
CURVATURE AND FINITE DOMINATION

Michael Weiss

Abstract. Upper bounds obtained by Gromov on the Betti numbers of certain

closed Riemannian manifolds are shown to be upper bounds on the minimum number

of cells in CW–spaces dominating such manifolds.

In [Gro1], Gromov obtains a bound on the sum of the Betti numbers of a closed
Riemannian manifold V in terms of a lower bound on the sectional curvature and an
upper bound on the diameter. In more detail: Fix a field F , and let βi = βi(V ;F )
be the dimension over F of Hi(V ;F ). Let D = D(V ) be the diameter of V .

Theorem A. [Gro1] There exists a constant C = C(n) such that every closed
connected Riemannian n-manifold V satisfies

n∑
0

βi ≤ C1+κD

provided the sectional curvature of V is bounded from below by −κ2, where κ ≥ 0.

Corollary. If V has non–negative sectional curvature, then the sum of the Betti
numbers is ≤ C.

A stronger theorem can be obtained with a small change in Gromov’s proof.
Terminology: For spaces X and Y , we say that X dominates Y if there exist maps

Y
i−→ X

r−→ Y

such that ri is homotopic to the identity.

Theorem B. There exists a constant C = C(n) such that every closed connected
Riemannian n-manifold V can be dominated by a CW-space X having at most

C1+κD

cells. (Assume as before that the sectional curvature of V is bounded from below by
−κ2, where κ > 0.)

Note that Theorem B implies an upper bound for the minimum number of
generators of π1(V ). This is in agreement with [Gro2], but less explicit.
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The referee has asked me to point out that Theorem B explains better than
Theorem A does how a lower bound on the sectional curvatures of V restricts the
topological complexity of V . It gives an upper bound on the minimum number of
cells in a CW–space X dominating V , but there is no bound for the complexity of
the attaching maps for the cells of X. For example, in dimension 3 there are infin-
itely many different homology types of compact Riemannian manifolds of constant
sectional curvature 1 (lens spaces). In dimension 7, there are infinitely many dif-
ferent homology types of compact simply connected Riemannian manifolds having
strictly positive sectional curvature (the examples of Allof and Wallach, [AlWa]).

The referee has also drawn my attention to [Abr1] and [Abr2]. Abresch extended
Gromov’s result to asymptotically non-negatively curved manifolds (which are com-
plete by definition, but not always closed). He obtained more explicit bounds on
the Betti numbers. His result is

(*)
∑

i

βi(V n) ≤ c(n) · exp
(

15n−13
4

· b1(V n)
)

where b1(V n) is a real number (not a Betti number) measuring to some extent the
“amount” of negative curvature in V and, in Abresch’s own words,

the function c(n) can be effectively estimated by
an expression which grows exponentially in n3.

If V is closed, with diameter D and sectional curvature bounded from below by
−κ2 everywhere, then b1(V ) ≤ κD by [Abr1, 2.3].

Again, a small change in Abresch’s proof shows that inequality (*) and the
estimate for c(n) remain correct if the sum of the Betti numbers is replaced by the
minimum number of cells in a CW–space dominating V .

The changes should be made in §2.3 of [Gro1], and in §1 of [Abr2]. This is
where the Leray spectral sequence appears. Gromov refers to [Groth] for details.
Grothendieck’s account is of course “homological”. A more geometric explanation
of the Leray spectral sequence (using homotopy direct limits) is available. This is
where we start.

1. The Leray spectral sequence

Let A be a simplicial complex. We shall regard A as a category: objects are the
simplices of A, and morphisms are the inclusion maps. For a contravariant functor
Z from A to the category of spaces, let

|Z| :=
( ∐
s⊂A
Z(s)× s

)/
∼

where the coproduct runs over all simplices s ⊂ A and ∼ stands for the “usual”
relations, (f∗a, b) ∼ (a, b) whenever a ∈ Z(s′), b ∈ s, and f : s ↪→ s′. Note that |Z|
projects to A by (a, b) 7→ b. The inverse image of the k–skeleton of A under this
map is the vertical k–skeleton of |Z|, denoted by |Z|(k).

The construction |Z| is a special case of a homotopy direct limit. The notion
goes back to [Se] and the standard reference is [BK].
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With A and Z as above, let X be a space and let τ : Z −→ X be a natural
transformation (where we think of X as a constant functor on A). This induces a
map

τ∗ : |Z| −→ X ; (a, b) 7→ τ(a) .

Example 1.2. Let X be a CW − space, and let {Xγ | γ ∈ Γ} be a collection of
CW -subspaces of X. Let A be the nerve of the collection of subspaces: i.e., A has
one k–simplex for each finite subset Γ′ ⊂ Γ such that⋂

γ∈Γ′

Xγ 6= ∅.

Of course, we let Z(s) = ∩Xγ where the intersection is taken over all γ which are
vertices of s. The inclusions Z(s) ⊂ X define a natural transformation

τ : Z −→ X .

If X is the union of the Xγ , then τ∗ : |Z| −→ X is a homotopy equivalence.
The proof consists essentially in showing that the fibers of τ∗ are contractible

spaces. For x ∈ X, the fiber of τ∗ over x is homeomorphic to the full simplex
spanned by vertices γ such that x ∈ Xγ .

Example 1.3. Let X be a smooth n–manifold, and let {Xγ | γ ∈ Γ} be a collection
of open subsets of X. Define A, Z and τ as before. If X is the union of the Xγ ,
then τ∗ : |Z| −→ X is a homotopy equivalence.

The proof is by reduction to the previous example (use triangulations of X).
Details are left to the reader. The smoothness assumption is unnecessary, but it
makes the proof easier.

In the situation of 1.2 or 1.3, assuming that X is the union of the Xγ , we have
the canonical filtration of |Z| by vertical skeletons |Z|(k). Now a filtration of a
space always gives rise to a filtration of its singular chain complex, and then to
a spectral sequence converging to the homology of the space. Here we obtain a
spectral sequence converging to the homology of |Z|, which is the homology of X.
This is the Leray spectral sequence. We are not going to use it. We will use the
filtration of |Z| by vertical skeletons.

2. Cell content

The reader should now have [Gro1] before his/her eyes, more specifically, section
2.3 of [Gro1]. First a remark on terminology: As I understand it, Gromov means
by a ball in the Riemannian manifold V a certain open subset B = B(x, R) of V ,
equipped with the (sometimes additional) structure of a center x and radius R. For
example, if V is closed and D is the diameter of V , then B(x, 2D) and B(x, 10D)
must be regarded as different balls in V , although the underlying subsets of V are
both equal to V . If B = B(x,R) is a ball in V , and λ is a positive real number,
then λB denotes the ball B = B(x, λR).

In section 2.3, Gromov defines the content of a ball B in V as the rank of the
inclusion homomorphism

H∗( 1
5B;F ) −→ H∗(B;F ) .

Further, he writes:
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Quotation 2.1. “Take a ball B and cover the concentric ball 1
5B by some open

balls Bi, where i = 1, . . . , N , all of the same radius. Consider also the concentric
coverings {λjBi}, where j = 0, 1, . . . , n + 1 and λj = 10j . Suppose that all balls
5λjBi (where j = 0, . . . , n + 1 and i = 1, . . . , N) are contained in B, and let the
contents of these balls be bounded by a constant p, that is

Cont(5λjBi) ≤ p .

Denote by J the index [Gro1,2.2] of the system {5λn+1Bi}, where i = 1, . . . , N .
The content of B satisfies the following inequality:

Cont(B) ≤ (n + 1)pJ .′′

(End of quotation.)

Definition 2.2. The cell content of a ball B in V is ≤ q if there exists a CW–space
Y with at most q cells, and maps

1
5B

f−→ Y
g−→ B

such that gf is homotopic to the inclusion.

Lemma 2.3. Keeping the hypotheses of 2.1 in all other respects, suppose that the
cell contents of the balls 5λjBi (where j = 0, . . . , n and i = 1, . . . , N) are bounded
by a constant p.

Then the cell content of B is not greater than pJ .

(This will be proved in the next section.) Now return to the assumptions and
notation of Theorem B above; in particular, let D be the diameter of V . Lemma
2.3 implies, by arguments identical with Gromov’s, that for any x ∈ V the cell
content of B(x, 10D) is bounded by C1+κD for suitable C independent of V (but
depending on the dimension n). Since

B(x, 10D) = 1
5B(x, 10D) = V “as sets”,

this means that V can be dominated by a cell complex with at most C1+κD cells.

3.Proof of the lemma

Using example 1.3, we can deduce lemma 2.3 from the following statement.

Proposition 3.1. Let A be a compact simplicial complex with J simplices. Let

Z0
T0−→ Z1

T1−→ Z2 → · · · → Zn
Tn−→ Zn+1

be a diagram of functors (contravariant, from A to spaces) and natural transfor-
mations. Assume that, for each simplex s ⊂ A and each j ∈ {0, 1, . . . , n}, the map
from Zj(s) to Zj+1(s) given by Tj has a (strict) factorization

(*) Zj(s)
αj,s−−→ Yj,s

βj,s−−→ Zj+1(s)

where Yj,s is homotopy equivalent to a CW–space with not more than p cells. Then
the map from |Z0|(n) to |Zn+1| induced by TnTn−1 . . . T1T0 has a factorization

(**) |Z0|(n) −→W −→ |Zn+1|

where W is homotopy equivalent to a CW–space with not more than pJ cells.
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Interpretation 3.2. Let A be the nerve of the collection of open sets {λn+1Bi}
(notation of 2.1 and 2.3 above). Define Zj by

Zj(s) =
⋂

i vertex of s

λjBi for s ⊂ A and 0 ≤ j ≤ n + 1.

The natural transformations Tj are given by inclusion for 0 ≤ j ≤ n. Gromov’s
interpolation argument (in [Gro1, 2.3]) and the assumptions in 2.2 above imply
that the factorizations (*) exist. (They can be made strict by converting certain
maps into fibrations.) Therefore the factorization (**) exists. Now

|Z0| '
⋃

1≤i≤N

Bi

by 1.3, and the right–hand side contains 1
5B. Similarly

|Zn+1| '
⋃

1≤i≤N

λn+1Bi

and the right–hand side is contained in B. We conclude that the inclusion
1
5B ↪→ B

has a factorization
1
5B −→W −→ B

where W is homotopy equivalent to a CW–space with not more than pJ cells.
(Never mind the difference between |Z0| and |Z0|(n): the inclusion of |Z0|(n) in
|Z0| is n–connected, so any map from an n–manifold such as 1

5B to |Z0| can be
deformed into |Z0|(n).) This shows that the cell content of B is at most pJ .

Proof of 3.1. Without loss of generality, dim(A) ≤ n, and then |Z0|(n) = |Z0|.
Define a new contravariant functor Y from A to spaces by

Y(s) = Yi,s where i = n− dim(s).
Induced maps are defined as follows. For simplices s ⊂ t (proper inclusion) and
i = n− dim(s) and j = n− dim(t) use the composition

Yj,t
βj,t−−→ Zj+1(t) −→ Zi(t)

Zi(s⊂t)−−−−−→ Zi(s)
αi,s−−→ Yi,s

where the unlabelled arrow is a specialization of Ti−1 . . . Tj+1, or the identity if i
equals j +1. (Check that this gives a functor.) There are obvious natural transfor-
mations

Z0 −→ Y −→ Zn+1

with composition equal to TnTn−1 . . . T0. Hence we have a factorization
|Z0| −→ |Y| −→ |Zn+1|

of the map induced by Tn . . . T0. To complete the proof, apply the next lemma.

Lemma 3.3. Let A be a simplicial complex with J simplices, and let Y be a con-
travariant functor from A to spaces. Assume that each Y(s) is homotopy equivalent
to a CW–space with at most p cells. Then |Y| is homotopy equivalent to a CW–
space with at most pJ cells.

Proof. Use induction on J . For the induction step, let s be a simplex of maximal
dimension in A, and let A′ be the complement of the interior of s in A. Let Y ′ be
the restriction of Y to A′. Note that |Y| is the pushout of a diagram

Y(s)× s←↩ Y(s)× ∂s→ |Y ′| . �
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4. Cell Rank

Now switch to §1 of [Abr2]. (I shall use somewhat different notation to be
consistent, starting with V,U, U0 where Abresch writes M,X, Y , respectively.) For
open subsets U0 ⊂ U of the manifold V n and t > 0, Abresch defines

rkj(U,U0) := rank(Hj(U0;F )→ Hj(U ;F ))

rkt
∗(U,U0) :=

∑
j≥0

rkj(U,U0) · tj .

Supposing that B0
i ⊂ B1

i ⊂ · · · ⊂ Bn+1
i , for 1 ≤ i ≤ N , are open subsets of V such

that

U0 ⊂
N⋃

i=1

B0
j and U ⊃

N⋃
i=1

Bn+1
i ,

he states the following lemma (which replaces 2.1).

Quotation 4.1. Let t > 0, t−1 ∈ N, and suppose that any Bn
i intersects at most

t−1 distinct sets Bn
k , i 6= k ; then there holds the following inequality:

rkt
∗(U,U0) ≤ rkt

∗
( N⋃
i=1

Bn+1
i ,

N⋃
i=1

B0
i

)
≤ (e− 1)N · sup

{
rkt
∗
(⋂
i∈S

Bj+1
i ,

⋂
i∈S

Bj
i

) ∣∣ 0 ≤ j ≤ n, ∅ 6= S ⊂ {1, . . . , N}
}

.

Definitions 4.2. For a compact CW–space Y and t > 0, define

]t(Y ) :=
∑
j≥0

(number of j–cells in Y ) · tj .

For open subsets U0 ⊂ U in V and t > 0, let crkt
∗(U,U0) be the minimum of all

numbers q ∈ N such that there exist maps

U0
f−→ Y

g−→ U

where Y is a compact CW–space with ]t(Y ) ≤ q, and gf is homotopic to the
inclusion. If there is no such q let crkt

∗(U,U0) =∞.

Lemma 4.3. With rkt
∗ replaced by crkt

∗ throughout, the inequality in 4.1 remains
correct.

Proof. Let A be the nerve of the collection of open sets {Bn+1
i }, where 1 ≤ i ≤ N .

As in 3.2, define contravariant functors Zj from A to spaces:

Zj(s) =
⋂

i vertex of s

Bj
i

where 0 ≤ j ≤ n + 1. As in 3.2, there are natural transformations Zj → Zj+1 for
0 ≤ j ≤ n, given by inclusion. Let

p = sup
{
crkt

∗
(⋂
i∈S

Bj+1
i ,

⋂
i∈S

Bj
i

) ∣∣ 0 ≤ j ≤ n, ∅ 6= S ⊂ {1, . . . , N}
}

.
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As in 3.1 (**) and proof of 3.1, we can construct a factorization

|Z0|(n) −→W −→ |Zn+1|

where W = |Y| is the geometric realization of a contravariant functor Y from the
n–skeleton An to spaces, and Y(s) is homotopy equivalent to a CW–space X(s)
such that

]t(X(s)) ≤ p

for every face s ⊂ An. We now have to show that

crkt
∗(|Y|) ≤ (e− 1)Np .

To this end we show first that ]t(An) ≤ (e− 1)N , using the hypotheses in 4.1 ; this
is actually carried out in [Abr2, p.479]. (Beware that our t is Abresch’s t−1.) Then
we finish with a variation on 3.3:

Lemma 4.4. Let B be a compact simplicial complex with ]t(B) = J and let Y
be a contravariant functor from B to spaces. Assume that each Y(s) is homotopy
equivalent to a CW–space X(s) with ]t(X(s)) ≤ p. Then |Y| is homotopy equivalent
to a CW–space X with ]t(X) ≤ pJ .

The proof is by induction on the number of simplices in B, like that of 3.3. �

5. Big spaces with small homology

Here is an example showing that Theorem B is stronger than Theorem A. Let M
be a square matrix (size k × k) with integer entries such that both M and M − Ik

have determinant ±1; for instance, k = 2 and

M =
(

1 1
1 0

)
.

Let π = Z, and let the generator of π act on Zk by M . Let µ be the minimum
number of generators of

E =
s⊕

i=1

Zk

as a π–module. Then µk ≥ s, because homπ(E, Zk) contains a free abelian group
of rank s. Hence µ ≥ s/k. Let X be a wedge of sk spheres of dimension d > 1, and
let f : X → X be a homotopy equivalence such that Hd(X), with the action of π
determined by f∗, is isomorphic to E as a π–module. Finally let Y be the mapping
torus of f ,

Y = X × [0, 1]
/

(x, 1) ∼ (f(x), 0).

Then π1(Y ) = π = Z, and H∗(Y ;F ) ∼= H∗(S1;F ) for any field F. But the number
of cells in any CW–space dominating Y is ≥ µ, which is ≥ s/k, which is as large
as we please.

To obtain closed manifold examples of the same type, just make sure that Y
embeds in a high–dimensional euclidean space. Then take a smooth regular neigh-
bourhood and double along the boundary.
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