intrinsic metric on members of \mathcal{S} does not change. In particular, totally geodesic flats are preserved.

Rigidty of Totally Geodesic Flat Tori

- Theroem: Suppose that (M, g) is compact and nonnegatively curved and all of its zero planes are contained in a family \mathcal{S} of totally geodesic flat submanifolds. Let $g_{\text {new }}$ be obtained from g as in the preceding proposition.

Rigidty of Totally Geodesic Flat Tori

- Theroem: Suppose that (M, g) is compact and nonnegatively curved and all of its zero planes are contained in a family \mathcal{S} of totally geodesic flat submanifolds. Let $g_{\text {new }}$ be obtained from g as in the preceding proposition.
- Then $\left(M, g_{\text {new }}\right)$ is nonnegatively curved along the union of the family \mathcal{S} with precisely the same 0 curvature planes as g, provided $g_{\text {new }}$ is sufficiently close to g in the C^{2}-topology.

Rigidty of Totally Geodesic Flat Tori

- Theroem: Suppose that (M, g) is compact and nonnegatively curved and all of its zero planes are contained in a family \mathcal{S} of totally geodesic flat submanifolds. Let $g_{\text {new }}$ be obtained from g as in the preceding proposition.
- Then $\left(M, g_{\text {new }}\right)$ is nonnegatively curved along the union of the family \mathcal{S} with precisely the same 0 curvature planes as g, provided $g_{\text {new }}$ is sufficiently close to g in the C^{2}-topology.
- Idea of Proof: If ζ and W are tangent to one of the submanifolds $S \in \mathcal{S}$, then

$$
R^{g_{\text {new }}}(\zeta, W) W=R^{g_{\text {new }}}(W, \zeta) \zeta=0
$$

and all other components of $R^{g_{\text {new }}}$ are close to the corresponding components of R^{g}.

Shortcomings

- The above result only tells about the new curvature at points where the old curvature is 0 .

Shortcomings

- The above result only tells about the new curvature at points where the old curvature is 0 .
- When these ideas are applied to the Gromoll-Meyer sphere we use a deformation that is only C^{1}-small.

Shortcomings

- The above result only tells about the new curvature at points where the old curvature is 0 .
- When these ideas are applied to the Gromoll-Meyer sphere we use a deformation that is only C^{1}-small.
- I will address the second issue here, in outline.

Longterm Cheeger Deformation

- Running the Cheeger deformation by the isometry group of Σ^{7} for a long time has the effect of compressing the bulk of the curvature of the original zero planes

Longterm Cheeger Deformation

- Running the Cheeger deformation by the isometry group of Σ^{7} for a long time has the effect of compressing the bulk of the curvature of the original zero planes

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta} \psi\right)\right)+s^{4} w_{h}^{2}\left(D_{\zeta} \psi\right)^{2}
$$

into a small neighborhood, T_{0}, of the singular circle of $S^{4}=S^{1} * S^{2}$.

Longterm Cheeger Deformation

- Running the Cheeger deformation by the isometry group of Σ^{7} for a long time has the effect of compressing the bulk of the curvature of the original zero planes

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta} \psi\right)\right)+s^{4} w_{h}^{2}\left(D_{\zeta} \psi\right)^{2}
$$

into a small neighborhood, T_{0}, of the singular circle of $S^{4}=S^{1} * S^{2}$.

- This has several advantages.

C-2 Large on a small set

- The Redistributin deformation is only C^{2}-large on the above set, T_{0}, with small measure.

C-2 Large on a small set

- The Redistributin deformation is only C^{2}-large on the above set, T_{0}, with small measure.
- Certain curvatures become much larger on T_{0}, and because T_{0} is small, this is "paid for" with only a small decrease in curvature outside of T_{0}.

C-2 Large on a small set

- The Redistributin deformation is only C^{2}-large on the above set, T_{0}, with small measure.
- Certain curvatures become much larger on T_{0}, and because T_{0} is small, this is "paid for" with only a small decrease in curvature outside of T_{0}.
- In addition, the smallness of T_{0} is crucial for keeping the deformation C^{1}-small globally.

C-2 Large on a small set

- The Redistributin deformation is only C^{2}-large on the above set, T_{0}, with small measure.
- Certain curvatures become much larger on T_{0}, and because T_{0} is small, this is "paid for" with only a small decrease in curvature outside of T_{0}.
- In addition, the smallness of T_{0} is crucial for keeping the deformation C^{1}-small globally.
- Since the whole project of [PetWilh] is about evening out

$$
\operatorname{curv}_{g_{s}}(\zeta, W)=-s^{2} w_{h}^{2}\left(D_{\zeta}\left(\psi D_{\zeta} \psi\right)\right)+s^{4} w_{h}^{2}\left(D_{\zeta} \psi\right)^{2}
$$

it is extremely important that we can redistribute some preexisting positive curvature into the region that counts, while simultaneously having only a negligible effect on curvatures elsewhere.

Limited C-2 Effect

- Proposition: Suppose that $\left\{E_{i}\right\}$ is an orthonormal frame for g with dual coframe $\left\{\theta^{i}\right\}$.

Limited C-2 Effect

- Proposition: Suppose that $\left\{E_{i}\right\}$ is an orthonormal frame for g with dual coframe $\left\{\theta^{i}\right\}$.
- Suppose that $\tilde{\theta}^{i}=\phi^{i} \theta^{i}$ is an orthonormal coframe for $g_{\text {new }}$, where ϕ^{i} are smooth functions on M.

Limited C-2 Effect

- Proposition: Suppose that $\left\{E_{i}\right\}$ is an orthonormal frame for g with dual coframe $\left\{\theta^{i}\right\}$.
- Suppose that $\tilde{\theta}^{i}=\phi^{i} \theta^{i}$ is an orthonormal coframe for $g_{\text {new }}$, where ϕ^{i} are smooth functions on M.
- Assume that

$$
d \phi^{i}=\psi^{i} \theta^{1}
$$

and that

$$
d \psi^{i}=\lambda^{i} \theta^{1}
$$

for some other smooth functions ψ^{i} and λ^{i}.

Limited C-2 Effect

- Proposition: Suppose that $\left\{E_{i}\right\}$ is an orthonormal frame for g with dual coframe $\left\{\theta^{i}\right\}$.
- Suppose that $\tilde{\theta}^{i}=\phi^{i} \theta^{i}$ is an orthonormal coframe for $g_{\text {new }}$, where ϕ^{i} are smooth functions on M.
- Assume that

$$
d \phi^{i}=\psi^{i} \theta^{1}
$$

and that

$$
d \psi^{i}=\lambda^{i} \theta^{1}
$$

for some other smooth functions ψ^{i} and λ^{i}.

- If the functions ϕ^{i} are close to 1 in the C^{1}-topology, then the only components of $R^{g_{\text {new }}}\left(\tilde{E}_{i}, \tilde{E}_{j}, \tilde{E}_{k}, \tilde{E}_{l}\right)$ that are not close to R^{g} are the terms that up to symmetries of the curvature tensor can be reduced to $R^{g_{\text {new }}}\left(\tilde{E}_{1}, \tilde{E}_{i}, \tilde{E}_{i}, \tilde{E}_{1}\right)$.

Limited C-2 Effect

- Proposition (continued)

$$
R^{g_{\text {new }}}\left(\tilde{E}_{1}, \tilde{E}_{i}, \tilde{E}_{i}, \tilde{E}_{1}\right)=R^{g_{\text {old }}}\left(E_{1}, E_{i}, E_{i}, E_{1}\right)-\left(\left(\phi^{i}\right)^{\prime \prime}\right)+O\left(C^{1}\right)
$$

Limited C-2 Effect

- Proposition (continued)

$$
R^{g_{\text {new }}}\left(\tilde{E}_{1}, \tilde{E}_{i}, \tilde{E}_{i}, \tilde{E}_{1}\right)=R^{g_{\text {old }}}\left(E_{1}, E_{i}, E_{i}, E_{1}\right)-\left(\left(\phi^{i}\right)^{\prime \prime}\right)+O\left(C^{1}\right)
$$

- When applied to the Gromoll-Meyer sphere it is precisely the curvatures,

$$
R^{g_{\text {new }}}\left(\tilde{E}_{1}, \tilde{E}_{i}, \tilde{E}_{i}, \tilde{E}_{1}\right)
$$

that we re-distribute.

Limited C-2 Effect

- Proposition (continued)

$$
R^{g_{\text {new }}}\left(\tilde{E}_{1}, \tilde{E}_{i}, \tilde{E}_{i}, \tilde{E}_{1}\right)=R^{g_{\text {old }}}\left(E_{1}, E_{i}, E_{i}, E_{1}\right)-\left(\left(\phi^{i}\right)^{\prime \prime}\right)+O\left(C^{1}\right)
$$

- When applied to the Gromoll-Meyer sphere it is precisely the curvatures,

$$
R^{g_{\text {new }}}\left(\tilde{E}_{1}, \tilde{E}_{i}, \tilde{E}_{i}, \tilde{E}_{1}\right)
$$

that we re-distribute.

- The functions ϕ^{i} are either 1 , or all the same function, φ, that is concave down (with big second derivatire) on the small set T_{0}, and concave up with small second derivative on the complment of T_{0}.

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Although the integral is positive this positivity is to a higher order than the metric deformation.

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations-

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations-
- Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations-
- Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian
- Compress all of the curvature of the the old zero planes (wrt to g_{s}) into a small neighborhood, T_{0}

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations-
- Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian
- Compress all of the curvature of the the old zero planes (wrt to g_{s}) into a small neighborhood, T_{0}
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations-
- Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian
- Compress all of the curvature of the the old zero planes (wrt to g_{s}) into a small neighborhood, T_{0}
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,
- Rigidity of tori allows us to preserve nonnegative curvature

Recap

- Short term Cheeger Deformations-within the realm of nonnegative curvature
- all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations-
- Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian
- Compress all of the curvature of the the old zero planes (wrt to g_{s}) into a small neighborhood, T_{0}
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,
- Rigidity of tori allows us to preserve nonnegative curvature
- The smallness of T_{0} allows us to make certain curvatures much larger

Recap

- Partial conformal change evens out the curvature of the old zero planes,

Recap

- Partial conformal change evens out the curvature of the old zero planes,
- Rigidity of totally geodesic tori also explains why the Partial conformal change behaves much like a conformal change,

Recap

- Partial conformal change evens out the curvature of the old zero planes,
- Rigidity of totally geodesic tori also explains why the Partial conformal change behaves much like a conformal change,
- Although this rigidity is not as prounced as with the redistribution.

