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Lecture Notes, week 1
Topology WS 2013/14 (Weiss)

1.1. The homotopy relation
Let X and Y be topological spaces. (If you are not sufficiently familiar with
topological spaces, you should assume that X and Y are metric spaces.) Let
f and g be continuous maps from X to Y. Let [0,1] be the unit interval
with the standard topology, a subspace of R.

Definition 1.1. A homotopy from f to g is a continuous map
h:Xx[0,1] =Y

such that h(x,0) = f(x) and h(x,1) = g(x) for all x € X. If such a
homotopy exists, we say that f and g are homotopic, and write f >~ g. We
also sometimes write h : f ~ g to indicate that h is a homotopy from the
map f to the map g.

Remark 1.2. If you made the assumption that X and Y are metric spaces,
then you should use the product metric on X x [0,1] and Y x [0, 1], so that
for example

d((x1,t1), (x2, t2)) := max{d(x1, x2), [t1 — t2| }

for x1,%x; € X and ty,t; € [0, 1]. If you were happy with the assumption that
X and Y are “just” topological spaces, then you need to know the definition

of product of two topological spaces in order to make sense of X x [0,1] and
Y x [0,1].

Remark 1.3. A homotopy h: X x [0,1] =Y from f: X =2 Y to g: X =Y
can be seen as a “family” of continuous maps

hi: X = Y ; hi(x) = h(x,t)

such that hg = f and hy = g. The important thing is that h; depends
continuously on t € [0, 1].

Example 1.4. Let f : R® — R" be the identity map. Let g : R* — R"
be the map such that g(x) = 0 € R™ for all x € R*. Then f and g are
homotopic. The map h: R™ x [0, 1] defined by h(x,t) = tx is a homotopy
from f to g.

Example 1.5. Let f : S' — S' be the identity map, so that f(z) = z.
Let g : S' — S' be the antipodal map, g(z) = —z. Then f and g are
homotopic. Using complex number notation, we can define a homotopy by

h(z,t) = e™z.
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Example 1.6. Let f: S — S? be the identity map, so that f(z) = z. Let
g : S — S? be the antipodal map, g(z) = —z. Then f and g are not
homotopic. We will prove this later in the course.

Example 1.7. Let f:S' — S! be the identity map, so that f(z) = z. Let
g : S" — S' be the constant map with value 1. Then f and g are not
homotopic. We will prove this quite soon.

Proposition 1.8. “Homotopic” is an equivalence relation on the set of con-
tinuous maps from X to Y.

Proof. Reflexive: For every continuous map f : X — Y define the constant
homotopy h: X x [0,1] =Y by h(x,t) = f(x).

Symmetric: Given a homotopy h : X x [0,1] — Y from amap f: X — Y
to a map g : X — Y, define the reverse homotopy h : X x [0,1] = Y by
h(x,t) = h(x,1—1). Then h is a homotopy from g to f.

Transitive: Given continuous maps e,f,g: X — Y, a homotopy h from e to
f and a homotopy k from f to g, define the concatenation homotopy k x h
as follows:

(x,1) h(x,2t) ifog<tg<1/2
’ k(x,2t—1) if1/2<t<1.
Then k % h is a homotopy from e to g. OJ

Definition 1.9. The equivalence classes of the above relation “homotopic”
are called homotopy classes. The homotopy class of a map f: X — Y is often
denoted by [f]. The set of homotopy classes of maps from X to Y is often
denoted by [X,Y].

Proposition 1.10. Let X, Y and Z be topological spaces. Let f: X — Y
and g: X =Y and w:Y — Z and v:Y — Z be continuous maps. If f is
homotopic to g and w is homotopic to v, then wof: X — Z is homotopic
tovog: X — L.

Proof. Let h : X x [0,1] — Y be a homotopy from f to g and let w :
Y x [0,1] — Z be a homotopy from u to v. Then uwoh is a homotopy from
uof to wog and the map X x [0,1] — Z given by (x,t) — w(g(x),t) is a
homotopy from wo g to vo g. Because the homotopy relation is transitive,
it follows that wof ~vog. 0J

Definition 1.11. Let X and Y be topological spaces. A (continuous) map
f: X — Y is a homotopy equivalence if there exists a map g : Y — X such
that gof ~idx and fo g ~idy.
We say that X is homotopy equivalent to Y if there exists a map f: X — Y
which is a homotopy equivalence.



3

Definition 1.12. If a topological space X is homotopy equivalent to a point,
then we say that X is contractible. This amounts to saying that the identity
map X — X is homotopic to a constant map from X to X.

Example 1.13. R™ is contractible, for any m > 0.
Example 1.14. R™ ~ {0} is homotopy equivalent to S™'.

Example 1.15. The general linear group of R™ is homotopy equivalent to
the orthogonal group O(m). The Gram-Schmidt orthonormalisation process
leads to an easy proof of that.

1.2. Homotopy classes of maps from the circle to itself

Let p: R — S" be the (continuous) map given in complex notation by p(t) =
exp(2mit) and in real notation by p(t) = (cos(2mt),sin(27t)). In the first
formula we think of S' as a subset of C and in the second formula we think
of S' as a subset of R?.

Note that p is surjective and p(t+ 1) = p(t) for all t € R. We are going
to use p to understand the homotopy classification of continuous maps from
S' to S'. The main lemma is as follows.

Lemma 1.16. Let y: [0,1] — S' be a continuous map and let a € R be such
that p(a) =v(0). Then there exists a unique continuous map y: [0,1] = R
such that y =p oy and y(0) = a.

Proof. The map 7y is uniformly continuous since [0, 1] is compact. It follows
that there exists a positive integer n such that d(y(x),v(y)) < 1/100 when-
ever [x —y| < 1/n. Here d denotes the standard (euclidean) metric on S!

as a subset of RZ. We choose such an n and write
n

0,1 = J ftr, td
k=1
where t, = k/n. We try to define ¥ on [0, t,] by induction on k. For the
induction beginning we need to define ¥ on [0,t;] where t; = 1/n. Let
U C S' be the open ball of radius 1/100 with center y(0). (Note that open
ball is a metric space concept.) Then y([0,t;]) € U. Therefore y([0,t;])
must be contained in p~'(U). Now p~'(U) C R is a disjoint union of open
intervals which are mapped homeomorphically to U under p. One of these,
call it V, , contains a, since p(a) =vy(0) € U. The others are translates of
the form { + V, where £ € Z. Since [0, t;] is connected, its image under y
will also be connected, whatever y is, and so it must be contained entirely
in exactly one of the intervals £ + V.. Since we want y(0) = a, we must
have £ = 0, that is, image of y contained in V,. Since the map p restricts
to a homeomorphism from V, to U, we must have Yy = qy where q is the
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inverse of the homeomorphism from V, to U. This formula determines the
map Yy on [0, t].

The induction steps are like the induction beginning. In the next step we
define y on [t, t;], using a “new” a which is y(t;) and a “new” U which
is the open ball of radius 1/100 with center y(t;). O

Now let g: S' — S' be any continuous map. We want to associate with it an
integer, the degree of g. Choose a € R such that p(a) = g(1). Let y = gop

n [0, 1]; this is a map from [0,1] to S'. Construct ¥ as in the lemma. We
have py(1) =vy(1) =vy(0) = py(0), which implies y(1) = y(0) + { for some
leZ.

Definition 1.17. This £ is the degree of g, denoted deg(g).

It looks as if this might depend on our choice of a with p(a) = g(1). But
if we make another choice then we only replace a by m+ a for some m € Z,
and we only replace y by m +vy. Therefore our calculation of deg(g) leads
to the same result.

Remark. Suppose that g: S — S' is a continuous map which is close

to the constant map z — 1 € S! (complex notation). To be more precise,
assume d(g(z),1) < 1/1000 for all z € S'. Then deg(g) = 0.
The verification is mechanical. Define y: [0,1] — S' by y(t) = g(p(t)). Let
V C R be the open interval from —1/100 to 1/100. The map p restricts to
a homeomorphism from V to p(V) C S', with inverse q: p(V) — V. Put
Y = q o7y, which makes sense because the image of y is contained in p(V)
by our assumption. Then p oy = vy as required. Now the image of y is
contained in V and therefore

|deg(g)| = y(1) —¥(0)] <2/100
and so deg(g) = 0.

Remark. Suppose that f,g: S' — S! are continuous maps. Let w: S' — S!
be defined by w(z) = f(z) - g(z) (using the multiplication in S' € C). Then
deg(w) = deg(f) + deg(g).

The verification is also mechanical. Define @,y,w: [0,1] — S' by @(t) =
f(p(t)), v(t) = g(p(t)) and w(t) =w(p(t)). Construct @: [0,1] — R and
v:[0,1] = R as in lemma 1.16. Put @ := @ +vy. Then po @ = w, so

deg(w) = ®©(1) — @(0) = - - - = deg(f) + deg(g).

Lemma 1.18. If f,g: S' — S' are continuous maps which are homotopic,
f ~ g, then they have the same degree.

Proof. Let h: S" x [0,1] — S' be a homotopy from f to g. As usual let
hi: ' — S! be the map defined by h¢(z) = h(z,t), for fixed t € [0,1]. For
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fixed t € [0,1] we can find & > 0 such that d(h¢(z),hs(z)) < 1/1000 for all
z € S and all s which satisfy |s —t| < &. Therefore hy(z) = gs(z) - hi(z) for
such s, where gg: S' — S' is a map which satisfies d(gs(z), ) 1/1000 for
all z € S'. Therefore deg(gs) = 0 by the remarks above and so deg(hs) =
deg(gs) + deg(h;) = deg(h).

We have now shown that the the map [0,1] — Z given by t — deg(hy) is
locally constant (equivalently, continuous as a map of metric spaces) and so
it is constant (since [0, 1] is connected). In particular deg(f) = deg(hy) =

deg(hy) = deg(g). N

Lemma 1.19. If f,g: S — S' are continuous maps which have the same
degree, then they are homotopic.

Proof. Certainly f is homotopic to a map which takes 1 to 1 and g is
homotopic to a map which takes 1 to 1 (using complex notation, 1 € S' C
C). Therefore we can assume without loss of generality that f(1) = 1 and
g(1)=1.

Let @:[0,1 — S" and y: [0,1] — S' be defined by @(t) = f(p(t)) and
v(t) = g(p(t)). Construct @ and y as in the lemma, using a = 0 in both
cases, so that @(0) =0 =+vy(0). Then

@ (1) = deg(f) = deg(g) =v(1).
Note that f can be recovered from ¢ as follows. For z € S' choose t € [0, 1]
such that p(t) = z. Then f(z) = f(p(t)) = @(t) = pe(t). If z=1¢€ S,
we can choose t = 0 or t = 1, but this ambiguity does not matter since
pe(1) = p@(0). Similarly, g can be recovered from y. Therefore we can
show that f is homotopic to g by showing that ¢ is homotopic to y with
endpoints fized. In other words we need a continuous

H: (0,11 x [0,1] - R

where H(s,0) = @(s), H(s,1) =¥(s) and H(0,t) =0 for all t € [0,1] and
H(1,t) = @(1) = y(1) for all t € [0,1]. This is easy to do: let H(s,t) =
(1—t)@(s) +ty(s). O

Summarizing, we have shown that the degree function gives us a well
defined map from [S',S'] to Z, and moreover, that this map is injective. It
is not hard to show that this map is also surjective! Namely, for arbitrary
£ € Z the map f: ' — S' given by f(z) = z' (complex notation) has
deg(f) = €. (Verify this.)

Corollary 1.20. The degree function is a bijection from [S',S'] to Z. O



