ERRATUM

MICHAEL S. WEISS

The proof of theorem 6.3 in my paper Orthogonal calculus [W] contains a gap. This is caused by an error in the preliminaries [W, 6.2]; the offending statement is ... and happens to be inverse to $\rho_{T(b)}$. The purpose of this note is to fill the gap.

Notation. \mathcal{J} is the category of finite dimensional real vector spaces with a positive definite inner product. Morphisms in \mathcal{J} are the linear maps respecting the inner product. \mathcal{E} is the category of continuous functors from \mathcal{J} to spaces. (The *spaces* in question are assumed to be compactly generated Hausdorff, homotopy equivalent to CW-spaces). A morphism $E \to F$ (natural transformation) in \mathcal{E} is an *equivalence* if $E(V) \to F(V)$ is a homotopy equivalence for each V in \mathcal{J} . An object E in \mathcal{E} is polynomial of degree $\leq n$ if, for each V in \mathcal{J} , the canonical map

$$\rho: E(V) \longrightarrow \operatornamewithlimits{holim}_{0 \neq U \subset \mathbb{R}^{n+1}} E(U \oplus V)$$

is a homotopy equivalence. The codomain of ρ , which we also denote by $(\tau_n E)(V)$, is a topological homotopy (inverse) limit [W, 5.1]; more details below, in the proof of lemma e.3. To repeat, E is polynomial of degree $\leq n$ if and only if $\rho: E \to \tau_n E$ is an equivalence.

6.3. Theorem. For any $n \ge 0$, there exist a functor $T_n : \mathcal{E} \longrightarrow \mathcal{E}$ taking equivalences to equivalences, and a natural transformation $\eta_n : 1 \longrightarrow T_n$ with the following properties:

- (1) $T_n(E)$ is polynomial of degree $\leq n$, for all E in \mathcal{E} .
- (2) if E is already polynomial of degree $\leq n$, then $\eta_n : E \longrightarrow T_n E$ is an equivalence.
- (3) For every E in \mathcal{E} , the map $T_n(\eta_n): T_nE \longrightarrow T_nT_nE$ is an equivalence.

What we have to re-prove is (1). The remainder of the proof of 6.3 in [W] is not affected by the error in 6.2. As in [W] define $T_n E$ as the homotopy colimit (telescope in this case) of the direct system

1

(e.1)
$$E \xrightarrow{\rho} \tau_n E \xrightarrow{\tau_n(\rho)} \tau_n^2 E \xrightarrow{\tau_n^2(\rho)} \tau_n^3 E \xrightarrow{\tau_n^3(\rho)} \cdots$$

It would be equally reasonable to define $T_n E$ as the homotopy colimit of

(e.2)
$$E \xrightarrow{\rho} \tau_n E \xrightarrow{\rho} \tau_n^2 E \xrightarrow{\rho} \tau_n^3 E \xrightarrow{\rho} \cdots$$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

where the k-th map in the direct system is $\rho : \tau_n^{k-1}E \to \tau_n(\tau_n^{k-1}E)$. It turns out that the homotopy colimits of (e.1) and (e.2) are isomorphic, even relative to E. Namely, the Fubini principle for homotopy limits gives

$$(\tau_n^k E)(V) \cong \underset{0 \neq U_1, \dots, U_k \subset \mathbb{R}^{n+1}}{\text{holim}} E(U_1 \oplus \dots \oplus U_k \oplus V).$$

Using this as an identification and inspecting the maps in the direct systems (e.1) and (e.2), one finds that the direct systems are isomorphic.

e.3. Lemma. Let $p: G \to F$ be a morphism in \mathcal{E} . Suppose that there exists an integer b such that $p: G(W) \to F(W)$ is $((n+1)\dim(W) - b)$ -connected for all W in \mathcal{J} . Then $\tau_n(p): \tau_n G(W) \to \tau_n F(W)$ is $((n+1)\dim(W) - b + 1)$ -connected for all W.

Proof. We begin with a discussion of the homotopy limits involved. Suppose first that Z is any functor from the poset \mathcal{D} of nonzero linear subspaces of \mathbb{R}^{n+1} to spaces. Ignoring the topology on \mathcal{D} , we can define holim Z as the totalization of the incomplete cosimplicial space

(e.4)
$$[k] \mapsto \prod_{L:[k] \hookrightarrow \mathcal{D}} Z(L(k))$$

where L runs over the order-preserving *injections* from the poset $[k] = \{1, \ldots, k\}$ to \mathcal{D} . (An incomplete cosimplicial space is a covariant functor from the category with objects [k] for $k \geq 0$ and monotone *injections* as morphisms to the category of spaces; the totalization of such a thing is the space of natural transformations to it from the functor $[k] \mapsto \Delta^k$.)

We could make (e.4) into a complete cosimplicial space by dropping the injectivity condition on the order–preserving maps L; the totalization would not change. However, totalizations of incomplete cosimplicial spaces are usually easier to understand than totalizations of complete cosimplicial spaces.— In (e.4), it is understood that a product $\prod_{i \in S}$ with empty S is a single point *; therefore the right–hand side of (e.4) is a point for k > n + 1.

Remembering the topology on \mathcal{D} now, we note that \mathcal{D} is a union of Grassmannians. Let us suppose that the spaces Z(U) are the fibers of a fiber bundle ξ on \mathcal{D} (that is, Z(U) is the fiber over $U \in \mathcal{D}$), and that maps $Z(U_1) \to Z(U_2)$ induced by inclusions $U_1 \subset U_2$ depend continuously on U_1, U_2 . Then it is appropriate to replace the incomplete cosimplicial space (e.4) by another incomplete cosimplicial space,

$$(e.5) [k] \mapsto \Gamma(e_k^*\xi)$$

where e_k is the evaluation map $L \mapsto L(k)$, with domain equal to the space of monotone injections $L : [k] \to \mathcal{D}$, and codomain \mathcal{D} . The symbol Γ denotes a section space. The totalization of (e.5) is the *topological* homotopy limit of Z. For us, the relevant examples are $Z(U) := G(U \oplus W)$ and $Z(U) := F(U \oplus W)$ where W is fixed; the topological homotopy limits are then $\tau_n G(W)$ and $\tau_n F(W)$, respectively.

ERRATUM

The space of monotone injections $[k] \to \mathcal{D}$ is a disjoint union of manifolds $C(\lambda)$. Here $\lambda : [k] \to [n+1]$ is a monotone injection avoiding the element $0 \in [n+1]$, and $C(\lambda)$ consists of those $L : [k] \to \mathcal{D}$ for which L(i) has dimension $\lambda(i)$. Writing $\lambda_i = \lambda(i)$ we find

$$\dim(C(\lambda)) = (n+1-\lambda_k)\lambda_k + \sum_{i=0}^{k-1} (\lambda_{i+1} - \lambda_i)\lambda_i$$
$$= (n+1)\lambda_k + \sum_{i=0}^{k-1} \lambda_i\lambda_{i+1} - \sum_{i=0}^k \lambda_i^2$$
$$< (n+1)\lambda_k - k.$$

We see from (e.5) that the connectivity of $\tau_n(p) : \tau_n G(W) \to \tau_n F(W)$ is greater than or equal to the minimum of the numbers

(connectivity of $p: G(L(k) \oplus W) \to F(L(k) \oplus W)) - \dim(C(\lambda)) - k$

taken over all triples (L, λ, k) with $L \in C(\lambda)$ and $\lambda : [k] \to [n+1]$. By our hypothesis on $p : G \to F$, the connectivity of $p : G(L(k) \oplus W) \to F(L(k) \oplus W))$ is at least equal to $(n+1)(\lambda_k + \dim(W)) - b$. By the inequality for $\dim(C(\lambda))$, the minimum in question is greater than $(n+1)\dim(W) - b$. \Box

Remark. The hypothesis in lemma e.3 is strongly reminiscent of what Goodwillie in his calculus calls *agreement to* n-th order, in [Go3] and (for n = 1) in [Go1, 1.13]. Goodwillie also has lemmas similar to e.3, such as [Go1, 1.17] and [Go3, 1.6].

We fix some V in \mathcal{J} from now on ; the goal is to prove that ρ from $T_n E(V)$ to $\tau_n(T_n E)(V)$ is a homotopy equivalence for any E in \mathcal{E} .

For W in \mathcal{J} let $\operatorname{mor}(V, W)$ be the space of morphisms $V \to W$ in \mathcal{J} and let $\gamma_1(V, W)$ be the Riemannian vector bundle on $\operatorname{mor}(V, W)$ whose total space is the set of (f, x)in $\operatorname{mor}(V, W) \times W$ with $x \perp \operatorname{im}(f)$. Let $\gamma_{n+1}(V, W)$ be the Whitney sum of n+1copies of $\gamma_1(V, W)$, and let $S\gamma_{n+1}(V, W)$ be the unit sphere bundle of $\gamma_{n+1}(V, W)$. We abbreviate

$$F(W) := mor(V, W)$$
$$G(W) := S\gamma_{n+1}(V, W)$$

and write $p: G \to F$ for the projection. By [W, 4.2, 5.2] the object G in \mathcal{E} corepresents the functor $E \mapsto \tau_n E(V)$ from \mathcal{E} to spaces. In more detail, writing nat(...) for spaces of natural transformations, we have a commutative diagram, natural in E:

e.7. Lemma. $T_n p: T_n G \to T_n F$ is an equivalence.

Proof. It is clear that $p: G \to F$ satisfies the hypothesis of lemma e.3 with b equal to $(n + 1) \dim(V) + 1$. (Here V is *not* a variable; we fixed it, and used it in the definition of G and F.) Repeated application of lemma e.3 shows that the connectivity of

$$\tau_n^k(p): \tau_n^k G(W) \to \tau_n^k F(W)$$

tends to infinity as k goes to infinity, for any W in \mathcal{J} . Therefore $T_n p$ is an equivalence. \Box

We shall use (e.7) to prove that the commutative square

(e.8)
$$E(V) \xrightarrow{\subset} T_n E(V)$$
$$\downarrow^{\rho} \qquad \qquad \downarrow^{\rho}$$
$$\tau_n E(V) \xrightarrow{\subset} \tau_n (T_n E)(V)$$

can be enlarged to a commutative diagram of the form

(e.9)
$$E(V) \longrightarrow X \longrightarrow T_n E(V)$$
$$\downarrow^{\rho} \qquad \qquad \downarrow^{g} \qquad \qquad \downarrow^{\rho}$$
$$\tau_n E(V) \longrightarrow Y \longrightarrow \tau_n (T_n E)(V)$$

in which the map g is a homotopy equivalence. (That is, (e.8) is obtained from (e.9) by deleting the middle column.) According to (e.6), diagram (e.8) is isomorphic to

(e.10)
$$nat(F,E) \xrightarrow{\subset} nat(F,T_nE)$$
$$\downarrow^{p^*} \qquad \qquad \downarrow^{p^*}$$
$$nat(G,E) \xrightarrow{\subset} nat(G,T_nE)$$

and clearly (e.10) can be enlarged to

$$(e.11) \qquad \begin{array}{ccc} \operatorname{nat}(F,E) & \longrightarrow & \operatorname{nat}(T_nF,T_nE) & \stackrel{\operatorname{res}}{\longrightarrow} & \operatorname{nat}(F,T_nE) \\ & & \downarrow^{p^*} & & \downarrow^{(T_np)^*} & & \downarrow^{p^*} \\ & & \operatorname{nat}(G,E) & \longrightarrow & \operatorname{nat}(T_nG,T_nE) & \stackrel{\operatorname{res}}{\longrightarrow} & \operatorname{nat}(G,T_nE) \end{array}$$

where the arrows labelled res are restriction maps. We are now very close to having constructed a diagram like (e.9). The idea is that since $T_n p : T_n G \to T_n F$ is

ERRATUM

an equivalence by lemma e.7, the middle arrow in (e.11) ought to be a homotopy equivalence. Of course, it does not work exactly like that.

What is needed here is the notion of *cofibrant object in* \mathcal{E} from the appendix of [W]. If $v: A \to B$ is an equivalence in \mathcal{E} where A and B are cofibrant, then v admits a homotopy inverse $u: B \to A$, with (natural) homotopies relating vu and uv to the respective identity maps. Every object in \mathcal{E} is the codomain of an equivalence whose domain is a so-called CW-object [W, A.4], and CW-objects are cofibrant [W, A.3]. More generally, every morphism $w: C \to D$ in \mathcal{E} has a factorization

$$C \hookrightarrow D^\diamond \to D$$

where $D^{\diamond} \to D$ is an equivalence and D^{\diamond} is a CW–object *relative to* D. (I leave definition and proof to the reader.) This factorization can be constructed functorially in $w: C \to D$, and if C is already cofibrant, then D^{\diamond} will be cofibrant.

We apply this with w equal to the inclusion $F \to T_n F$ or to the inclusion $G \to T_n G$. It follows from (e.6) that F and G are cofibrant. Therefore $(T_n F)^{\diamond}$ and $(T_n G)^{\diamond}$ in the factorizations

$$F \hookrightarrow (T_n F)^\diamond \to T_n F$$
, $G \hookrightarrow (T_n G)^\diamond \to T_n G$

are cofibrant. Replacing T_nF and T_nG by $(T_nF)^\diamond$ and $(T_nG)^\diamond$ in (e.11) we obtain a commutative diagram

$$(e.12) \qquad \begin{array}{c} \operatorname{nat}(F,E) & \longrightarrow & \operatorname{nat}((T_nF)^\diamond, T_nE) & \stackrel{\operatorname{res}}{\longrightarrow} & \operatorname{nat}(F,T_nE) \\ & \downarrow^{p^*} & \downarrow & \downarrow^{p^*} \\ & \operatorname{nat}(G,E) & \longrightarrow & \operatorname{nat}((T_nG)^\diamond, T_nE) & \stackrel{\operatorname{res}}{\longrightarrow} & \operatorname{nat}(G,T_nE) \end{array}$$

and now the middle arrow is a homotopy equivalence. Diagram (e.12) is the explicit form or fulfillment of (e.9).

Proof of (1) in 6.3. We have to show that $\rho: T_n E(V) \to \tau_n(T_n E)(V)$ is a homotopy equivalence. It is enough to show that the vertical arrows in the commutative diagram

induce a map between the homotopy colimits of the rows which is a homotopy equivalence. It is enough because τ_n commutes with homotopy colimits over \mathbb{N} up to homotopy equivalence, and because we can define $T_n E$ as the homotopy colimit

of (e.2). Denote the homotopy colimits of the rows in (e.13) by P and Q, and the map under investigation by $r: P \to Q$. For each $i \ge 0$ the commutative diagram

$$\begin{array}{ccc} \tau_n^i E(V) & \stackrel{\subset}{\longrightarrow} & P \\ & & & \downarrow^{\rho} & & \downarrow^r \\ \tau_n^{i+1} E(V) & \stackrel{\subset}{\longrightarrow} & Q \end{array}$$

can be enlarged, as in (e.9) and (e.12), to a commutative diagram

where the middle vertical arrow is a homotopy equivalence. It follows easily that $r: P \to Q$ is a homotopy equivalence. \Box

References

- [Go1]: T.G. Goodwillie, Calculus I: The first derivative of pseudoisotopy theory, K-theory 4 (1990), 1–27.
- [Go2]: T.G. Goodwillie, Calculus II: Analytic functors, K-theory 5 (1992), 295–332.
- [Go3]: T.G. Goodwillie, Calculus III: The Taylor series of a homotopy functor, Preprint/in preparation.
- [W]: M.Weiss, Orthogonal Calculus, Trans. Amer. Math. Soc. 347 (1995), 3743–3796.

DEPT. OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556, USA *E-mail address*: weiss.13@nd.edu