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Lecture Notes, week 3 and 4
Topology WS 2013/14 (Weiss)

3.1. Pullbacks of fiber bundles

Let p : E → B be a fiber bundle. Let g : X → B be any continuous map of
topological spaces.

Definition 3.1. The pullback of p : E→ B along g is the space

g∗E := { (x, y) ∈ X× E | g(x) = p(y)}.

It is regarded as a subspace of X× E with the subspace topology.

Lemma 3.2. The projection g∗E→ X given by (x, y) 7→ x is a fiber bundle.

Proof. First of all it is helpful to write down the obvious maps that we have
in a commutative diagram:

g∗E

q

��

r // E

p

��
X

g // B

Here q and r are the projections given by (x, y) 7→ x and (x, y) 7→ y .
Commutative means that the two compositions taking us from g∗E to B
agree. Suppose that we have an open set V ⊂ B and a bundle chart

h : p−1(V)
∼=−−−→ V × F .

Now U := g−1(V) is open in X . Also q−1(U) is an open subset of g∗E and
we describe elements of that as pairs (x, y) where x ∈ U and y ∈ E , with
g(x) = p(y) . We make a homeomorphism

q−1(U) → U× F
by the formula (x, y) 7→ (x, h(2)(y)) , where h(2)(y) is the F-coordinate of
h(y) ∈ V × F . It is a homeomorphism because the inverse is given by

(x, z) 7→ (x, h−1(g(x), z))

for x ∈ U and z ∈ F , so that (g(x), z) ∈ V × F . Its is also clearly a bundle
chart. In this way, every bundle chart

h : p−1(V)
∼=−−−→ V × F

for p : E→ B determines a bundle chart

q−1(U)
∼=−−−→ U× F
1
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with the same F , where U is the preimage of V under g . Since p : E → B
is a fiber bundle, we have many such bundle charts p−1(Vj) → Vj × Fj such
that the union of the Vj is all of B . Then the union of the corresponding Uj
is all of X , and we have bundle charts q−1(Uj) → Uj × Fj . This proves that
q is a fiber bundle. �

This proof was too long and above all too formal. Reasoning in a less
formal way, one should start by noticing that the fiber of q over z ∈ X is
essentially the same (and certainly homeomorphic) to the fiber of p over
g(z) ∈ B . Namely,

q−1(z) = {(x, y) ∈ X× E | g(x) = p(y), x = z} = {z}× p−1({g(z)}) .
Now recall once again that a bundle chart h : p−1(U) → U×F for p is just a
way to specify, simultaneously and continuously, homeomorphisms hx from
the fibers of p over elements x ∈ U to F . If we have such a bundle chart
for p , then for any z ∈ g−1(U) we get a homeomorphism from the fiber of q
over z , which “is” the fiber of p over g(z) , to F . And so, by letting z run
through g−1(U) , we get a bundle chart for q .
(The notation has become mildly unsystematic because I allowed both hx
and h(2) . Sorry. In fact hx is the restriction of h(2) to p−1({x}) .)

Example 3.3. Restriction of fiber bundles is a special case of pullback, up
to isomorphism of fiber bundles. More precisely, suppose that p : E→ B is a
fiber bundle and let A ⊂ B be a subspace, with inclusion g : A → B . Then
there is an isomorphism of fiber bundles from pA : E|A → A to the pullback
g∗E→ A . This takes y ∈ E|A to the pair (p(y), y) ∈ g∗E ⊂ A× E .

3.2. Homotopy invariance of pullbacks of fiber bundles

Theorem 3.4. Let p : E→ B be a fiber bundle. Let f, g : X→ B be contin-
uous maps, where X is a compact Hausdorff space. If f is homotopic to g,
then the fiber bundles f∗E→ X and g∗E→ X are isomorphic.

Remark 3.5. The compactness assumption on X is unnecessarily strong;
paracompact is enough. But paracompactness is also a more difficult concept
than compactness. Therefore we shall prove the theorem as stated, and leave
a discussion of improvements for later.

Remark 3.6. Let X be a compact Hausdorff space and let U0, U1, . . . , Un
be open subsets of X such that the union of the Ui is all of X . Then there
exist continuous functions

ϕ0, ϕ1, . . . , ϕn : X→ [0, 1]

such that
∑n

j=0ϕj ≡ 1 and such that supp(ϕj), the support of ϕj , is con-
tained in Uj for j = 0, 1, . . . , n. Here supp(ϕj) is the closure in X of the
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open set
{x ∈ X | ϕj(x) > 0}.

A collection of functions ϕ0, ϕ1, . . . , ϕn with the stated properties is called
a partition of unity subordinate to the open cover of X given by U0, . . . , Un .
For readers who are not aware of this existence statement, here is a reduction
(by induction) to something which they might be aware of.
First of all, if X is a compact Hausdorff space, then it is a normal space.
This means, in addition to the Hausdorff property, that any two disjoint
closed subsets of X admit disjoint open neighborhoods. Next, for any normal
space X we have the Tietze-Urysohn extension lemma. This says that if A0
and A1 are disjoint closed subsets of X , then there is a continuous function
ψ : X→ [0, 1] such that ψ(x) = 1 for all x ∈ A1 and ψ(x) = 0 for all x ∈ A0 .
Now suppose that a normal space X is the union of two open subsets U0 and
U1 . Because X is normal, we can find an open subset V0 ⊂ U0 such that
the closure of V0 in X is contained in U0 and the union of V0 and U1 is
still X . Repeating this, we can also find an open subset V1 ⊂ U1 such that
the closure of V1 in X is contained in U1 and the union of V1 and V0 is
still X . Let A0 = X r V0 and A1 = X r V1 . Then A0 and A1 are disjoint
closed subsets of X , and so by Tietze-Urysohn there is a continuous function
ψ : X→ [0, 1] such that ψ(x) = 1 for all x ∈ A1 and ψ(x) = 0 for all x ∈ A0 .
This means that supp(ψ) is contained in the closure of XrA0 = V0 , which
is contained in U0 . We take ϕ1 = ψ and ϕ0 = 1 − ψ . Since 1 − ψ is zero
on A1 , its support is contained in the closure of V1 , which is contained in
U1 . This establishes the induction beginning (case n = 1).
For the induction step, suppose that we have an open cover of X given by
U0, . . . , Un where n ≥ 2 . By inductive assumption we can find a partition
of unity subordinate to the cover U0 ∪U1, U2, . . . , Un and by the induction
beginning, another partition of unity subordinate to U0, U1 ∪ U2 ∪ · · ·Un .
Call the functions in the first partition of unity ϕ01, ϕ2, . . . , ϕn and those in
the second ψ0, ψ1 , we see that the functions ψ0ϕ01, ψ1ϕ01, ϕ2, . . . , ϕn form
a partition of unity subordinate to the cover by U0, . . . , Un . �

Proof of theorem 3.4. Let h : X× [0, 1] → B be a homotopy from f to g , so
that h0 = f and h1 = g . Then h∗E → X× [0, 1] is a fiber bundle. We give
this a new name, say q : L→ X× [0, 1] . Let ι0 and ι1 be the maps from X to
X× [0, 1] given by ι0(x) = (x, 0) and ι1(x) = (x, 1) . It is not hard to verify
that the fiber bundle f∗E → X is isomorphic to ι∗0L → X and g∗E → X is
isomorphic to ι∗1L→ X . Therefore all we need to prove is the following.
Let q : L→ X× [0, 1] be a fiber bundle, where X is compact Hausdorff. Then
the fiber bundles ι∗0L → X and ι∗1L → X obtained from q by pullback along
ι0 and ι1 are isomorphic. To make this even more explicit: given the fiber
bundle q : L→ X× [0, 1] , we need to produce a homeomorphism from L|X×{0}
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to L|X×{1} which fits into a commutative diagram

L|X×{0}

res. of q
��

our homeom. // L|X×{1}

res. of q
��

X× {0}
(x,0) 7→(x,1)

// X× {1}

Here L|K means q−1(K) , for any K ⊂ X× [0, 1] .
By a lemma proved last week (lecture notes week 2), we can find a covering
of X by open subsets Ui such that that qUi×[0,1] : L|Ui×[0,1] → Ui × [0, 1] is
a trivial bundle, for each i . Since X is compact, finitely many of these Ui
suffice, and we can assume that their names are U1, . . . , Un . Let ϕ1, . . . , ϕn
be continuous functions from X to [0, 1] making up a partition of unity
subordinate to the open covering of X by U1, . . . , Un . For j = 0, 1, 2, . . . , n
let vj =

∑j
k=1ϕk and let Γj ⊂ X× [0, 1] be the graph of vj . Note that Γ0 is

X× {0} and Γn is X× {1} . It suffices therefore to produce a homeomorphism
ej : L|Γj−1

→ L|Γj which fits into a commutative diagram

L|Γj−1

res. of q
��

ej // L|Γj

res. of q
��

Γj−1
(x,vj−1(x)) 7→ (x,vj(x)) // Γj

(for j = 1, 2, . . . , n). Since qUj×[0,1] : L|Uj×[0,1] → Uj × [0, 1] is a trivial fiber
bundle, we have a single bundle chart for it, a homeomorphism

g : L|Uj×[0,1] −→ (Ui × [0, 1])× F
with the additional good property that we require of bundle charts. Fix j now
and write L = L ′∪L ′′ where L ′ consists of the y ∈ L for which q(y) = (x, t)
with x /∈ supp(ϕj) , and L ′′ consists of the y ∈ L for which q(y) = (x, t)
with x ∈ Uj . Both L ′ and L ′′ are open subsets of L . Now we make our
homeomorphism e = ej as follows. By inspection, L|Γj−1

∩ L ′ = L|Γj ∩ L ′ ,
and we take e to be the identity on L|Γj−1

∩ L ′ . By restricting the bundle
chart g , we have a homeomorphism L|Γj−1

∩ L ′′ → Uj × F ; more precisely,
a homeomorphism from L|Γj−1

∩ L ′′ to (Γj−1 ∩ Uj × [0, 1]) × F . By the same
reasoning, we have a homeomorphism L|Γj−1

∩ L ′′ → Uj× F ; more precisely, a
homeomorphism from L|Γj−1

∩ L ′′ to (Γj ∩Uj × [0, 1])× F . Therefore we have
a preferred homeomorphism from L|Γj−1

∩ L ′′ to L|Γj ∩ L ′′ , and we use that
as the definition of e on L|Γj−1

∩ L ′′ . By inspection, the two definitions of e
which we have on the overlap L|Γj−1

∩ L ′ ∩ L ′′ agree, so e is well defined. �

Corollary 3.7. Let p : E→ B be a fiber bundle where B is compact Hausdorff
and contractible. Then p is a trivial fiber bundle.
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Proof. By the contractibility assumption, the identity map f : B → B is
homotopic to a constant map g : B→ B . By the theorem, the fiber bundles
f∗E → B and g∗E → B are isomorphic. But clearly f∗E → B is isomorphic
to the original fiber bundle p : E→ B . And clearly g∗E→ B is a trivial fiber
bundle. �

Corollary 3.8. Let q : E→ B× [0, 1] be a fiber bundle, where B is compact
Hausdorff. Suppose that the restricted bundle

qB×{0} : E|B×{0} → B× {0}

admits a section, i.e., there exists a continuous map s : B× {0} → E|B×{0} such
that q◦ s is the identity on B× {0}. Then q : E→ B× [0, 1] admits a section
s̄ : B× [0, 1] → E which agrees with s on B× {0}.

Proof. Let f, g : B × [0, 1] → B × [0, 1] be defined by f(x, t) = (x, t) and
g(x, t) = (x, 0) . These maps are clearly homotopic. Therefore the fiber
bundles f∗E→ B× [0, 1] and g∗E→ B× [0, 1] are isomorphic fiber bundles.
Now f∗E→ B× [0, 1] is clearly isomorphic to the original fiber bundle

q : E→ B× {0, 1}

and g∗E→ B× [0, 1] is clearly isomorphic to the fiber bundle

E|B×{0} × [0, 1] → B× [0, 1]

given by (y, t) 7→ (q(y), t) for y ∈ E|B×{0} , that is, y ∈ E with q(y) = (x, 0)
for some x ∈ B . Therefore we may say that there is a homeomorphism
h : E|B×{0}× [0, 1] → E which is over B× [0, 1] , in other words, which satisfies

(q ◦ h)(y, t) = (q(y), t)

for all y ∈ E|B×{0} and t ∈ [0, 1] . Without loss of generality, h satisfies
the additional condition h(y, 0) = y for all y ∈ E|B×{0} . (In any case we
have a homeomorphism u : E|B×{0} → E|B×{0} defined by u(y) = h(y, 0) . If
it is not the identity, use the homeomorphism (y, t) 7→ h(u−1(y), t) instead
of (y, t) 7→ h(y, t) .) Now define s̄ by s̄(x, t) = h(s(x), t) for x ∈ B and
t ∈ [0, 1] . �

3.3. The homotopy lifting property

Definition 3.9. A continuous map p : E → B between topological spaces
is said to have the homotopy lifting property (HLP) if the following holds.
Given any space X and continuous maps f : X → E and h : X × [0, 1] → B
such that h(x, 0) = p(f(x)) for all x ∈ X , there exists a continuous map
H : X× [0, 1] → E such that p ◦H = h and H(x, 0) = f(x) for all x ∈ X .
A map with the HLP can be called a fibration (sometimes Hurewicz fibration).
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It is customary to summarize the HLP in a commutative diagram with a
dotted arrow:

X
f //

x 7→(x,0)

��

E

p

��
X× [0, 1]

h //

H

<<

B

Indeed, the HLP for the map p means that once we have the data in the
outer commutative square, then the dotted arrow labeled H can be found,
making both triangles commutative.
More associated customs: we think of h as a homotopy between maps h0
and h1 from X to B , and we think of f : X → E as a lift of the map h0 ,
which is just a way of saying that p ◦ f = h0 .

More generally, or less generally depending on point of view, we say that
p : E → B satisfies the HLP for a class of spaces Q if the dotted arrow in
the above diagram can always be supplied when the space X belongs to that
class Q .

Corollary 3.10. Let p : E→ B be a fiber bundle. Then p has the HLP for
compact Hausdorff spaces.

Proof. Suppose that we have the data X , f and h as in the above diagram,
but we are still trying to construct or find the diagonal arrow H . We are
assuming that X is compact Hausdorff. The pullback of p along h is a fiber
bundle h∗E→ X× [0, 1] . The restricted fiber bundle

(h∗E)|X×{0} → X× {0}

has a continuous section s given essentially by f , and if we say it very
carefully, by the formula

(x, 0) 7→ ((x, 0), f(x)) ∈ h∗E ⊂ (X× [0, 1] )× E .

The section s extends to a continuous section s̄ of h∗E → X × [0, 1] by
corollary 3.8. Now we can define H := r◦s̄ , where r is the standard projection
from h∗E to E . �

Example 3.11. Let p : S3 → S2 be the Hopf fiber bundle. Assume if possible
that p is nullhomotopic; we shall try to deduce something absurd from that.
So let h : S3 × [0, 1] → S2 be a nullhomotopy for p . Then h0 = p and h1 is
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a constant map. Applying the HLP in the situation

S3

x 7→(x,0)

��

id // S3

p

��
S3 × [0, 1]

H

::

h // S2

we deduce the existence of H : S3× [0, 1] → S3 , a homotopy from the identity
map H0 = id : S3 → S3 to a map H1 : S

3 → S3 with the property that p ◦H1
is constant. Since p itself is certainly not constant, this means that H1 is
not surjective. If H1 is not surjective, it is nullhomotopic. (A non-surjective
map to a sphere is nullhomotopic; little exercise.) Consequently id : S3 → S3

is also nullhomotopic, being homotopic to H1 . This means that S3 is con-
tractible.
Is that absurd enough? We shall prove later in the course that S3 is not
contractible. Until then, what we have just shown can safely be stated like
this: if S3 is not contractible, then the Hopf map p : S3 → S2 is not nullho-
motopic. (I found this argument in Dugundji’s book on topology. Hopf used
rather different ideas to show that p is not nullhomotopic.)

In this example, the HLP was used for something resembling a computation
with homotopy classes of maps. Let us try to formalize this in hopes to get
hold of some algebra in homotopy theory. So let p : E→ B be a continuous
map which has the HLP for a class of topological spaces Q . Let ? ⊂ B be
a selected element (which I will also regard as a one-point subspace). Let
F = p−1(∗) be the fiber of p over ∗ and let j : F→ E be the inclusion. Take
any space X in the class Q . There is a diagram of sets and maps

[X, F]
[j] ◦
// [X, E]

[p] ◦
// [X,B]

where the arrows are given by composition with the homotopy classes of [j]
and [p] , respectively. Also there is a distinguished zero element in [X,B] ,
corresponding to the homotopy class of the map X → B which maps all
of X to ∗ . Therefore it makes sense to speak of the kernel of the map
[p] ◦ : [X, E] → [X,B] . It is a subset of [X, E] , the preimage of the zero
element in [X,B] .

Proposition 3.12. The above diagram of sets and maps is “half exact” in
the sense that the kernel of [X, E] → [X,B] coincides with the image of [X, F].

Proof. Since p ◦ j is the constant map with value ∗ from F to B , the com-
position of [p] ◦ and [j] ◦ is the map from [X, F] to [X,B] taking all elements
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of [X, F] to zero. This is equivalent to saying that the kernel of [p] ◦ contains
the image of [j] ◦ . For the other inclusion, imagine a continuous f : X → E
such that [p] ◦ [f] is zero in [X,B] . This means that p ◦ f : X → B is null-
homotopic, and more precisely, homotopic to the constant map with value ∗
from X to B . Let h : X× [0, 1] → B be a homotopy which has h0 = f and h1
equal to the constant map with value ∗ . Apply the HLP to find a homotopy
H : X × [0, 1] → E such that p ◦ H = h and H0 = f . Then H1 : X → E is a
map whose image is contained in F ⊂ E . So [f] = [H0] = [H1] is in the image
of the map [j] ◦ . �

Looking back, we can say that example 3.11 is an application of proposi-
tion 3.12 with p : E→ B equal to the Hopf fibration (and Q equal to the class
of compact Hausdorff spaces, say). There are some special features in this
example which we used. Firstly, the spaces F, E, B are all path-connected, so
the sets [X, F] , [X, E] and [X,B] all have a distinguished zero element. Sec-
ondly, we saw that j : F→ E is nullhomotopic, being a non-surjective map to
a sphere. Hence [j] ◦ : [X, F] → [X, E] is the zero map.
We made some unusual choices: X = E and [f] = [id] ∈ [X, E] . Then
[p] ◦ [f] = [p] ∈ [X,B] , so the assumption that [p] ∈ [X,B] is zero is equiva-
lent to saying that [f] is in the kernel of [p] ◦ : [X, E] → [X,B] , which by the
proposition is also the image of [j]◦ . But the image of [j] only has the zero
element in it, so ... if [p] is zero in [X,B] then [f] is zero in [X, E] .

3.4. Remarks on paracompactness and fiber bundles

Quoting from many books on point set topology: a topological space X =
(X,O) is paracompact if it is Hausdorff and every open cover (Ui)i∈Λ of X
admits a locally finite refinement (Vj)j∈Ψ .

There is a fair amount of open cover terminology in that definition. In
this formulation, we take the view that an open cover of X is a family, i.e., a
map from a set to O (with a special property). This is slightly different from
the equally reasonable view that an open cover of X is a subset of O (with a
special property), and it justifies the use of round brackets as in (Ui)i∈Λ , as
opposed to curly brackets. Here the map in question is from Λ to O . There
is an understanding that (Vj)j∈Ψ is also an open cover of X , but Ψ need not
coincide with Λ . Refinement means that for every j ∈ Ψ there exists i ∈ Λ
such that Vj ⊂ Ui . Locally finite means that every x ∈ X admits an open
neighborhood W in X such that the set {j ∈ Ψ | W ∩ Vj 6= ∅} is a finite
subset of Ψ .

It is wonderfully easy to get confused about the meaning of paracompact-
ness. There is a strong similarity with the concept of compactness, and
it is obvious that compact (together with Hausdorff) implies paracompact,
but it is worth emphasizing the differences. Namely, where compactness has
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something to do with open covers and sub-covers, the definition of paracom-
pactness uses the notion of refinement of one open cover by another open
cover. We require that every Vj is contained in some Ui ; we do not require
that every Vj is equal to some Ui . And locally finite does not just mean that
for every x ∈ X the set {j ∈ Ψ | x ∈ Vj} is a finite subset of Ψ . It means
more.

For some people, the Hausdorff condition is not part of paracompact, but
for me, it is.

An important theorem: every metrizable space is paracompact. This is
due to A.H. Stone who, as a Wikipedia page reminds me, is not identical
with Marshall Stone of the Stone-Weierstrass theorem and the Stone-Čech
compactification. The proof is not very complicated, but you should look it
up in a book on point-set topology which is not too ancient, because it was
complicated in the A.H.Stone version.

Another theorem which is very important for us: in a paracompact space
X , every open cover (Ui)i∈Λ admits a subordinate partition of unity. In other
words there exist continuous functions ϕi : X→ [0, 1] , for i ∈ Λ , such that

• every x ∈ X admits an open neighborhood W such that the set
{ i ∈ Λ | W ∩ supp(ϕi) 6= ∅} is finite;
•

∑
i∈Λϕi ≡ 1 ;

• supp(ϕi) ⊂ Ui .

The second condition is meaningful if we assume that the first condition
holds. (Then, for every x ∈ X , there are only finitely many nonzero sum-
mands in

∑
i∈Λϕi(x) . The first condition also ensures that for any subset

Ξ ⊂ Λ , the sum
∑

i∈Ξϕi is a continuous function on X .)
The proof of this theorem (existence of subordinate partition of unity for any
open cover of a paracompact space) is again not very difficult, and boils down
mostly to showing that paracompact spaces are normal. Namely, in a normal
space, locally finite open covers admit subordinate partitions of unity, and
this is easy.

Many of the results about fiber bundles in this chapter rely on partitions
of unity, and to ensure their existence, we typically assumed compactness
here and there. But now it emerges that paracompactness is enough.
Specifically, in theorem 3.4 it is enough to assume that X is paracompact.
In corollary 3.7 it is enough to assume that B is paracompact (and con-
tractible). In corollary 3.8 it is enough to assume that B is paracompact.
In corollary 3.10 we have the stronger conclusion that p has the HLP for
paracompact spaces.
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Proof of variant of thm. 3.4 with weaker assumption that X is paracompact.
By analogy with the case of compact X , we can easily reduce to the following
statement. Let q : L→ X× [0, 1] be a fiber bundle, where X is paracompact.
Then the fiber bundles ι∗0L → X and ι∗1L → X obtained from q by pullback
along ι0 and ι1 are isomorphic. And to make this more explicit: given the
fiber bundle q : L→ X× [0, 1] , we need to produce a homeomorphism h from
L|X×{0} to L|X×{1} which fits into a commutative diagram

L|X×{0}

res. of q

��

h // L|X×{1}

res. of q

��
X× {0}

(x,0) 7→(x,1)
// X× {1}

By a lemma proved in lecture notes week 2, we can find an open cover (Ui)i∈Λ
of X such that that qUi×[0,1] : L|Ui×[0,1] → Ui × [0, 1] is a trivial bundle, for
each i ∈ Λ . Let (ϕi)i∈Λ be a partition of unity subordinate to (Ui)i∈Λ . So
ϕi : X→ [0, 1] is a continuous function with supp(ϕi) ⊂ Ui , and

∑
iϕi ≡ 1 .

Every x ∈ X admits a neighborhood W in X such that the set

{i ∈ Λ | supp(ϕi) ∩W 6= ∅}

is finite.
Now choose a total ordering on the set Λ . (A total ordering on Λ is a
relation ≤ on Λ which is transitive and reflexive, and has the additional
property that for any distinct i, j ∈ Λ , precisely one of i ≤ j or j ≤ i holds.
We need to assume something here to get such an ordering: for example the
Axiom of Choice in set theory is equivalent to the Well-Ordering Principle,
which states that every set can be well-ordered. A well-ordering is also a total
ordering.) Given x ∈ X , choose an open neighborhood W of x such that the
set of i ∈ Λ having supp(ϕi) ∩W 6= ∅ is finite; say it has n elements. We
list these elements in their order (provided by the total ordering on Λ which
we selected):

i1 ≤ i2 ≤ i3 ≤ · · · in .

The functions ϕi1, ϕi2 , . . . , ϕin (restricted to W ) make up a partition of
unity on W which is subordinate to the covering by open subsets W∩Ui1 ,W∩
Ui2 , . . .W ∩Uin . Now we can proceed exactly as in the proof of theorem 3.4
to produce (in n steps) a homeomorphism hW which makes the following
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diagram commute:

L|W×{0}

res. of q

��

hW // L|W×{1}

res. of q

��
W × {0}

(x,0) 7→(x,1)
//W × {1}

Finally we can regard W or x as variables. If we choose, for every x ∈ X , an
open neighborhood Wx with properties like W above, then the Wx for all
x ∈ X constitute an open cover of X . For each Wx we get a homeomorphism
hWx as above. These homeomorphisms agree with each other wherever this
is meaningful, and so define together a homeomorphism h : L|X×{0} → L|X×{1}
with the property that we require. �


