---Kategorientheorie---

Übungsblatt 2

Abgabe bis Fr, 25.4. 12:00 in BK 28, 29

Aufgabe 1. Ringe stetiger Funktionen.

Konstruieren Sie einen Funktor $C(-,\mathbb{R}): \mathsf{Top}^{\mathsf{op}} \to \mathsf{CRng}$, der einen topologischen Raum X auf den kommutativen Ring $C(X,\mathbb{R})$ der reellwertigen stetigen Funktionen auf X abbildet, und einer stetigen Abbildung $f: X \to Y$ einen geeignet definierten Ringhomomorphismus $f^*: C(Y,\mathbb{R}) \to C(X,\mathbb{R})$ zuordnet. (4P)

Aufgabe 2. Berechnung des Tensorproduktes.

Zeigen Sie: Ist R ein kommutativer Ring und $I \subseteq \mathbb{Z}[X_1, \ldots, X_n]$ ein Ideal, so ist $\mathbb{Z}[X_1, \ldots, X_n]/I \otimes R \cong R[X_1, \ldots, X_n]/(I)$ in CRng. Besprechen Sie damit die Beispiele $\mathbb{Z}[i] \otimes \mathbb{Q} \cong \mathbb{Q}(i)$ sowie $\mathbb{Z}[i] \otimes \mathbb{C} \cong \mathbb{C} \times \mathbb{C}$. (6P)

Aufgabe 3. Gruppenwirkungen mal anders.

Es sei G eine Gruppe, aufgefasst als Kategorie mit einem Objekt. Es sei \mathcal{C} eine beliebige Kategorie. Beschreiben Sie Funktoren $G \to \mathcal{C}$. Gehen Sie insbesondere auf den Fall $\mathcal{C} = \mathsf{Vect}_K$ (Vektorräume über K) ein. (4P)

Aufgabe 4. Das Zentrum ist nicht funktoriell.

Das Zentrum Z(G) einer Gruppe G ist die Untergruppe der Elemente, die mit allen Elementen von G kommutieren. Zeigen Sie, dass es keinen Funktor $\mathsf{Grp} \to \mathsf{Grp}$ gibt, welcher einer Gruppe G ihr Zentrum Z(G) zuordnet (d.h. es gibt keine Möglichkeit, die Morphismen funktoriell abzubilden). Wie könnte man jedoch die Kategorie Grp abändern, damit das Zentrum ein Funktor wird?

Zusatzaufgabe 5*. Endliche topologische Räume.

Eine prägeordnete Menge (X, \leq) besteht aus einer Menge X mit einer reflexiven und transitiven Relation \leq . Die Morphismen $(X, \leq) \to (Y, \leq)$ sind Abbildungen $f: X \to Y$ mit $x \leq x' \Rightarrow f(x) \leq f(x')$. Finden Sie einen Isomorphismus (d.h. zwei zueinander inverse Funktoren) zwischen der Kategorie der endlichen prägeordneten Mengen und der Kategorie der endlichen topologischen Räume. (5P)