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Lecture Notes, week 1
Topology WS 2013/14 (Weiss)

1.1. The homotopy relation

Let X and Y be topological spaces. (If you are not sufficiently familiar with
topological spaces, you should assume that X and Y are metric spaces.) Let
f and g be continuous maps from X to Y . Let [0, 1] be the unit interval
with the standard topology, a subspace of R .

Definition 1.1. A homotopy from f to g is a continuous map

h : X× [0, 1]→ Y

such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ X . If such a
homotopy exists, we say that f and g are homotopic, and write f ' g . We
also sometimes write h : f ' g to indicate that h is a homotopy from the
map f to the map g .

Remark 1.2. If you made the assumption that X and Y are metric spaces,
then you should use the product metric on X× [0, 1] and Y × [0, 1] , so that
for example

d((x1, t1), (x2, t2)) := max{d(x1, x2), |t1 − t2| }

for x1, x2 ∈ X and t1, t2 ∈ [0, 1] . If you were happy with the assumption that
X and Y are “just” topological spaces, then you need to know the definition
of product of two topological spaces in order to make sense of X× [0, 1] and
Y × [0, 1] .

Remark 1.3. A homotopy h : X× [0, 1]→ Y from f : X→ Y to g : X→ Y
can be seen as a “family” of continuous maps

ht : X→ Y ; ht(x) = h(x, t)

such that h0 = f and h1 = g . The important thing is that ht depends
continuously on t ∈ [0, 1] .

Example 1.4. Let f : Rn → Rn be the identity map. Let g : Rn → Rn
be the map such that g(x) = 0 ∈ Rn for all x ∈ Rn . Then f and g are
homotopic. The map h : Rn × [0, 1] defined by h(x, t) = tx is a homotopy
from f to g .

Example 1.5. Let f : S1 → S1 be the identity map, so that f(z) = z .
Let g : S1 → S1 be the antipodal map, g(z) = −z . Then f and g are
homotopic. Using complex number notation, we can define a homotopy by
h(z, t) = eπitz .
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Example 1.6. Let f : S2 → S2 be the identity map, so that f(z) = z . Let
g : S2 → S2 be the antipodal map, g(z) = −z . Then f and g are not
homotopic. We will prove this later in the course.

Example 1.7. Let f : S1 → S1 be the identity map, so that f(z) = z . Let
g : S1 → S1 be the constant map with value 1 . Then f and g are not
homotopic. We will prove this quite soon.

Proposition 1.8. “Homotopic” is an equivalence relation on the set of con-
tinuous maps from X to Y .

Proof. Reflexive: For every continuous map f : X → Y define the constant
homotopy h : X× [0, 1]→ Y by h(x, t) = f(x) .
Symmetric: Given a homotopy h : X × [0, 1] → Y from a map f : X → Y
to a map g : X → Y , define the reverse homotopy h̄ : X × [0, 1] → Y by
h̄(x, t) = h(x, 1− t) . Then h̄ is a homotopy from g to f .
Transitive: Given continuous maps e, f, g : X→ Y , a homotopy h from e to
f and a homotopy k from f to g , define the concatenation homotopy k ∗ h
as follows:

(x, t) 7→ {h(x, 2t) if 0 6 t 6 1/2

k(x, 2t− 1) if 1/2 6 t 6 1 .

Then k ∗ h is a homotopy from e to g . �

Definition 1.9. The equivalence classes of the above relation “homotopic”
are called homotopy classes. The homotopy class of a map f : X→ Y is often
denoted by [f] . The set of homotopy classes of maps from X to Y is often
denoted by [X, Y] .

Proposition 1.10. Let X, Y and Z be topological spaces. Let f : X → Y
and g : X → Y and u : Y → Z and v : Y → Z be continuous maps. If f is
homotopic to g and u is homotopic to v, then u ◦ f : X → Z is homotopic
to v ◦ g : X→ Z.

Proof. Let h : X × [0, 1] → Y be a homotopy from f to g and let w :
Y × [0, 1]→ Z be a homotopy from u to v . Then u ◦ h is a homotopy from
u ◦ f to u ◦ g and the map X× [0, 1]→ Z given by (x, t) 7→ w(g(x), t) is a
homotopy from u ◦ g to v ◦ g . Because the homotopy relation is transitive,
it follows that u ◦ f ' v ◦ g . �

Definition 1.11. Let X and Y be topological spaces. A (continuous) map
f : X → Y is a homotopy equivalence if there exists a map g : Y → X such
that g ◦ f ' idX and f ◦ g ' idY .
We say that X is homotopy equivalent to Y if there exists a map f : X → Y
which is a homotopy equivalence.
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Definition 1.12. If a topological space X is homotopy equivalent to a point,
then we say that X is contractible. This amounts to saying that the identity
map X→ X is homotopic to a constant map from X to X .

Example 1.13. Rm is contractible, for any m ≥ 0 .

Example 1.14. Rm r {0} is homotopy equivalent to Sm−1 .

Example 1.15. The general linear group of Rm is homotopy equivalent to
the orthogonal group O(m) . The Gram-Schmidt orthonormalisation process
leads to an easy proof of that.

1.2. Homotopy classes of maps from the circle to itself

Let p : R→ S1 be the (continuous) map given in complex notation by p(t) =
exp(2πit) and in real notation by p(t) = (cos(2πt), sin(2πt)) . In the first
formula we think of S1 as a subset of C and in the second formula we think
of S1 as a subset of R2 .
Note that p is surjective and p(t + 1) = p(t) for all t ∈ R . We are going
to use p to understand the homotopy classification of continuous maps from
S1 to S1 . The main lemma is as follows.

Lemma 1.16. Let γ : [0, 1]→ S1 be a continuous map and let a ∈ R be such
that p(a) = γ(0). Then there exists a unique continuous map γ̃ : [0, 1]→ R
such that γ = p ◦ γ̃ and γ̃(0) = a.

Proof. The map γ is uniformly continuous since [0, 1] is compact. It follows
that there exists a positive integer n such that d(γ(x), γ(y)) < 1/100 when-
ever |x − y| ≤ 1/n . Here d denotes the standard (euclidean) metric on S1

as a subset of R2 . We choose such an n and write

[0, 1] =

n⋃
k=1

[tk−1, tk]

where tk = k/n . We try to define γ̃ on [0, tk] by induction on k . For the
induction beginning we need to define γ̃ on [0, t1] where t1 = 1/n . Let
U ⊂ S1 be the open ball of radius 1/100 with center γ(0) . (Note that open
ball is a metric space concept.) Then γ([0, t1]) ⊂ U . Therefore γ̃([0, t1])
must be contained in p−1(U) . Now p−1(U) ⊂ R is a disjoint union of open
intervals which are mapped homeomorphically to U under p . One of these,
call it Va , contains a , since p(a) = γ(0) ∈ U . The others are translates of
the form ` + Va where ` ∈ Z . Since [0, t1] is connected, its image under γ̃
will also be connected, whatever γ̃ is, and so it must be contained entirely
in exactly one of the intervals ` + Va . Since we want γ̃(0) = a , we must
have ` = 0 , that is, image of γ̃ contained in Va . Since the map p restricts
to a homeomorphism from Va to U , we must have γ̃ = qγ where q is the
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inverse of the homeomorphism from Va to U . This formula determines the
map γ̃ on [0, t1] .
The induction steps are like the induction beginning. In the next step we
define γ̃ on [t1, t2] , using a “new” a which is γ̃(t1) and a “new” U which
is the open ball of radius 1/100 with center γ(t1) . �

Now let g : S1 → S1 be any continuous map. We want to associate with it an
integer, the degree of g . Choose a ∈ R such that p(a) = g(1) . Let γ = g◦p
on [0, 1] ; this is a map from [0, 1] to S1 . Construct γ̃ as in the lemma. We
have pγ̃(1) = γ(1) = γ(0) = pγ̃(0) , which implies γ̃(1) = γ̃(0) + ` for some
` ∈ Z .

Definition 1.17. This ` is the degree of g , denoted deg(g) .

It looks as if this might depend on our choice of a with p(a) = g(1) . But
if we make another choice then we only replace a by m+a for some m ∈ Z ,
and we only replace γ̃ by m+ γ̃ . Therefore our calculation of deg(g) leads
to the same result.

Remark. Suppose that g : S1 → S1 is a continuous map which is close
to the constant map z 7→ 1 ∈ S1 (complex notation). To be more precise,
assume d(g(z), 1) < 1/1000 for all z ∈ S1 . Then deg(g) = 0 .
The verification is mechanical. Define γ : [0, 1]→ S1 by γ(t) = g(p(t)) . Let
V ⊂ R be the open interval from −1/100 to 1/100 . The map p restricts to
a homeomorphism from V to p(V) ⊂ S1 , with inverse q : p(V) → V . Put
γ̃ = q ◦ γ , which makes sense because the image of γ is contained in p(V)
by our assumption. Then p ◦ γ̃ = γ as required. Now the image of γ̃ is
contained in V and therefore

| deg(g)| = |γ̃(1) − γ̃(0)| ≤ 2/100
and so deg(g) = 0 .

Remark. Suppose that f, g : S1 → S1 are continuous maps. Let w : S1 → S1

be defined by w(z) = f(z) · g(z) (using the multiplication in S1 ⊂ C). Then
deg(w) = deg(f) + deg(g) .
The verification is also mechanical. Define ϕ,γ,ω : [0, 1] → S1 by ϕ(t) =
f(p(t)) , γ(t) = g(p(t)) and ω(t) = w(p(t)) . Construct ϕ̃ : [0, 1] → R and
γ̃ : [0, 1]→ R as in lemma 1.16. Put ω̃ := ϕ̃+ γ̃ . Then p ◦ ω̃ = ω , so

deg(w) = ω̃(1) − ω̃(0) = · · · = deg(f) + deg(g).

Lemma 1.18. If f, g : S1 → S1 are continuous maps which are homotopic,
f ∼ g, then they have the same degree.

Proof. Let h : S1 × [0, 1] → S1 be a homotopy from f to g . As usual let
ht : S

1 → S1 be the map defined by ht(z) = h(z, t) , for fixed t ∈ [0, 1] . For
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fixed t ∈ [0, 1] we can find δ > 0 such that d(ht(z), hs(z)) < 1/1000 for all
z ∈ S1 and all s which satisfy |s− t| < δ . Therefore hs(z) = gs(z) ·ht(z) for
such s , where gs : S

1 → S1 is a map which satisfies d(gs(z), 1) < 1/1000 for
all z ∈ S1 . Therefore deg(gs) = 0 by the remarks above and so deg(hs) =
deg(gs) + deg(ht) = deg(ht) .
We have now shown that the the map [0, 1] → Z given by t 7→ deg(ht) is
locally constant (equivalently, continuous as a map of metric spaces) and so
it is constant (since [0, 1] is connected). In particular deg(f) = deg(h0) =
deg(h1) = deg(g) . �

Lemma 1.19. If f, g : S1 → S1 are continuous maps which have the same
degree, then they are homotopic.

Proof. Certainly f is homotopic to a map which takes 1 to 1 and g is
homotopic to a map which takes 1 to 1 (using complex notation, 1 ∈ S1 ⊂
C). Therefore we can assume without loss of generality that f(1) = 1 and
g(1) = 1 .
Let ϕ : [0, 1] → S1 and γ : [0, 1] → S1 be defined by ϕ(t) = f(p(t)) and
γ(t) = g(p(t)) . Construct ϕ̃ and γ̃ as in the lemma, using a = 0 in both
cases, so that ϕ̃(0) = 0 = γ̃(0) . Then

ϕ̃(1) = deg(f) = deg(g) = γ̃(1).

Note that f can be recovered from ϕ̃ as follows. For z ∈ S1 choose t ∈ [0, 1]
such that p(t) = z . Then f(z) = f(p(t)) = ϕ(t) = pϕ̃(t) . If z = 1 ∈ S1 ,
we can choose t = 0 or t = 1 , but this ambiguity does not matter since
pϕ̃(1) = pϕ̃(0) . Similarly, g can be recovered from γ̃ . Therefore we can
show that f is homotopic to g by showing that ϕ̃ is homotopic to γ̃ with
endpoints fixed. In other words we need a continuous

H : [0, 1]× [0, 1]→ R
where H(s, 0) = ϕ̃(s) , H(s, 1) = γ̃(s) and H(0, t) = 0 for all t ∈ [0, 1] and
H(1, t) = ϕ̃(1) = γ̃(1) for all t ∈ [0, 1] . This is easy to do: let H(s, t) =
(1− t)ϕ̃(s) + tγ̃(s) . �

Summarizing, we have shown that the degree function gives us a well
defined map from [S1, S1] to Z , and moreover, that this map is injective. It
is not hard to show that this map is also surjective! Namely, for arbitrary
` ∈ Z the map f : S1 → S1 given by f(z) = z` (complex notation) has
deg(f) = ` . (Verify this.)

Corollary 1.20. The degree function is a bijection from [S1, S1] to Z. �


