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This talk is not about

Theorem The Gromoll-Meyer exotic sphere admits positive sectional
curvature.

Per say

Goal�to isolate some abstract principles that are used to prove this
theorem, and to understand how they might be put together to make
a proof.
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Principles

Short term Cheeger Deformations� within the realm of nonnegative
curvature

Long term Cheeger Deformations� with arbitrary initial curvature

Scaling the �bers to integrally positive curvature (and leaving
nonnegative curvature)

Exploiting rigidity of totally geodesic �at tori, to redistribute
curvatures,

Exploiting rigidity of totally geodesic, to make a "partial conformal
change" that behaves (much) like a conformal change
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Cheeger Deformations

In 1973, Cheeger formulated a method to deform the metric of a
nonnegatively curved manifold that tends to increase the curvature
and decrease the symmetry.

Cheeger�s Method�Let G act isometrically on M, and assume that
secM � 0. Then G acts freely on G �M via

G � (G �M) �! (G �M)
(g , h,m) 7�!

�
hg�1, gm

�
.

The quotient is di¤eomorphic to M. Give G a biinvariant metric and
G �M the product metric. Then the quotient inherits a new metric
gCheeg of nonnegative curvature.
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The �Cheeger reparameterization�

To understand how a Cheeger deformation e¤ects questions about
nonnegative or positive curvature it is urged that you consider the
�Cheeger reparameterization�of the tangent bundle of M.

The correspondence is

TM
Hat�! T (G �M)

dπCheeg�! TM

Where πCheeg is the �Cheeger submersion�πCheeg : G �M �! M,
and

Hat (v)
Hat (v) � v̂

is the unique vector in T (G �M) that is horizontal for dπCheeg has
the form

v̂ = (???, v)
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Modulo the �Cheeger reparameterization�

Any plane of positive curvature remains positively curved.

Any plane whose projection to the orbits of G corresponds to a
positively curved plane of G becomes positively curved.

So if G = S3, any plane whose projection to the orbits of G is
nondegenerate becomes positively curved.
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Applications

There are numerous applications of these principles in the literature

Notably in [Wilh] and [Esch-Ker] to get positive curvature almost
everywhere on the Gromoll-Meyer sphere.
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Long Term Cheeger Principle

Now drop the hypothesis that M is nonnegatively curved.

By scaling the bi-invariant metric on the G�factor in G �M we
obtain a one parameter familly of metrics on M.

If \l� is the scaling factor, then as l ! ∞, the new metrics converge
to the old one.
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Long Term Cheeger Principle

If v is �xed, and if the ??? in

v̂ = (???, v)

is kv , when l = 1, then for general l ,

v̂ =
�
kv
l2
, v
�
.

So as l ! 0, the �group�part of v dominates.

So for a plane P = span fv ,wg , if curvG (kv , kw ) > 0, then
curvG�M P̂ > 0 if l is su¢ ciently small.
So curvMdπCheeg

�
P̂
�
> 0 if l is su¢ ciently small.

Aside�if either kv or kw is nonzero, then the sectional curvature of P̂
is �almost nonnegative�as l ! 0.
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Fiber Scaling

The key step to get positive curvature on the Gromoll-Meyer sphere,
Σ7, is scaling the �bers of the Gromoll-Meyer submersion

Sp (2) �! S4.

The new metric gnew has some negative curvatures

However, over any of the totally geodesic �at tori of gold, the integral
of the curvature of gnew is positive.
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Structure of the zero planes of the GM-Sphere

The isomstry group of Σ7 (with almost positive curvature) is SO (3) .

The action is by symmetries of pGM : Σ7 �! S4.
The induced action on S4 respects a join decomposition, S4 = S1 � S2.
The action is the join of the trivial action on S1 with the standard
action on S2.
Hence the intrinsic metrics on the S2s in S4 are round.

Each 0�plane has the form

span fζ,W g ,

where ζ is a horizontal geodsic �eld for pGM : Σ7 �! S4.
On S4, ζ can be viewed as the gradient of the distance from two
points in S1 (its mulitvalued in places and not in a zero plane in
others).
W is typically neither horizontal nor vertical for pGM . Its horizontal
part H = W horiz is a killing �eld for the isometric SO (3)�action
along any �xed geodesic tangent to a particular ζ.
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Curvature after �ber scaling

If gnew is obtained from gold by scaling the lengths of the �bers byp
1� s2, then

curvgs (ζ,W ) = �s2
�
Dζ

�
jHw jDζ jHw j

��
+ s4

�
Dζ jHw j

�2
,

where Hw is the horizontal part of W .

W is vertical over the singular S1 in S4 = S1 � S2, and
Along any integral cuve of ζ, jHw j is maximal at the point that�s
furthest from the singular S1.
So Z

c
�s2

�
Dζ

�
jHw jDζ jHw j

��
= s2 jHw j

�
Dζ jHw j

���c (max)
c (S 1)

= 0.

and Z
c

curvgs (ζ,W ) =
Z
c
s4
�
Dζ jHw j

�2
> 0.
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+ s4

�
Dζ jHw j

�2
,

where Hw is the horizontal part of W .

W is vertical over the singular S1 in S4 = S1 � S2, and
Along any integral cuve of ζ, jHw j is maximal at the point that�s
furthest from the singular S1.
So Z

c
�s2

�
Dζ

�
jHw jDζ jHw j

��
= s2 jHw j

�
Dζ jHw j

���c (max)
c (S 1)
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c
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Z
c
s4
�
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Point-wise Curvature

The �rst term in

curvgs (ζ,W ) = �s2
�
Dζ

�
jHw jDζ jHw j

��
+ s4

�
Dζ jHw j

�2
,

is

�s2
�
Dζ

�
jHw jDζ jHw j

��
= �s2

h�
Dζ jHw j

�2
+
�
jHw jDζDζ jHw j

�i

negative near the singular circle

and positive away from this circle.

Its much larger than the term s4
�
Dζ jHw j

�2 whose integral is positive.
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Conformal Change Almost works

Use the fact that along each torus Hw is a Killing �eld to re-write

Hw = whk

where k is a killing �eld with standard normalization for this action.

Then curvgs (ζ,W ) = �s2w2h
�
Dζ

�
ψDζψ

��
+ s4w2h

�
Dζψ

�2
,

where ψ is the function that describes the scaling of the S2s in S4

from the unit metric.

If the ratio wh
jW j were constant, we could then do a conformal change

that would cancel the leading order term �s2w2h
�
Dζ

�
ψDζ jψj

��
.

Since the ratio wh
jW j varies from torus to torus, we actually do a

modi�cation of a conformal change called a �partial confomral
change�.
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Higher order positivity

Although the integral of the curvatures of the old zero planes is
positive, this positivity is to a higher order than the size of the metric
deformation.

It is therefore insu¢ cient to verify positivity on the old zero curvature
locus. Instead we have to verify positivity for an entire neighborhood
of the old zero locus.

Some long term Cheeger Deformations allow us to simplify this
problem, however,

It seems impossible to get positive curvature with the deformations
we have discussed so far.

We therefore need a further deformation which we called the
�redistribution�.
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Rigidty of Totally Geodesic Flat Tori

Exercise(5.4 in [Pet]) Let γ be a geodesic in (M, g) . Let g̃ be
another metric on M which satis�es

g (γ̇, �) = g̃ (γ̇, �) : TM �! R.

Then γ is also a geodesic with respect to g̃ .

Proposition Let S be a family of totally geodesic submanifolds of
(M, g) . Let g̃ be another metric on M which satis�es

g (X , �) = g̃ (X , �) : TM �! R

for all vectors tangent to a totally geodesic submanifold in S , then S
is also a family of totally geodesic submanifolds of (M, g̃) .

Proof: If γ is any geodesic in S 2 S with respect to g , then by the
preceding exercise, γ is a geodesic of (M, g̃) .
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Rigidty of Totally Geodesic Flat Tori

Corollary If the totally geodesic family S of the preceding proposition
consists of totally geodesic �at submanifolds for (M, g) , then it also
consists of totally geodesic �at submanifolds for (M, g̃) .

Proof: The intrinsic metric on members of S does not change. In
particular, totally geodesic �ats are preserved.

joint work with Peter Petersen () Principles for Deforming Nonnegative Curvature June 4, 2009 17 / 25



Rigidty of Totally Geodesic Flat Tori

Corollary If the totally geodesic family S of the preceding proposition
consists of totally geodesic �at submanifolds for (M, g) , then it also
consists of totally geodesic �at submanifolds for (M, g̃) .

Proof: The intrinsic metric on members of S does not change. In
particular, totally geodesic �ats are preserved.

joint work with Peter Petersen () Principles for Deforming Nonnegative Curvature June 4, 2009 17 / 25



Rigidty of Totally Geodesic Flat Tori

Theroem: Suppose that (M, g) is compact and nonnegatively curved
and all of its zero planes are contained in a family S of totally
geodesic �at submanifolds. Let gnew be obtained from g as in the
preceding proposition.

Then (M, gnew) is nonnegatively curved along the union of the family
S with precisely the same 0 curvature planes as g , provided gnew is
su¢ ciently close to g in the C 2�topology.

Idea of Proof: If ζ and W are tangent to one of the submanifolds
S 2 S , then

Rgnew (ζ,W )W = Rgnew (W , ζ) ζ = 0

and all other components of Rgnew are close to the corresponding
components of Rg .
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Shortcomings

The above result only tells about the new curvature at points where
the old curvature is 0.

When these ideas are applied to the Gromoll-Meyer sphere we use a
deformation that is only C 1�small.

I will address the second issue here, in outline.
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Longterm Cheeger Deformation

Running the Cheeger deformation by the isometry group of Σ7 for a
long time has the e¤ect of compressing the bulk of the curvature of
the original zero planes

curvgs (ζ,W ) = �s2w2h
�
Dζ

�
ψDζψ

��
+ s4w2h

�
Dζψ

�2
,

into a small neighborhood, T0, of the singular circle of S4 = S1 � S2.

This has several advantages.
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C�2 Large on a small set

The Redistributin deformation is only C 2�large on the above set, T0,
with small measure.

Certain curvatures become much larger on T0, and because T0 is
small, this is �paid for�with only a small decrease in curvature
outside of T0.

In addition, the smallness of T0 is crucial for keeping the deformation
C 1�small globally.

Since the whole project of [PetWilh] is about evening out

curvgs (ζ,W ) = �s2w2h
�
Dζ

�
ψDζψ

��
+ s4w2h

�
Dζψ

�2
,

it is extremely important that we can redistribute some preexisting
positive curvature into the region that counts, while simultaneously
having only a negligible e¤ect on curvatures elsewhere.
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Limited C-2 E¤ect

Proposition: Suppose that fEig is an orthonormal frame for g with
dual coframe

n
θi
o
.

Suppose that θ̃
i
= φi θi is an orthonormal coframe for gnew, where φi

are smooth functions on M.

Assume that
dφi = ψi θ1

and that
dψi = λi θ1

for some other smooth functions ψi and λi .

If the functions φi are close to 1 in the C 1�topology, then the only
components of Rgnew

�
Ẽi , Ẽj , Ẽk , Ẽl

�
that are not close to Rg are the

terms that up to symmetries of the curvature tensor can be reduced
to Rgnew

�
Ẽ1, Ẽi , Ẽi , Ẽ1

�
.
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Ẽi , Ẽj , Ẽk , Ẽl
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�
that are not close to Rg are the

terms that up to symmetries of the curvature tensor can be reduced
to Rgnew

�
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Limited C-2 E¤ect

Proposition (continued)

Rgnew
�
Ẽ1, Ẽi , Ẽi , Ẽ1

�
= Rgold (E1,Ei ,Ei ,E1)�

��
φi
�00�

+O
�
C 1
�

When applied to the Gromoll-Meyer sphere it is precisely the
curvatures,

Rgnew
�
Ẽ1, Ẽi , Ẽi , Ẽ1

�
that we re-distribute.

The functions φi are either 1, or all the same function, ϕ, that is
concave down (with big second derivatire) on the small set T0, and
concave up with small second derivative on the complment of T0.
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Recap

Short term Cheeger Deformations� within the realm of nonnegative
curvature

all previously known principles

Scaling the �bers to integrally positive curvature (and leaving
nonnegative curvature)

Although the integral is positive this positivity is to a higher order than
the metric deformation.

Long term Cheeger Deformations�

Simiplfy the problem of dealing with a neighborhood of the old zero
planes in the Grassmannian
Compress all of the curvature of the the old zero planes (wrt to gs )
into a small neighborhood, T0

Exploiting rigidity of totally geodesic �at tori, to redistribute
curvatures,

Rigidity of tori allows us to preserve nonnegative curvature
The smallness of T0 allows us to make certain curvatures much larger
on T0,while not changing curvatures much o¤ of T0.
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Recap

Partial conformal change evens out the curvature of the old zero
planes,

Rigidity of totally geodesic tori also explains why the Partial conformal
change behaves much like a conformal change,
Although this rigidity is not as prounced as with the redistribution.
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