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Topology WS 2013/14 (Weiss)

9.3. Technical remarks concerning the geometric realization

Let Y be a semi-simplicial set. We reformulate the definition of the geometric
realization |Y| once again.

From the semi-simplicial set Y , we make a category CY as follows. An
object is a pair (n, z) where n is a nonnegative integer and z ∈ Yn . A mor-
phism from (m,y) to (n, z) is, by definition, an order-preserving injective
map g : {0, 1, 2, . . . ,m} to {0, 1, 2, . . . , n} which has the property g∗(z) = y
(where g∗ : Yn → Ym is the face operator determined by g).
We define a covariant functor FY from CY to the category of topological
spaces as follows. The definition of FY on objects is simply

FY(n, z) = ∆
n

where ∆n is the standard n-simplex. (Recall that this is the space of all
functions u from {0, 1, . . . , n} to [0, 1] which satisfy

∑
j u(j) = 1 , viewed as

a subspace of the real vector space of all functions from {), 1, . . . , n} to R .)
If we have a morphism from (m,y) to (n, z) given by an an order-preserving
injective map g : {0, 1, 2, . . . ,m} to {0, 1, 2, . . . , n} , then we define

FY(f) = g∗ : ∆
m → ∆n,

that is to say, FY(f)(u1, . . . , um) = (v1, . . . , vn) where vi = uj if i = g(j)
and vi = 0 if i is not of the form g(j) . Note that I have written ui instead
of u(i) etc. ; strictly speaking u(i) is correct because we said that u is a
function from {0, 1, . . . ,m} to [0, 1] .

Now the definition of |Y| can be recast as follows:

|Y| =

∐
(n,z)

FY(n, z)

/ ∼

where ∼ is the equivalence relation generated by

FY(m,y) 3 (u1, . . . , um) ∼ FY(g)(u1, . . . , um) ∈ FY(n, z)
whenever g is a morphism from (m,y) to (n, z) ; in other words g is an
order-preserving injective map from {0, 1, 2, . . . ,m} to {0, 1, 2, . . . , n} which
has g∗(z) = y . It may look as if the formula defines |Y| only as a set, but
we want to view it as a formula defining a topology on |Y| as well, namely,
the quotient topology. Therefore, a subset of |Y| is considered to be open
(definition) if and only if its preimage in

∐
(n,z) FY(n, z) is open.
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Warning: do not read these 2 1
2

lines unless you are somewhat familiar with
category theory. You will notice that |Y| has been defined to be the direct
limit (also called colimit) of the functor FY .

Example 9.1. Let (V, S) be a vertex scheme, choose a total ordering on V ,
and let Y be the associated semi-simplicial set, as in lecture notes week 11.
We are going to show that the geometric realization |Y| is homeomorphic to
the simplicial complex |V |S .
An element of Yn is an order-preserving injective map from {0, 1, . . . , n} to
V . This is determined by its image T , a distinguished subset of V (where
distinguished means that T ∈ S). So we can pretend that Yn is simply
the set of all distinguished subsets of V that have exactly n + 1 elements.
Furthermore, if T ′ ∈ Ym and T ∈ Yn , then there exists at most one morphism
from T ′ to T in the category CY . It exists if and only if T ′ ⊂ T . Therefore we
may say that CY is the category whose objects are the distinguished subsets
T, T ′, . . . of V , with exactly one morphism from T ′ to T if T ′ ⊂ T , and
no morphism from T ′ to T otherwise. In this description, the functor FY is
given on objects by

FY(T) = ∆(T)

where ∆(T) replaces ∆n (assuming that T has exactly n+ 1 elements) and
means: the space of functions u from T to [0, 1] that satisfy

∑
j∈T u(j) = 1 .

For T ′ ⊂ T we have exactly one morphism from T ′ to T , and the induced
map FY(T

′) = ∆(T ′) → ∆(T) = FY(T) is given by u 7→ v where v(t) = u(t)
if t ∈ S ′ and v(t) = 0 if t ∈ Sr S ′ . Therefore

|Y| =
(∐
T∈S

∆(T)
)/

∼

where the equivalence relation is generated by u ∈ ∆(T ′) ∼ v ∈ ∆(T) if
T ′ ⊂ T and v(t) = u(t) for t ∈ T ′ , v(t) = 0 for t ∈ T r T ′ .
There is a map of sets ∐

T∈S

∆(T) −→ |V |S

which is equal to the inclusion ∆(T)→ |V |S on each ∆(T) . That map clearly
determines a bijective map

|Y| =
(∐
T∈S

∆(T)
)/

∼ −→ |V |S .

By our definition of the topology on |V |S , a subset of |V |S is open if and only
if its preimage in

∐
T∈S∆(S) is open; and by our definition of the topology in

|Y| , that happens if and only if its preimage in |Y| is open. So that bijective
map from |Y| to |V |S is a homeomorphism.
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Lemma 9.2. Let Y be any semi-simplicial set. For every element a of |Y|
there exist unique m ≥ 0 and (z,w) ∈ Ym × ∆m such that a = cz(w) and
w is in the “interior” of ∆m , that is, the coordinates w0, w1, . . . , wm are all
strictly positive.
Furthermore, if a = cx(u) for some (x, u) ∈ Yk × ∆k , then there is a
unique order-preserving injective f : {0, 1, . . . ,m} → {0, 1, 2, . . . , k} such that
f∗(x) = z and f∗(w) = u, for the above-mentioned (z,w) ∈ Ym × ∆m with
w0, w1, . . . , wm > 0.

Proof. Let us call such a pair (z,w) with a = cz(w) a reduced presentation of
a ; the condition is that all coordinates of w must be positive. More generally
we say that (x, u) is a presentation of a if (x, u) ∈ Yk × ∆k for some k ≥ 0
and a = cx(u) . First we show that a admits a reduced presentation and
then we show uniqueness.
We know that a = cx(u) for some (x, u) ∈ Yk×∆k . Some of the coordinates
u0, . . . , uk can be zero (not all, since their sum is 1). Suppose that m+ 1 of
them are nonzero. Let f : {0, 1, . . . ,m} → {0, 1, . . . , k} be the unique order-
preserving map such that uf(j) 6= 0 for j = 0, 1, 2, . . . ,m . Then a = cz(w)
where z = f∗(x) and w ∈ ∆m with coordinates wj = uf(j) . (Note that
f∗(w) = u .) So (z,w) is a reduced presentation of a .
We have also shown that any presentation (x, u) of a (whether reduced or
not) determines a reduced presentation. Namely, there exist unique m , f
and w ∈ ∆m such that v = f∗(w) for some w ∈ ∆m with all wi > 0 ; then
(f∗(x), w) is a reduced presentation of a .
It remains to show that if a has two presentations, say (x, u) ∈ Yk×∆k and
(y, v) ∈ Y` × ∆` , then they determine the same reduced representation of
a . If indeed a = cx(u) = cy(v) then c̄x(u) and c̄y(v) are equivalent, and
so (recalling how that equivalence relation was defined) we find that there is
no loss of generality in assuming that x = g∗(y) and v = g∗(u) for some
order-preserving injective g : {0, 1, . . . , k}→ {0, 1, . . . , `} . Now determine the
unique m and order-preserving injective f : {0, 1, . . . ,m}→ {0, 1, . . . , k} such
that u = f∗(w) where w ∈ ∆m and all wi > 0 . Then we also have v =
g∗(u) = g∗(f∗(w)) = (g◦ f)∗(w) and it follows that we get the same reduced
presentation, (f∗(x), w) = ((g ◦ f)∗(y), w) , in both cases. �

Corollary 9.3. The space |Y| is a Hausdorff space.

Proof. For a ∈ Y with reduced presentation (z,w) ∈ Ym × ∆m and ε > 0 ,
define N(a, ε) ⊂ |Y| as follows. It consists of all b ∈ |Y| with reduced
presentation (x, u) ∈ Yk × ∆k such that there exists an order-preserving
injective f : {0, 1, . . . ,m} → {0, 1, . . . , k} for which f∗(x) = z and f∗(w) is
ε-close to u , that is, the maximum of the numbers |wf(j) − uj| is < ε . From
the definitions, N(a, ε) is open in |Y| ; so it is a neighborhood of a .
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Let a ′ ∈ |Y| be another element, with reduced presentation (y, v) ∈ Yn×∆n .
We assume a 6= a ′ and proceed to show that N(a ′, ε) ∩N(a, ε) = ∅ if ε is
small enough. More precisely, we take ε to be less than half the minimum of
the coordinates of v and w ; and if it should happen that m = n and y = z ,
then we know v,w ∈ ∆m but v 6= w , and we take ε to be less than half
the maximum of the |vj −wj| as well. Now suppose for a contradiction that
b ∈ N(a, ε)∩N(a ′, ε) and that b has reduced presentation (x, u) ∈ Yk×∆k .
Then there exist order-preserving injective f : {0, 1, . . . ,m} → {0, 1, . . . , k}
and g : {0, 1, . . . , n} → {0, 1, . . . , k} such that f∗(x) = z , g∗(x) = y and
f∗(w), g∗(v) are both ε-close to u in ∆k . Then f∗(w) is 2ε-close to g∗(v)
in ∆k , and now we can deduce that m = n and f = g . (Otherwise there is
some j ∈ {0, 1, . . . , k} which is in the image of g but not in the image of f ,
or vice versa, and then the j-th coordinate of g∗(w) differs by more than 2ε
from the j-th coordinate of f∗(v) .) Therefore z = f∗(x) = g∗(x) = y and so
a has reduced presentation (z,w) while a ′ has reduced presentation (z, v) ,
with v,w ∈ ∆m and the same z ∈ Ym . It follows that v and w are already
2ε-close in ∆m . This contradicts our choice of ε . �

Remark 9.4. In the proof above, and in a similar proof in the previous
section, arguments involving distances make an appearance, suggesting that
we have a metrizable situation. To explain what is going on let me return to
the situation of a vertex scheme (V, S) with simplicial complex |V |S , which is
easier to understand. A metric on the set |V |S can be introduced for example
by d(f, g) = (

∑
v(f(v) − g(v))2)1/2 or d(f, g) =

∑
v |f(v) − g(v)| . Here

we insist/remember that elements of |V |S are functions f, g, . . . : V → [0, 1]
subject to some conditions. The sums in the formulas for d(f, g) are finite,
even though V might not be a finite set. It is not hard to show that the
two formulas for d(f, g) , although different as metrics, determine the same
topology. However the topology on |V |S that we have previously decreed
(let me call it the weak topology) is not in all cases the same as that metric
topology. Every subset of |V |S which is open in the metric topology is also
open in the weak topology. But the weak topology can have more open sets.
(We reasoned that the weak topology is Hausdorff because it has all the open
sets that the metric topology has, and perhaps a few more, and the metric
topology is certainly Hausdorff.) In the case where V is finite, weak topology
and metric topology on |V |S coincide. (Exercise.)

9.4. A more economical definition of semi-simplicial set

Every injective order-preserving map from [k] = {0, 1, . . . , k} to [`] = {0, 1, . . . , `}
is a composition of `− k injective order preserving maps

[m− 1] −→ [m]
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where k < m ≤ ` . It is easy to list the injective order-preserving maps from
[m− 1] to [m] ; there is one such map fi for every i ∈ [m] , characterized by
the property that the image of fi is

[m]r {i} .

(This fi really depends on two parameters, m and i . Perhaps we ought to
write fm,i , but it is often practical to suppress the m subscript.) We have
the important relations

(9.5) fifj = fjfi−1 if j < i

(You are allowed to read this from left to right or from right to left! It
is therefore a formal consequence that fifj = fj+1fi when j ≥ i .) These
generators and relations suffice to describe the category C (lecture notes
week 11) whose objects are the sets [k] = {0, 1, . . . , k} for k ≥ 0 and whose
morphisms are the order-preserving injective maps between those sets. In
other words, the structure of C as a category is pinned down if we say that
it has objects [k] for k ≥ 0 and that, for every k > 0 and i ∈ {0, 1, . . . , k} ,
there are certain morphisms fi : [k−1]→ [k] which, under composition when
it is applicable, satisfy the relations (9.5). Prove it!
Consequently a semi-simplicial set Y , which is a contravariant functor from
C to spaces, can also be described as a sequence of sets Y0, Y1, Y2, . . . and
maps

di : Yk → Yk−1

which are subject to the relations

(9.6) djdi = di−1dj if j < i

Here di : Yk → Yk−1 denotes the map induced by fi : [k− 1]→ [k] , whenever
0 ≤ i ≤ k . Because of contravariance, we have had to reverse the order of
composition in translating relations (9.5) to obtain relations (9.6).

10.1. Chain complexes and their homology groups

Definition 10.7. A chain complex C consists a sequence of abelian groups
C0, C1, C2, . . . and homomorphisms ∂n : Cn → Cn−1 for n > 0 such that

∂n ◦ ∂n−1 = 0
for all n > 1 . We say that Cn is the n-th chain group of the chain complex
C . The homomorphisms ∂n are called differentials or (sometimes) boundary
operators.

Think of a chain complex as a diagram

C0 C1
∂1oo C2

∂2oo C3
∂3oo C4

∂4oo · · ·∂5oo
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where the composition of any two consecutive arrows is zero. It is very
common to drop the subscript n in ∂n . So a more standard picture of a
chain complex looks like

C0 C1
∂oo C2

∂oo C3
∂oo C4

∂oo · · · ,∂oo

and we just write ∂∂ = 0 instead of writing ∂n ◦ ∂n−1 = 0 for all n > 1 .

Unsurprisingly, chain complexes are the objects of a category. The mor-
phisms in that category are called chain maps. A chain map from a chain
complex C to a chain complex D is a sequence of homomorphisms

fn : Cn → Dn

(for n ≥ 0) making the diagram

C0

f0
��

C1
∂oo

f1
��

C2
∂oo

f2
��

C3
∂oo

f3
��

C4
∂oo

f4
��

· · ·∂oo

D0 D1
∂oo D2

∂oo D3
∂oo D4

∂oo · · ·∂oo

(10.8)

commutative; in other words ∂ ◦ fn = fn−1 ◦ ∂ for all n > 0 . The preferred
shorthand notation for such a morphism is f : C→ D .

Remark 10.9. Some would say that what has been defined above is a chain
complex graded over the non-negative integers. There are also chain com-
plexes graded over the integers, which look like

· · · C−2

∂−2oo C−1

∂−1oo C0
∂0oo C1

∂1oo C2
∂2oo C3

∂3oo C4
∂4oo · · ·∂5oo

If a chain complex C comes along being graded over the non-negative inte-
gers, then it is often a good idea to view it as a chain complex graded over
the integers by setting Cn = 0 for n < 0 .

Definition 10.10. For n ≥ 0 , the n-th homology group Hn(C) of a chain
complex C is the (group-theoretic) quotient

Hn(C) =
ker[∂n : Cn → Cn−1]

im[∂n+1 : Cn+1 → Cn]
.

Note that the kernel of ∂n and the image of ∂n+1 are both subgroups of Cn ,
and the kernel of ∂n contains the image of ∂n+1 .
When n = 0 , we need to make sense of ker[∂0 : C0 → C−1] . In agreement with
the convention that chain complexes graded over the non-negative integers
can be viewed as chain complexes graded over the integers, we take the view
that this is all of C0 and so

H0(C) =
C0

im[∂1 : C1 → C0]
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Remark 10.11. For fixed n the rule C 7→ Hn(C) is a (covariant) functor
from the category of chain complexes to the category of abelian groups. Let
f : C → D be a chain map, consisting of homomorphisms fn : Cn → Dn for
n ≥ 0 . Then fn takes ker[∂n : Cn → Cn−1] to ker[∂n : Dn → Dn−1] , and
takes im[∂n+1 : Cn+1 → Cn] to im[∂n+1 : Cn+1 → Cn] , and so determines a
homomorphism

Hn(C)→ Hn(D) .

10.2. The combinatorial chain complex of a semi-simplicial set

A semi-simplicial set Y determines a chain complex C(Y) , the combinatorial
chain complex of Y , in the following way.
The chain group C(Y)n is defined to be the direct sum of copies of Z , one
copy for each z ∈ Yn . We can write

C(Y)n =
⊕
z∈Yn

Z .

(It is also customary to say that C(Y)n is the free abelian group generated
by the set Yn .) If we agree to denote the element “1” in the summand
corresponding to z ∈ Yn by 〈z〉 , then we can describe elements of C(Y)n as
linear combinations ∑

z∈Yn

az · 〈z〉

where the coefficients az are integers (and the sum is understood to be finite,
that is, az 6= 0 for only finitely many z ∈ Yn .) The differential or boundary
operator

∂n : C(Y)n −→ C(Y)n−1
is defined by

〈z〉 7→ n∑
j=0

(−1)j〈djz〉 ∈ C(Y)n−1

where dj : Yn → Yn−1 is the face operator discussed previously, corresponding
to the unique monotone injective map from {0, 1, . . . , n − 1} to {0, 1, . . . , n}
which has image {0, 1, . . . , n}r {j} .

Now we need to show that ∂n−1∂n = 0 for all n > 1 . This is a straight-
forward calculation based on the relations (9.6).

∂n−1(∂n(〈z〉)) = · · · =
n−1∑
j=0

n∑
i=0

(−1)i+j〈djdiz〉

The double sum can be split into two parts, one part comprising the sum-
mands (−1)k+`〈dkd`z〉 where k < ` and the other comprising the summands
(−1)k+`〈dkd`〉 where k ≥ ` . Each summand (−1)i+j〈djdiz〉 in the first part
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part cancels exactly one in the other part, (−1)j+i−1〈di−1djz〉 , where we are
using (9.6).

Example 10.12. The projective plane RP2 can be described as |Y| for a
semi-simplicial set Y . To construct this we start with a simplicial complex
or vertex scheme (V, S) describing the upper hemisphere of S2 . Picture:

Therefore V = {1, 2, 3, 4} and

S =
{

{1, 3, 4}, {2, 3, 4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1}, {2}, {3}, {4}
}
.

The vertex set V is already ordered and we can immediately pass to a semi-
simplicial set X where

X2 = {(134), (234)}
X1 = {(13), (14), (23), (24), (34)}
X0 = {(1), (2), (3), (4)} .

(To clarify the improvised notation: X2 has two elements, X1 has five ele-
ments and X0 has four elements.) For n > 2 we set Xn = ∅ . The operators
di are defined by omitting the digit in position i (but we label the positions
with integers from 0 upwards), so that for example

d0(134) = (34), d1(134) = (14), d2(134) = (13), d0(13) = (3).

By a certain proposition we have |X| = |V |S , which we think of as the up-
per hemisphere of S2 , but now we want to identify opposite points on the
boundary (=equator). In the semi-simplicial set code, this means that we
enforce

(14) ∼ (23), (13) ∼ (24), (1) ∼ (2), (3) ∼ (4).

(NB: it seems to me that I had to think fairly hard to get the numbering of
vertices right, so that by making these identifications we do in fact identify
opposite points on the equator when we pass to geometric realizations.) In
this way we get a new semi-simplicial set Y where

Y2 = {(134), (234)}
Y1 = {(13) = (24), (14) = (23), (34)}
Y0 = {(1) = (2), (3) = (4)} .
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(To clarify the very improvised notation: Y2 has two elements, Y1 has three
elements and Y0 has two elements.) For n > 2 we still have Yn ≥ 0 . The
operators di are defined by omitting the digit in position i (but we label
the positions with integers from 0 upwards). Now we are ready to follow
instructions above to make the chain complex C(Y) :

Z2 ← Z3 ← Z2 ← 0← 0← · · ·
The boundary operators can be described as matrices with integer entries: a
2× 3 matrix for ∂1 and a 3× 2 matrix for ∂2 . (For the matrix descriptions
we need and we have ordered bases: so the columns for example in the 2× 3
matrix are labeled with the three elements of Y1 , in the order in which they
are listed above.) The differential ∂1 is given by

(13) 7→ (3) − (1), (14) 7→ (4) − (1) = (3) − (1), (34) 7→ (4) − (3) = 0

which in matrix form is [
−1 −1 0
1 1 0

]
The differential ∂2 is given by

(134) 7→ (34)−(14)+(13), (234) 7→ (34)−(24)+(23) = (34)−(13)+(14)

which in matrix form is  1 −1
−1 1
1 1


Note that the product of the two matrices (in the correct order) is zero,
confirming that ∂1∂2 = 0 , as it should be. It is easy to see using the matrix
description that the image of ∂1 consists of all elements in Z2 which have
coordinate sum equal to 0 , and it follows immediately that

H0(C(Y)) = coker[∂1] ∼= Z .

Determining H1(C(Y)) is not straightforward! I note that the kernel of ∂1
consists of all elements of Z3 which are perpendicular to the row vector[
1 1 0

]
, and so ker[∂1] has a complement in Z3 , the subgroup A of Z3

spanned by the element 10
0

 .
Therefore

H1(C(Y) =
ker[∂1]

im[∂2]
∼=

Z3/A
im[p ◦ ∂2]
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where p : Z3 → Z3/A is the projection. We can identify Z3/A with Z2 in
the obvious manner. Then we can describe p ◦ ∂2 as a homomorphism from
Z2 to Z2 by a square matrix [

−1 1
1 1

]
obtained by deleting the top row in the matrix description of ∂2 . This
2× 2 matrix has determinant −2 and so the cokernel of the homomorphism
Z2 → Z2 which it describes has order | − 2| = 2 . It must be cyclic of order
2. Similar reasoning shows that ∂2 is injective. Indeed p ◦ ∂2 is injective,
because you can use Kramer’s rule and the nonzero determinant to recover
elements in the source from their values in the target. Therefore

H1(C(Y)) ∼= Z/2, H2(C(Y)) = 0

and clearly Hn(C(Y)) = 0 for all n > 2 as well.
Let’s not fail to observe that the groups Hn(C(Y)) coincide with the groups
Hn(RP2) = Hn(|Y|) , for every n ≥ 0 . This is not an accident, as we shall see
in the next section.


