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Lecture Notes, week 8
Topology WS 2013/14 (Weiss)

7.1. The homotopy decomposition theorem

Notation for the following theorem and the corollary: X and Y are topological
spaces, V and W are open subsets of Y such that V ∪W = Y , and C is a
closed subset of X . We assume that X is paracompact.

Theorem 7.1. Let γ : X× [0, 1] → Y be a mapping cycle which restricts to
zero on an open neighborhood of X× {0}. Then there exists a decomposition

γ = γV + γW ,

where γV : X× [0, 1] → V and γW : X× [0, 1] →W are mapping cycles, both
zero on an open neighborhood of X×{0}. If γ is zero on some neighborhood of
C×[0, 1], then it can be arranged that γV and γW are zero on a neighborhood
of C× [0, 1].

The proof of this is hard. We postpone it.

Corollary 7.2. Let a ∈ [[X,V]] and b ∈ [[X,W]] be such that the images of
a and b in [[X, Y]] agree. Then there exists c ∈ [[X,V ∩W]] whose image
in [[X,V]] is a and whose image in [[X,W]] is b.

Proof. Let α be a mapping cycle which represents a and let β be a mapping
cycle which represents b . Choose a mapping cycle γ : X × [0, 1] → Y which
is a homotopy from 0 to β − α . It is easy to arrange this in such a way
that γ is zero on a neighborhood of X × {0} . Use the theorem to obtain
a decomposition γ = γV + γW . Let γV1 and γW1 be the restrictions of γV

and γW to X × {1} . Then α and α + γV1 are homotopic as mapping cycles
X→ V , by the homotopy α◦p+γV , where p is the projection X×[0, 1] → X .
Similarly β = α + γV1 + γW1 and α + γV1 are homotopic as mapping cycles
X→W . Finally, α+ γV1 = β− γW1 lands in V ∩W by construction. �

7.2. Mayer-Vietoris sequence in homology

A sequence of abelian groups (An)n∈Z together with homomorphisms

fn : An → An−1

for all n ∈ Z is called an exact sequence of abelian groups if the kernel of fn
is equal to the image of fn+1 , for all n ∈ Z . More generally, we sometimes
have to deal with diagrams of abelian groups and homomorphisms in the
shape of a string

An → An−1 → An−2 → · · ·→ An−k .
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Such a diagram is exact if the kernel of each homomorphism in the string is
equal to the image of the preceding one, if there is a preceding one.

Definition 7.3. Alternative definition of homology : Write I = [0, 1] . For
a space Y , and n ≥ 0 , re-define Hn(Y) as the abelian group of homotopy
classes of mapping cycles In → Y which vanish on some open neighborhood
of ∂In .

Comment. In this definition, we regard two mapping cycles In → Y which
vanish on some neighborhood of ∂In as homotopic if they are related by a
homotopy In × I → Y which vanishes on some neighborhood of ∂In × I .
Such a homotopy will be called (informally) a homotopy relative to ∂In or a
homotopy rel ∂In .
To relate the old definition of Hn(Y) to the new one, we make a few obser-
vations. Given a mapping cycle α : In → Y which vanishes on some neigh-
borhood of ∂In , we immediately obtain a mapping cycle from the quotient
In/∂In to Y . To view this as a mapping cycle β : Sn → Y , we pretend that
Sn = Rn ∪∞ (one-point compactification of Rn ) and specify a homeomor-
phism u : In/∂In → Rn ∪∞ taking base point to base point. (Note that
In/∂In has a preferred base point, the point represented by all elements of
∂In .) We are specific enough if we say that u is smooth and orientation pre-
serving on In r ∂In (i.e., the Jacobian determinant is everywhere positive).
Conversely, given a mapping cycle β : Sn → Y representing an element of
Hn(Y) according to the old definition, we may subtract a suitable constant
to arrange that β is zero when restricted to the base point of Sn . We can
also assume that β is zero on a neighborhood of the base point; if not, com-
pose with a continuous map Sn → Sn which is homotopic to the identity
and takes a neighborhood of the base point to the base point. Then β ◦ u
is a mapping cycle In/∂ → Y which can also be viewed as a mapping cycle
In → Y vanishing on a neighborhood of ∂In .

Definition 7.4. Suppose that Y comes with two open subspaces V and W
such that V ∪W = Y . The boundary homomorphism

∂ : Hn(Y) → Hn−1(V ∩W)

is defined as follows, using the alternative definition of Hn . Let x ∈ Hn(Y)
be represented by a mapping cycle γ : In → Y which is zero on an open
neighborhood of ∂In . Think of γ as a homotopy, γ : In−1 × I→ Y . Choose
a decomposition γ = γV + γW as in theorem 7.1. The theorem guarantees
that γV and γW can be arranged to vanish on a neighborhood of ∂In−1 × I .
Let ∂(x) be the class of the mapping cycle

γW1 : In−1 → V ∩W ,
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composition of γW with the map ι1 : I
n−1 → In−1×I defined by ι1(x) = (x, 1) .

(Then γW1 vanishes on some open neighborhood of ∂In−1 .)

We must show that this is well defined. There were two choices involved:
the choice of representative γ , and the choice of decomposition γ = γV+γW .
For the moment, keep γ fixed, and let us see what happens if we try another
decomposition of γ . Any other decomposition will have the form

(γV + η) + (γW − η)

where η : In−1 × I → V ∩W is a mapping cycle which vanishes on an open
neighborhood of ∂In−1 × I and on an open neighborhood of In−1 × {0} . We
need to show that γW1 − η1 is homotopic (rel boundary of In−1 ) to γW1 . But
η1 is homotopic to zero by the homotopy η .
Next we worry about the choice of representative γ . Let ϕ be another
representative of the same class x , and let λ : I × In → Y be a homotopy
from ϕ to γ . (Writing the factor I on the left might help us to avoid
confusion.) We can think of λ as a homotopy in a different way:

(I× In−1)× I −→ Y .

Then we can apply the homotopy decomposition theorem and choose a de-
composition λ = λV + λW where λV and λW vanish on a neighborhood of
I×∂In−1× I . We then find that λW1 is a mapping cycle from X = I× In−1 to
V ∩W which we may regard as a homotopy (now with parameters written
on the left). The homotopy is between γW1 and ϕW1 , provided the decompo-
sitions γ = γV +γW and ϕ = ϕV +ϕW are the ones obtained by restricting
the decomposition λ = λV + λW . �

The boundary homomorphisms ∂ can be used to make a sequence of
abelian groups and homomorphisms

· · · // Hn+1(Y)

∂

��
Hn(V ∩W) // Hn(V)⊕Hn(W) // Hn(Y)

∂

��
Hn−1(V ∩W) // · · ·

where n ∈ Z . (Set Hn(X) = 0 for n < 0 and any space X . The unlabelled
homomorphisms in the sequence are as follows: Hn(V) ⊕ Hn(W) → Hn(Y)
is jV∗ + jW∗ , the sum of the two maps given by composition with the inclu-
sions jV : V → Y and jW : W → Y , and Hn(V ∩W) → Hn(V) ⊕ Hn(W) is
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(eV∗ ,−eW∗) , where eV∗ and eW∗ are given by composition with the inclu-
sions eV : V ∩W → V and eW : V ∩W → W .) The sequence is called the
homology Mayer-Vietoris sequence of Y and V,W .

Theorem 7.5. The homology Mayer-Vietoris sequence of Y and V,W is
exact.1

Terminology for the proof. Let X and Q be topological spaces and let
h : X×I→ Q be a map or mapping cycle (which we think of as a homotopy).
Let p : X × I → X be the projection and let ι0, ι1 : X → X × I be the maps
given by x 7→ (x, 0) and x 7→ (x, 1) , respectively. We say that h is stationary
near X× {0, 1} if there exist open neighborhoods U0 and U1 of X× {0} and
X× {1} , respectively, in X× I such that h agrees with h ◦ ι0 ◦ p on U0 and
with h ◦ ι1 ◦ p on U1 .

Proof. (i) Exactness of the pieces Hn(V ∩W) → Hn(V)⊕Hn(W) → Hn(Y)
follows from corollary 7.2, for all n ∈ Z . (It is more convenient to use the
standard definition of Hn at this point.) More precisely, we have exactness
of

[[Sn, V ∩W]] → [[Sn, V]]⊕ [[Sn,W]] → [[Sn, Y]]

by corollary 7.2, and we have exactness of

[[?, V ∩W]] → [[?, V]]⊕ [[?,W]] → [[?, Y]]

by corollary 7.2. Note also that [[?, V]] ⊕ [[?,W]] → [[?, Y]] is surjective.
Then it follows easily that

[[Sn, V ∩W]]

[[?, V ∩W]]
→ [[Sn, V]]⊕ [[Sn,W]]

[[?, V]]⊕ [[?,W]]
→ [[Sn, Y]]

[[?, Y]]

is exact.
(ii) Next we look at pieces of the form

Hn(V)⊕Hn(W) −−−→ Hn(Y)
∂−−−→ Hn−1(V ∩W) .

The cases n < 0 are trivial. In the case n = 0 , the claim is that the
homomorphism H0(V) ⊕ H0(W) → H0(Y) is surjective. This is a pleasant
exercise. Now assume n > 0 . It is clear from the definition of ∂ that the
composition of the two homomorphisms is zero. Suppose then that [γ] ∈
Hn(Y) is in the kernel of ∂ , where γ : In → Y vanishes on a neighborhood of
∂In . We must show that [γ] is in the image of Hn(V) ⊕ Hn(W) → Hn(Y) .
As above, we think of γ as a homotopy, In−1× I→ Y , which we decompose,
γ = γV +γW as in theorem 7.1, where γV and γW vanish on a neighborhood

1If you wish, view this as a sequence of abelian groups and homomorphisms indexed by
the integers, by setting for example A3n = Hn(Y) for n ≥ 0 , A3n+1 = Hn(V)⊕Hn(W)
for n ≥ 0 , A3n+2 = Hn(V ∩W) for n ≥ 0 , and Am = 0 for all m ≤ 0 .



5

of ∂In−1 × I . We can also arrange that the homotopies γV and γW are
stationary near In−1 × {0, 1} . The assumption ∂[γ] = 0 then means that the
zero map

In−1 → V ∩W

is homotopic to γW1 by a homotopy λ : In−1 × I → V ∩W which vanishes
on a neighborhood of ∂In−1 × I . We can arrange that λ is stationary near
In−1× {0, 1} . Then γV +λ and γW−λ are mapping cycles from In−1× I = In
to V and W , respectively. Both vanish on a neighborhood of ∂In . Hence
they represent elements in Hn(V) and Hn(W) whose images in Hn(Y) add
up to [γ] .
(iii) We show that the composition

Hn+1(Y)
∂−−−→ Hn(V ∩W) −−−→ Hn(V)⊕Hn(W) .

is zero. We can assume n ≥ 0 . Represent an element in Hn(Y) by a mapping
cycle γ : In × I → Y , vanishing on a neighborhood of the entire boundary;
decompose as usual, and obtain ∂[γ] = [γW1 ] . Now γW1 = −γV1 viewed as a
mapping cycle In → V is homotopic to zero by the homotopy −γV vanishing
on a neighborhood of ∂In−1 × I . Therefore ∂[γ] maps to zero in Hn(V) . A
similar calculation shows that it maps to zero in Hn(W) .
(iv) Finally let ϕ : In → V ∩W be a mapping cycle which vanishes on a
neighborhood of ∂In , and suppose that [ϕ] ∈ Hn(V ∩W) is in the kernel
of the homomorphism Hn(V ∩W) → Hn(V)⊕Hn(W) . Choose a homotopy
γV : In × I→ V from zero to −ϕ , and another homotopy γW : In × I→W
from zero to ϕ , both vanishing on a neighborhood of ∂In × I , and both
stationary near In × {0, 1} . Then γ := γV + γW vanishes on the entire
boundary of In × I , hence represents a class [γ] ∈ Hn+1(Y) . It is clear that
∂[γ] = [ϕ] . �

Remark 7.6. The Mayer-Vietoris sequence has a naturality property. The
statement is complicated. Suppose that Y and Y ′ are topological spaces,
g : Y → Y ′ is a continuous map, Y = V ∪ W where V and W are open
subsets, Y ′ = V ′ ∪W ′ where V " and W ′ are open subsets, g(V) ⊂ V ′ and
g(W) ⊂ W ′ . Then the Mayer-Vietoris sequences for Y, V,W and Y ′, V ′,W ′
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can be arranged in a ladder-shaped diagram

...

��

...

��
Hn+1(Y)

∂
��

g∗ // Hn+1(Y
′)

∂
��

Hn(V ∩W)

��

g∗ // Hn(V
′ ∩W ′)

��
Hn(V)⊕Hn(W)

��

g∗ // Hn(V
′)⊕Hn(W ′)

��
Hn(Y)

g∗ //

∂
��

Hn(Y
′)

∂
��

Hn−1(V ∩W)
g∗ //

��

Hn−1(V
′ ∩W ′)

��
...

...

This diagram is commutative; that is the naturality statement. The proof is
not complicated (it is by inspection).
Often this can be usefully combined with the following observation: if, in the
Mayer-Vietoris sequence for Y and V,W we interchange the roles (order) of
V and W , then the homomorphisms ∂ and Hn(V ∩W) → Hn(V)⊕Hn(W)
change sign. To be more precise, we set up a diagram

Hn+1(Y)

∂
��

= // Hn+1(Y)

∂
��

Hn(V ∩W)

��

= // Hn(W ∩ V)

��
Hn(V)⊕Hn(W)

∼= // Hn(W)⊕Hn(V)

where the columns are bits from the Mayer-Vietoris sequence of Y, V,W and
Y,W,V , respectively. The diagram is not (always) commutative; instead each
of the small squares in it commutes up to a factor (−1) . The proof is by
inspection.


