Principles for Deforming Nonnegative Curvature

joint work with Peter Petersen

June 4, 2009

joint work with Peter Petersen () Principles for Deforming Nonnegative Curvatu

June 4, 2009 1 / 25

• **Theorem** The Gromoll-Meyer exotic sphere admits positive sectional curvature.

• **Theorem** The Gromoll-Meyer exotic sphere admits positive sectional curvature.

Per say

• **Theorem** The Gromoll-Meyer exotic sphere admits positive sectional curvature.

Per say

• Goal-to isolate some abstract principles that are used to prove this theorem, and to understand how they might be put together to make a proof.

Principles

• Short term Cheeger Deformations—within the realm of nonnegative curvature

- 一司

Principles

- Short term Cheeger Deformations—within the realm of nonnegative curvature
- Long term Cheeger Deformations—with arbitrary initial curvature

- Short term Cheeger Deformations—within the realm of nonnegative curvature
- Long term Cheeger Deformations—with arbitrary initial curvature
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)

- Short term Cheeger Deformations—within the realm of nonnegative curvature
- Long term Cheeger Deformations—with arbitrary initial curvature
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,

- Short term Cheeger Deformations—within the realm of nonnegative curvature
- Long term Cheeger Deformations—with arbitrary initial curvature
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,
- Exploiting rigidity of totally geodesic, to make a "partial conformal change" that behaves (much) like a conformal change

• In 1973, Cheeger formulated a method to deform the metric of a nonnegatively curved manifold that tends to increase the curvature and decrease the symmetry.

- In 1973, Cheeger formulated a method to deform the metric of a nonnegatively curved manifold that tends to increase the curvature and decrease the symmetry.
- Cheeger's Method-Let G act isometrically on M, and assume that $\sec_M \ge 0$. Then G acts freely on $G \times M$ via

$$\begin{array}{rcl} G\times & (G\times M) & \longrightarrow & (G\times M) \\ & (g,h,m) & \longmapsto & \left(hg^{-1},gm\right). \end{array}$$

- In 1973, Cheeger formulated a method to deform the metric of a nonnegatively curved manifold that tends to increase the curvature and decrease the symmetry.
- Cheeger's Method-Let G act isometrically on M, and assume that sec_M ≥ 0. Then G acts freely on G × M via

$$\begin{array}{rcl} G \times & (G \times M) & \longrightarrow & (G \times M) \\ & (g, h, m) & \longmapsto & \left(hg^{-1}, gm\right). \end{array}$$

• The quotient is diffeomorphic to *M*. Give *G* a biinvariant metric and *G* × *M* the product metric. Then the quotient inherits a new metric *g*_{Cheeg} of nonnegative curvature.

• To understand how a Cheeger deformation effects questions about nonnegative or positive curvature it is urged that you consider the "Cheeger reparameterization" of the tangent bundle of *M*.

- To understand how a Cheeger deformation effects questions about nonnegative or positive curvature it is urged that you consider the "Cheeger reparameterization" of the tangent bundle of *M*.
- The correspondence is

$$TM \xrightarrow{Hat} T(G \times M) \xrightarrow{d\pi_{\text{Cheeg}}} TM$$

- To understand how a Cheeger deformation effects questions about nonnegative or positive curvature it is urged that you consider the "Cheeger reparameterization" of the tangent bundle of *M*.
- The correspondence is

$$TM \xrightarrow{Hat} T(G \times M) \xrightarrow{d\pi_{\text{Cheeg}}} TM$$

• Where π_{Cheeg} is the "Cheeger submersion" $\pi_{\text{Cheeg}}: G \times M \longrightarrow M$, and

- To understand how a Cheeger deformation effects questions about nonnegative or positive curvature it is urged that you consider the "Cheeger reparameterization" of the tangent bundle of *M*.
- The correspondence is

$$TM \xrightarrow{Hat} T(G \times M) \xrightarrow{d\pi_{Cheeg}} TM$$

- Where π_{Cheeg} is the "Cheeger submersion" $\pi_{\text{Cheeg}}: G \times M \longrightarrow M$, and
- *Hat* (*v*)

$$Hat(v) \equiv \hat{v}$$

is the unique vector in $T\left(G imes M
ight)$ that is horizontal for $d\pi_{
m Cheeg}$ has the form

$$\hat{v} = (???, v)$$

• Any plane of positive curvature remains positively curved.

• Any plane of positive curvature remains positively curved.

• Any plane whose projection to the orbits of *G* corresponds to a positively curved plane of *G* becomes positively curved.

• Any plane of positive curvature remains positively curved.

• Any plane whose projection to the orbits of *G* corresponds to a positively curved plane of *G* becomes positively curved.

• So if $G = S^3$, any plane whose projection to the orbits of G is nondegenerate becomes positively curved.

• There are numerous applications of these principles in the literature

• There are numerous applications of these principles in the literature

• Notably in [Wilh] and [Esch-Ker] to get positive curvature almost everywhere on the Gromoll-Meyer sphere.

• Now drop the hypothesis that *M* is nonnegatively curved.

• Now drop the hypothesis that *M* is nonnegatively curved.

• By scaling the bi-invariant metric on the G-factor in $G \times M$ we obtain a one parameter familly of metrics on M.

• Now drop the hypothesis that *M* is nonnegatively curved.

• By scaling the bi-invariant metric on the G-factor in $G \times M$ we obtain a one parameter familly of metrics on M.

 If "I" is the scaling factor, then as I → ∞, the new metrics converge to the old one.

• If v is fixed, and if the ??? in

$$\hat{v} = (???, v)$$

is k_v , when l = 1, then for general l,

$$\hat{\mathbf{v}} = \left(\frac{k_{\mathbf{v}}}{l^2}, \mathbf{v}\right)$$

• If v is fixed, and if the ??? in

$$\hat{v} = (???, v)$$

is k_v , when l = 1, then for general l,

$$\hat{\mathbf{v}} = \left(rac{k_{\mathbf{v}}}{I^2}, \mathbf{v}
ight).$$

• So as $I \rightarrow 0$, the "group" part of v dominates.

• If v is fixed, and if the ??? in

$$\hat{v} = (???, v)$$

is k_v , when l = 1, then for general l,

$$\hat{\mathbf{v}} = \left(\frac{k_{\mathbf{v}}}{l^2}, \mathbf{v}\right)$$

• So as $I \rightarrow 0$, the "group" part of v dominates.

• So for a plane $P = \text{span} \{v, w\}$, if $\text{curv}_G(k_v, k_w) > 0$, then $\text{curv}_{G \times M} \hat{P} > 0$ if I is sufficiently small.

• If v is fixed, and if the ??? in

$$\hat{v} = (???, v)$$

is k_v , when l = 1, then for general l,

$$\hat{\mathbf{v}} = \left(\frac{k_{\mathbf{v}}}{l^2}, \mathbf{v}\right)$$

• So as $I \rightarrow 0$, the "group" part of v dominates.

- So for a plane $P = \text{span} \{v, w\}$, if $\text{curv}_G(k_v, k_w) > 0$, then $\text{curv}_{G \times M} \hat{P} > 0$ if I is sufficiently small.
- So $\operatorname{curv}_M d\pi_{\operatorname{Cheeg}}(\hat{P}) > 0$ if I is sufficiently small.

• If v is fixed, and if the ??? in

$$\hat{\mathbf{v}} = (???, \mathbf{v})$$

is k_v , when l = 1, then for general l,

$$\hat{\mathbf{v}} = \left(\frac{k_{\mathbf{v}}}{l^2}, \mathbf{v}\right)$$

• So as $I \rightarrow 0$, the "group" part of v dominates.

- So for a plane $P = \text{span} \{v, w\}$, if $\text{curv}_G(k_v, k_w) > 0$, then $\text{curv}_{G \times M} \hat{P} > 0$ if I is sufficiently small.
- So $\operatorname{curv}_{M} d\pi_{\operatorname{Cheeg}}(\hat{P}) > 0$ if I is sufficiently small.
- Aside-if either k_v or k_w is nonzero, then the sectional curvature of \hat{P} is "almost nonnegative" as $I \rightarrow 0$.

• The key step to get positive curvature on the Gromoll-Meyer sphere, $\Sigma^7,$ is scaling the fibers of the Gromoll-Meyer submersion

$$Sp(2) \longrightarrow S^4.$$

• The key step to get positive curvature on the Gromoll-Meyer sphere, Σ^7 , is scaling the fibers of the Gromoll-Meyer submersion

$$Sp(2) \longrightarrow S^4.$$

• The new metric g_{new} has some negative curvatures

• The key step to get positive curvature on the Gromoll-Meyer sphere, Σ^7 , is scaling the fibers of the Gromoll-Meyer submersion

$$Sp(2) \longrightarrow S^4.$$

- The new metric g_{new} has some negative curvatures
- However, over any of the totally geodesic flat tori of g_{old} , the integral of the curvature of g_{new} is positive.

• The isomstry group of Σ^7 (with almost positive curvature) is SO(3).

• The isomstry group of Σ^7 (with almost positive curvature) is SO(3).

• The action is by symmetries of $p_{GM}: \Sigma^7 \longrightarrow S^4$.

- The isomstry group of Σ^7 (with almost positive curvature) is SO(3).
 - The action is by symmetries of $p_{GM}: \Sigma^7 \longrightarrow S^4$.
 - The induced action on S^4 respects a join decomposition, $S^4 = S^1 * S^2$.

- The isomstry group of Σ^7 (with almost positive curvature) is SO(3).
 - The action is by symmetries of $p_{GM}: \Sigma^7 \longrightarrow S^4$.
 - The induced action on S^4 respects a join decomposition, $S^4 = S^1 * S^2$.
 - The action is the join of the trivial action on S^1 with the standard action on S^2 .
- The isomstry group of Σ^7 (with almost positive curvature) is SO(3).
 - The action is by symmetries of $p_{GM}: \Sigma^7 \longrightarrow S^4$.
 - The induced action on S^4 respects a join decomposition, $S^4 = S^1 * S^2$.
 - The action is the join of the trivial action on S^1 with the standard action on S^2 .
 - Hence the intrinsic metrics on the S^2 s in S^4 are round.

- The isomstry group of Σ^7 (with almost positive curvature) is SO(3).
 - The action is by symmetries of $p_{GM}: \Sigma^7 \longrightarrow S^4$.
 - The induced action on S^4 respects a join decomposition, $S^4 = S^1 * S^2$.
 - The action is the join of the trivial action on S^1 with the standard action on S^2 .
 - Hence the intrinsic metrics on the S^2 s in S^4 are round.
- Each 0-plane has the form

span $\{\zeta, W\}$,

where ζ is a horizontal geodsic field for $p_{GM}: \Sigma^7 \longrightarrow S^4$.

- The isomstry group of Σ^7 (with almost positive curvature) is SO(3).
 - The action is by symmetries of $p_{GM}: \Sigma^7 \longrightarrow S^4$.
 - The induced action on S^4 respects a join decomposition, $S^4 = S^1 * S^2$.
 - The action is the join of the trivial action on S^1 with the standard action on S^2 .
 - Hence the intrinsic metrics on the S^2 s in S^4 are round.
- Each 0-plane has the form

span
$$\{\zeta, W\}$$
 ,

where ζ is a horizontal geodsic field for $p_{GM}: \Sigma^7 \longrightarrow S^4$.

• On S^4 , ζ can be viewed as the gradient of the distance from two points in S^1 (its mulitvalued in places and not in a zero plane in others).

- The isomstry group of Σ^7 (with almost positive curvature) is $SO\left(3
 ight)$.
 - The action is by symmetries of $p_{GM}: \Sigma^7 \longrightarrow S^4$.
 - The induced action on S^4 respects a join decomposition, $S^4 = S^1 * S^2$.
 - The action is the join of the trivial action on S^1 with the standard action on S^2 .
 - Hence the intrinsic metrics on the S^2 s in S^4 are round.
- Each 0-plane has the form

span
$$\{\zeta, W\}$$
 ,

where ζ is a horizontal geodsic field for $p_{GM}: \Sigma^7 \longrightarrow S^4$.

- On S^4 , ζ can be viewed as the gradient of the distance from two points in S^1 (its mulitvalued in places and not in a zero plane in others).
- W is typically neither horizontal nor vertical for p_{GM} . Its horizontal part $H = W^{horiz}$ is a killing field for the isometric SO (3)-action along any fixed geodesic tangent to a particular ζ .

• If $g_{\rm new}$ is obtained from $g_{\rm old}$ by scaling the lengths of the fibers by $\sqrt{1-s^2}$, then

$$\operatorname{curv}_{g_{s}}\left(\zeta,W\right) = -s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right) + s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2},$$

• If $g_{\rm new}$ is obtained from $g_{\rm old}$ by scaling the lengths of the fibers by $\sqrt{1-s^2},$ then

$$\operatorname{curv}_{g_{s}}\left(\zeta,W
ight)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|
ight)
ight)+s^{4}\left(D_{\zeta}\left|H_{w}\right|
ight)^{2},$$

• where H_W is the horizontal part of W.

• If $g_{\rm new}$ is obtained from $g_{\rm old}$ by scaling the lengths of the fibers by $\sqrt{1-s^2}$, then

$$\operatorname{curv}_{g_{s}}\left(\zeta,W\right)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2},$$

• where H_w is the horizontal part of W.

• W is vertical over the singular S^1 in $S^4 = S^1 * S^2$, and

• If $g_{\rm new}$ is obtained from $g_{\rm old}$ by scaling the lengths of the fibers by $\sqrt{1-s^2}$, then

$$\operatorname{curv}_{g_{s}}\left(\zeta,W
ight)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|
ight)
ight)+s^{4}\left(D_{\zeta}\left|H_{w}\right|
ight)^{2}$$
 ,

- where H_W is the horizontal part of W.
- W is vertical over the singular S^1 in $S^4 = S^1 * S^2$, and
- Along any integral cuve of ζ , $|H_w|$ is maximal at the point that's furthest from the singular S^1 .

• If $g_{\rm new}$ is obtained from $g_{\rm old}$ by scaling the lengths of the fibers by $\sqrt{1-s^2}$, then

$$\operatorname{curv}_{g_{s}}\left(\zeta,W
ight)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|
ight)
ight)+s^{4}\left(D_{\zeta}\left|H_{w}\right|
ight)^{2}$$
 ,

- where H_w is the horizontal part of W.
- W is vertical over the singular S^1 in $S^4 = S^1 * S^2$, and
- Along any integral cuve of ζ , $|H_w|$ is maximal at the point that's furthest from the singular S^1 .
- So

$$\int_{c} -s^{2} \left(D_{\zeta} \left(|H_{w}| D_{\zeta} |H_{w}| \right) \right) = s^{2} |H_{w}| \left[D_{\zeta} |H_{w}| \right] \Big|_{c(S^{1})}^{c(\max)}$$
$$= 0.$$

• If $g_{\rm new}$ is obtained from $g_{\rm old}$ by scaling the lengths of the fibers by $\sqrt{1-s^2}$, then

$$\operatorname{curv}_{g_{s}}\left(\zeta,W
ight)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|
ight)
ight)+s^{4}\left(D_{\zeta}\left|H_{w}\right|
ight)^{2}$$
 ,

- where H_W is the horizontal part of W.
- W is vertical over the singular S^1 in $S^4 = S^1 * S^2$, and
- Along any integral cuve of ζ , $|H_w|$ is maximal at the point that's furthest from the singular S^1 .
- So

$$\int_{c} -s^{2} \left(D_{\zeta} \left(|H_{w}| D_{\zeta} |H_{w}| \right) \right) = s^{2} |H_{w}| \left[D_{\zeta} |H_{w}| \right] \Big|_{c(S^{1})}^{c(\max)}$$
$$= 0.$$

and

$$\int_{c} \operatorname{curv}_{g_{s}}\left(\zeta, W\right) = \int_{c} s^{4} \left(D_{\zeta} \left|H_{w}\right|\right)^{2} > 0.$$

• The first term in

is

$$\operatorname{curv}_{g_{s}}\left(\zeta,W\right)=-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right)+s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2},$$

$$-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right)=-s^{2}\left[\left(D_{\zeta}\left|H_{w}\right|\right)^{2}+\left(\left|H_{w}\right|D_{\zeta}D_{\zeta}\left|H_{w}\right|\right)\right]$$

• The first term in

$$\operatorname{curv}_{g_{s}}\left(\zeta,W\right) = -s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right) + s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2},$$

is

$$-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right)=-s^{2}\left[\left(D_{\zeta}\left|H_{w}\right|\right)^{2}+\left(\left|H_{w}\right|D_{\zeta}D_{\zeta}\left|H_{w}\right|\right)\right]$$

• negative near the singular circle

• The first term in

$$\operatorname{curv}_{g_{s}}\left(\zeta,W\right) = -s^{2}\left(D_{\zeta}\left(|H_{w}|D_{\zeta}|H_{w}|\right)\right) + s^{4}\left(D_{\zeta}|H_{w}|\right)^{2},$$

is

$$-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right)=-s^{2}\left[\left(D_{\zeta}\left|H_{w}\right|\right)^{2}+\left(\left|H_{w}\right|D_{\zeta}D_{\zeta}\left|H_{w}\right|\right)\right]$$

- negative near the singular circle
- and positive away from this circle.

The first term in

$$\operatorname{curv}_{g_{s}}\left(\zeta,W\right) = -s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right) + s^{4}\left(D_{\zeta}\left|H_{w}\right|\right)^{2},$$

is

$$-s^{2}\left(D_{\zeta}\left(\left|H_{w}\right|D_{\zeta}\left|H_{w}\right|\right)\right)=-s^{2}\left[\left(D_{\zeta}\left|H_{w}\right|\right)^{2}+\left(\left|H_{w}\right|D_{\zeta}D_{\zeta}\left|H_{w}\right|\right)\right]$$

- negative near the singular circle
- and positive away from this circle.

• Its much larger than the term $s^4 \left(D_{\zeta} \left| H_w \right|
ight)^2$ whose integral is positive.

Conformal Change Almost works

• Use the fact that along each torus H_w is a Killing field to re-write

$$H_w = w_h k$$

Conformal Change Almost works

• Use the fact that along each torus H_w is a Killing field to re-write

$$H_w = w_h k$$

where k is a killing field with standard normalization for this action.

• Then $\operatorname{curv}_{g_s}\left(\zeta,W
ight)=-s^2w_h^2\left(D_{\zeta}\left(\psi D_{\zeta}\psi
ight)
ight)+s^4w_h^2\left(D_{\zeta}\psi
ight)^2$,

• Use the fact that along each torus H_w is a Killing field to re-write

$$H_w = w_h k$$

- Then $\operatorname{curv}_{g_s}\left(\zeta,W
 ight)=-s^2w_h^2\left(D_\zeta\left(\psi D_\zeta\psi
 ight)
 ight)+s^4w_h^2\left(D_\zeta\psi
 ight)^2$,
- where ψ is the function that describes the scaling of the $S^2 {\rm s}$ in S^4 from the unit metric.

• Use the fact that along each torus H_w is a Killing field to re-write

$$H_w = w_h k$$

- Then $\operatorname{curv}_{g_s}\left(\zeta,W
 ight)=-s^2w_h^2\left(D_\zeta\left(\psi D_\zeta\psi
 ight)
 ight)+s^4w_h^2\left(D_\zeta\psi
 ight)^2$,
- where ψ is the function that describes the scaling of the $S^2 {\rm s}$ in S^4 from the unit metric.
- If the ratio $\frac{w_h}{|W|}$ were constant, we could then do a conformal change that would cancel the leading order term $-s^2 w_h^2 \left(D_{\zeta} \left(\psi D_{\zeta} |\psi| \right) \right)$.

• Use the fact that along each torus H_w is a Killing field to re-write

$$H_w = w_h k$$

- Then $\operatorname{curv}_{g_s}\left(\zeta,W
 ight)=-s^2w_h^2\left(D_{\zeta}\left(\psi D_{\zeta}\psi\right)\right)+s^4w_h^2\left(D_{\zeta}\psi\right)^2$,
- where ψ is the function that describes the scaling of the $S^2 {\rm s}$ in S^4 from the unit metric.
- If the ratio $\frac{w_h}{|W|}$ were constant, we could then do a conformal change that would cancel the leading order term $-s^2 w_h^2 \left(D_{\zeta} \left(\psi D_{\zeta} |\psi| \right) \right)$.
- Since the ratio $\frac{w_h}{|W|}$ varies from torus to torus, we actually do a modification of a conformal change called a "partial conformal change".

• Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.
- It is therefore insufficient to verify positivity on the old zero curvature locus. Instead we have to verify positivity for an entire neighborhood of the old zero locus.

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.
- It is therefore insufficient to verify positivity on the old zero curvature locus. Instead we have to verify positivity for an entire neighborhood of the old zero locus.
- Some long term Cheeger Deformations allow us to simplify this problem, however,

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.
- It is therefore insufficient to verify positivity on the old zero curvature locus. Instead we have to verify positivity for an entire neighborhood of the old zero locus.
- Some long term Cheeger Deformations allow us to simplify this problem, however,
- It seems impossible to get positive curvature with the deformations we have discussed so far.

- Although the integral of the curvatures of the old zero planes is positive, this positivity is to a higher order than the size of the metric deformation.
- It is therefore insufficient to verify positivity on the old zero curvature locus. Instead we have to verify positivity for an entire neighborhood of the old zero locus.
- Some long term Cheeger Deformations allow us to simplify this problem, however,
- It seems impossible to get positive curvature with the deformations we have discussed so far.
- We therefore need a further deformation which we called the "redistribution".

Exercise(5.4 in [Pet]) Let γ be a geodesic in (M, g). Let ğ be another metric on M which satisfies

$$g\left(\dot{\gamma},\cdot
ight)= ilde{g}\left(\dot{\gamma},\cdot
ight):TM\longrightarrow\mathbb{R}$$
 .

Then γ is also a geodesic with respect to \tilde{g} .

Exercise(5.4 in [Pet]) Let γ be a geodesic in (M, g). Let ğ be another metric on M which satisfies

$$g\left(\dot{\gamma},\cdot\right)=\tilde{g}\left(\dot{\gamma},\cdot\right):TM\longrightarrow\mathbb{R}.$$

Then γ is also a geodesic with respect to \tilde{g} .

• **Proposition** Let S be a family of totally geodesic submanifolds of (M, g). Let \tilde{g} be another metric on M which satisfies

$$g(X, \cdot) = \tilde{g}(X, \cdot) : TM \longrightarrow \mathbb{R}$$

for all vectors tangent to a totally geodesic submanifold in S, then S is also a family of totally geodesic submanifolds of (M, \tilde{g}) .

Exercise(5.4 in [Pet]) Let γ be a geodesic in (M, g). Let ğ be another metric on M which satisfies

$$g\left(\dot{\gamma},\cdot\right)=\tilde{g}\left(\dot{\gamma},\cdot
ight):TM\longrightarrow\mathbb{R}.$$

Then γ is also a geodesic with respect to \tilde{g} .

• **Proposition** Let S be a family of totally geodesic submanifolds of (M, g). Let \tilde{g} be another metric on M which satisfies

$$g\left(X,\cdot\right)= ilde{g}\left(X,\cdot
ight):TM\longrightarrow\mathbb{R}$$

for all vectors tangent to a totally geodesic submanifold in S, then S is also a family of totally geodesic submanifolds of (M, \tilde{g}) .

• **Proof:** If γ is any geodesic in $S \in S$ with respect to g, then by the preceding exercise, γ is a geodesic of (M, \tilde{g}) .

• **Corollary** If the totally geodesic family S of the preceding proposition consists of totally geodesic flat submanifolds for (M, g), then it also consists of totally geodesic flat submanifolds for (M, \tilde{g}) .

- **Corollary** If the totally geodesic family S of the preceding proposition consists of totally geodesic flat submanifolds for (M, g), then it also consists of totally geodesic flat submanifolds for (M, \tilde{g}) .
- **Proof:** The intrinsic metric on members of S does not change. In particular, totally geodesic flats are preserved.

• **Theroem:** Suppose that (M, g) is compact and nonnegatively curved and all of its zero planes are contained in a family S of totally geodesic flat submanifolds. Let g_{new} be obtained from g as in the preceding proposition.

- **Theroem:** Suppose that (M, g) is compact and nonnegatively curved and all of its zero planes are contained in a family S of totally geodesic flat submanifolds. Let g_{new} be obtained from g as in the preceding proposition.
- Then (M, g_{new}) is nonnegatively curved along the union of the family S with precisely the same 0 curvature planes as g, provided g_{new} is sufficiently close to g in the C^2 -topology.

- **Theroem:** Suppose that (M, g) is compact and nonnegatively curved and all of its zero planes are contained in a family S of totally geodesic flat submanifolds. Let g_{new} be obtained from g as in the preceding proposition.
- Then (M, g_{new}) is nonnegatively curved along the union of the family S with precisely the same 0 curvature planes as g, provided g_{new} is sufficiently close to g in the C^2 -topology.
- Idea of Proof: If ζ and W are tangent to one of the submanifolds $S \in S$, then

$$R^{g_{\text{new}}}\left(\zeta,W\right)W=R^{g_{\text{new}}}\left(W,\zeta\right)\zeta=0$$

and all other components of $R^{g_{new}}$ are close to the corresponding components of R^{g} .

• The above result only tells about the new curvature at points where the old curvature is 0.

- The above result only tells about the new curvature at points where the old curvature is 0.
- When these ideas are applied to the Gromoll-Meyer sphere we use a deformation that is only C^1 -small.

- The above result only tells about the new curvature at points where the old curvature is 0.
- When these ideas are applied to the Gromoll-Meyer sphere we use a deformation that is only C^1 -small.
- I will address the second issue here, in outline.

• Running the Cheeger deformation by the isometry group of Σ^7 for a long time has the effect of compressing the bulk of the curvature of the original zero planes
۵

• Running the Cheeger deformation by the isometry group of Σ^7 for a long time has the effect of compressing the bulk of the curvature of the original zero planes

 $\operatorname{curv}_{g_s}(\zeta, W) = -s^2 w_h^2 \left(D_{\zeta} \left(\psi D_{\zeta} \psi \right) \right) + s^4 w_h^2 \left(D_{\zeta} \psi \right)^2$, into a small neighborhood, T_0 , of the singular circle of $S^4 = S^1 * S^2$. • Running the Cheeger deformation by the isometry group of Σ^7 for a long time has the effect of compressing the bulk of the curvature of the original zero planes

۲

 $\operatorname{curv}_{g_s}\left(\zeta, W\right) = -s^2 w_h^2 \left(D_{\zeta}\left(\psi D_{\zeta}\psi\right)\right) + s^4 w_h^2 \left(D_{\zeta}\psi\right)^2,$ into a small neighborhood, T_0 , of the singular circle of $S^4 = S^1 * S^2$.

• This has several advantages.

C-2 Large on a small set

• The Redistributin deformation is only C^2 -large on the above set, T_0 , with small measure.

C–2 Large on a small set

- The Redistributin deformation is only C^2 -large on the above set, T_0 , with small measure.
- Certain curvatures become much larger on T₀, and because T₀ is small, this is "paid for" with only a small decrease in curvature outside of T₀.

C-2 Large on a small set

- The Redistributin deformation is only C^2 -large on the above set, T_0 , with small measure.
- Certain curvatures become much larger on T₀, and because T₀ is small, this is "paid for" with only a small decrease in curvature outside of T₀.
- In addition, the smallness of T₀ is crucial for keeping the deformation C¹-small globally.

C-2 Large on a small set

- The Redistributin deformation is only C^2 -large on the above set, T_0 , with small measure.
- Certain curvatures become much larger on T₀, and because T₀ is small, this is "paid for" with only a small decrease in curvature outside of T₀.
- In addition, the smallness of T_0 is crucial for keeping the deformation C^1 -small globally.
- Since the whole project of [PetWilh] is about evening out

$$\operatorname{curv}_{g_s}\left(\zeta,W
ight)=-s^2w_h^2\left(D_{\zeta}\left(\psi D_{\zeta}\psi
ight)
ight)+s^4w_h^2\left(D_{\zeta}\psi
ight)^2$$
 ,

it is extremely important that we can redistribute some preexisting positive curvature into the region that counts, while simultaneously having only a negligible effect on curvatures elsewhere.

• **Proposition:** Suppose that $\{E_i\}$ is an orthonormal frame for g with dual coframe $\{\theta^i\}$.

- **Proposition:** Suppose that $\{E_i\}$ is an orthonormal frame for g with dual coframe $\{\theta^i\}$.
- Suppose that $\tilde{\theta}^i = \phi^i \theta^i$ is an orthonormal coframe for g_{new} , where ϕ^i are smooth functions on M.

- **Proposition:** Suppose that $\{E_i\}$ is an orthonormal frame for g with dual coframe $\{\theta^i\}$.
- Suppose that $\tilde{\theta}' = \phi^i \theta^i$ is an orthonormal coframe for g_{new} , where ϕ^i are smooth functions on M.
- Assume that

$$d\phi^i = \psi^i \theta^1$$

and that

$$d\psi^i = \lambda^i \theta^1$$

for some other smooth functions ψ^i and λ^i .

- **Proposition:** Suppose that $\{E_i\}$ is an orthonormal frame for g with dual coframe $\{\theta^i\}$.
- Suppose that $\tilde{\theta}' = \phi^i \theta^i$ is an orthonormal coframe for g_{new} , where ϕ^i are smooth functions on M.
- Assume that

$$d\phi^i = \psi^i \theta^1$$

and that

$$d\psi^i=\lambda^i heta^1$$

for some other smooth functions ψ^i and λ^i .

If the functions φⁱ are close to 1 in the C¹-topology, then the only components of R^g_{new} (*Ẽ_i*, *Ẽ_j*, *Ẽ_k*, *Ẽ_l*) that are not close to R^g are the terms that up to symmetries of the curvature tensor can be reduced to R^g_{new} (*Ẽ₁*, *Ẽ_i*, *Ẽ_i*, *Ẽ₁*).

• Proposition (continued)

$$R^{g_{\text{new}}}\left(\tilde{E}_{1},\tilde{E}_{i},\tilde{E}_{i},\tilde{E}_{1}\right)=R^{g_{\text{old}}}\left(E_{1},E_{i},E_{i},E_{1}\right)-\left(\left(\phi^{i}\right)^{\prime\prime}\right)+O\left(C^{1}\right)$$

- 一司

• Proposition (continued)

$$R^{g_{\text{new}}}\left(\tilde{E}_{1},\tilde{E}_{i},\tilde{E}_{i},\tilde{E}_{1}\right)=R^{g_{\text{old}}}\left(E_{1},E_{i},E_{i},E_{1}\right)-\left(\left(\phi^{i}\right)^{\prime\prime}\right)+O\left(C^{1}\right)$$

• When applied to the Gromoll-Meyer sphere it is precisely the curvatures,

$$R^{g_{\text{new}}}\left(\tilde{E}_{1},\tilde{E}_{i},\tilde{E}_{i},\tilde{E}_{1}\right)$$

that we re-distribute.

Proposition (continued)

$$R^{g_{\text{new}}}\left(\tilde{E}_{1},\tilde{E}_{i},\tilde{E}_{i},\tilde{E}_{1}\right)=R^{g_{\text{old}}}\left(E_{1},E_{i},E_{i},E_{1}\right)-\left(\left(\phi^{i}\right)^{\prime\prime}\right)+O\left(C^{1}\right)$$

• When applied to the Gromoll-Meyer sphere it is precisely the curvatures,

$$R^{g_{\mathrm{new}}}\left(ilde{E}_{1}, ilde{E}_{i}, ilde{E}_{i}, ilde{E}_{1}
ight)$$

that we re-distribute.

• The functions ϕ^i are either 1, or all the same function, φ , that is concave down (with big second derivative) on the small set T_0 , and concave up with small second derivative on the complement of T_0 .

• Short term Cheeger Deformations—within the realm of nonnegative curvature

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
 - Although the integral is positive this positivity is to a higher order than the metric deformation.

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
 - Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations—

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
 - Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations—
 - Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
 - Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations—
 - Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian
 - Compress all of the curvature of the the old zero planes (wrt to $g_{\rm s})$ into a small neighborhood, T_0

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
 - Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations—
 - Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian
 - Compress all of the curvature of the the old zero planes (wrt to $g_{\rm s})$ into a small neighborhood, T_0
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
 - Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations—
 - Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian
 - Compress all of the curvature of the the old zero planes (wrt to g_s) into a small neighborhood, T_0
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,
 - Rigidity of tori allows us to preserve nonnegative curvature

- Short term Cheeger Deformations—within the realm of nonnegative curvature
 - all previously known principles
- Scaling the fibers to integrally positive curvature (and leaving nonnegative curvature)
 - Although the integral is positive this positivity is to a higher order than the metric deformation.
- Long term Cheeger Deformations—
 - Simiplfy the problem of dealing with a neighborhood of the old zero planes in the Grassmannian
 - Compress all of the curvature of the the old zero planes (wrt to $g_{\rm s})$ into a small neighborhood, T_0
- Exploiting rigidity of totally geodesic flat tori, to redistribute curvatures,
 - Rigidity of tori allows us to preserve nonnegative curvature
 - The smallness of T₀ allows us to make certain curvatures much larger on T₀, while not changing curvatures much off of T₀ < ≥ > < ≥ > < ≥ > <

June 4, 2009

24 / 25

• Partial conformal change evens out the curvature of the old zero planes,

- Partial conformal change evens out the curvature of the old zero planes,
 - Rigidity of totally geodesic tori also explains why the Partial conformal change behaves much like a conformal change,

- Partial conformal change evens out the curvature of the old zero planes,
 - Rigidity of totally geodesic tori also explains why the Partial conformal change behaves much like a conformal change,
 - Although this rigidity is not as prounced as with the redistribution.