ERRATUM

MICHAEL S. WEISS

The proof of theorem 6.3 in my paper Orthogonal calculus [W] contains a gap.
This is caused by an error in the preliminaries [W, 6.2] ; the offending statement is
. and happens to be inverse to pp). The purpose of this note is to fill the gap.

Notation. J is the category of finite dimensional real vector spaces with a positive
definite inner product. Morphisms in J are the linear maps respecting the inner
product. & is the category of continuous functors from J to spaces. (The spaces in
question are assumed to be compactly generated Hausdorff, homotopy equivalent to
CW-spaces). A morphism E — F (natural transformation) in £ is an equivalence
it E(V) — F(V) is a homotopy equivalence for each V in J. An object E in £ is
polynomial of degree < n if, for each V' in J, the canonical map
p:E(V)— O;é}(ljocl}lgl1+1 EUaV)

is a homotopy equivalence. The codomain of p, which we also denote by (7, E)(V),
is a topological homotopy (inverse) limit [W, 5.1] ; more details below, in the proof
of lemma e.3. To repeat, E is polynomial of degree < n if and only if p: £ — 7, F
is an equivalence.

6.3. Theorem. For any n > 0, there exist a functor T,, : £ — & taking equiva-
lences to equivalences, and a natural transformation n, : 1 — T, with the following
properties:
(1) T,(E) is polynomial of degree < n, for all E in E.
(2) iof E is already polynomial of degree < n, then n, : E — T,FE is an
equivalence.
(3) For every E in &, the map Ty,(ny) : ThE — T, T, E is an equivalence.

What we have to re-prove is (1). The remainder of the proof of 6.3 in [W] is
not affected by the error in 6.2. As in [W] define T,,E as the homotopy colimit
(telescope in this case) of the direct system

N

T, 72 73
(el) E 4 TnE 7 (p) 7-72LE n(P) TSE n

It would be equally reasonable to define T, E as the homotopy colimit of

(e.2) E-L2. 5 E-L F L ™E L
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where the k-th map in the direct system is p : 7*"'E — 7,,(7*~1E). It turns out
that the homotopy colimits of (e.1) and (e.2) are isomorphic, even relative to E.
Namely, the Fubini principle for homotopy limits gives

k .
E) V) = hol BU,&---oU,aV).
(rn E)(V) o, oMM (Ui1@---oUpaV)

Using this as an identification and inspecting the maps in the direct systems (e.1)
and (e.2), one finds that the direct systems are isomorphic.

e.3. Lemma. Let p: G — F be a morphism in €. Suppose that there exists an
integer b such that p: G(W) — F(W) is ((n+1) dim(W) — b)—connected for all W
in J. Then 7,(p) : ThG(W) = 1, F(W) is (n + 1) dim(W) — b + 1) —connected for
all W.

Proof. We begin with a discussion of the homotopy limits involved. Suppose first
that Z is any functor from the poset D of nonzero linear subspaces of R**! to
spaces. Ignoring the topology on D, we can define holim Z as the totalization of
the incomplete cosimplicial space

(e.4) k] — H Z(L(k))
L:[k]—D
where L runs over the order—preserving injections from the poset [k] = {1,...,k}

to D. (An incomplete cosimplicial space is a covariant functor from the category
with objects [k] for £ > 0 and monotone injections as morphisms to the category
of spaces ; the totalization of such a thing is the space of natural transformations
to it from the functor [k] — A*.)

We could make (e.4) into a complete cosimplicial space by dropping the injectiv-
ity condition on the order—preserving maps L ; the totalization would not change.
However, totalizations of incomplete cosimplicial spaces are usually easier to under-
stand than totalizations of complete cosimplicial spaces.— In (e.4), it is understood
that a product [[,.g with empty S is a single point * ; therefore the right-hand
side of (e.4) is a point for k > n + 1.

Remembering the topology on D now, we note that D is a union of Grassman-
nians. Let us suppose that the spaces Z(U) are the fibers of a fiber bundle £ on
D (that is, Z(U) is the fiber over U € D), and that maps Z(U;) — Z(Usz) induced
by inclusions U; C Us depend continuously on Uy, Us. Then it is appropriate to
replace the incomplete cosimplicial space (e.4) by another incomplete cosimplicial
space,

(e:5) [k] = T(erf)

where ey, is the evaluation map L — L(k), with domain equal to the space of
monotone injections L : [k] — D, and codomain D. The symbol I" denotes a section
space. The totalization of (e.5) is the topological homotopy limit of Z. For us,
the relevant examples are Z(U) :== G(U® W) and Z(U) := F(U @ W) where W is
fixed ; the topological homotopy limits are then 7,,G(W) and 7,, F'(W), respectively.
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The space of monotone injections [k] — D is a disjoint union of manifolds C'(\).
Here A : [k] — [n 4 1] is a monotone injection avoiding the element 0 € [n + 1],
and C(A) consists of those L : [k] — D for which L(i) has dimension A(7). Writing
A = A(4) we find

k—1
dim(C(A) = (n+ 1= XA+ Y (vt — M)A
=0
k—1 k
=m+DXAe+ D> Aidigr — YA
=0 =0

<(n+DI—k.
We see from (e.5) that the connectivity of 7,(p) : T,G(W) — 7, F(W) is greater
than or equal to the minimum of the numbers

(connectivity of p: G(L(k) @ W) — F(L(k) @ W)) —dim(C(\)) — k

taken over all triples (L, A\, k) with L € C'(\) and A : [k] — [n+1]. By our hypothesis
on p: G — F, the connectivity of p : G(L(k) ® W) — F(L(k) ® W)) is at least
equal to (n+1)(Ag +dim(WW)) — b. By the inequality for dim(C())), the minimum
in question is greater than (n + 1) dim(W) —b. O

Remark. The hypothesis in lemma e.3 is strongly reminiscent of what Goodwillie
in his calculus calls agreement to n—th order, in [Go3] and (for n = 1) in [Gol, 1.13].
Goodwillie also has lemmas similar to e.3, such as [Gol, 1.17] and [Go3, 1.6].

We fix some V in J from now on ; the goal is to prove that p from T,,E(V) to
Tn (T, E)(V) is a homotopy equivalence for any E in &.

For W in J let mor(V, W) be the space of morphisms V' — W in J and let v, (V, W)
be the Riemannian vector bundle on mor(V, W) whose total space is the set of (f, x)
in mor(V, W) x W with « L im(f). Let v,4+1(V, W) be the Whitney sum of n + 1
copies of 1 (V, W), and let S7,,4+1(V, W) be the unit sphere bundle of ~,, 1 (V, W).
We abbreviate

F(W) := mor(V,W)
G(W) := Synsa (VW)

and write p : G — F for the projection. By [W, 4.2, 5.2] the object G in £ co—
represents the functor E — 7,E(V) from £ to spaces. In more detail, writing
nat(...) for spaces of natural transformations, we have a commutative diagram,
natural in E:

(6.6) l% l%
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e.7. Lemma. T,p:T,G — T,F is an equivalence.

Proof. 1t is clear that p : G — F satisfies the hypothesis of lemma e.3 with b
equal to (n + 1)dim(V) + 1. (Here V is not a variable ; we fixed it, and used it
in the definition of G and F'.) Repeated application of lemma e.3 shows that the
connectivity of

E(p) : TEG(W) — TEF(W)

n

tends to infinity as k goes to infinity, for any W in J. Therefore T},p is an equiva-
lence. O

We shall use (e.7) to prove that the commutative square

E(V) —S— T,E(V)

(e.8) lp l,,

mE(V) —— 1, (T,E)(V)

can be enlarged to a commutative diagram of the form

E(V) X TE(V)
(e.9) lp lg lp
T E(V) Y (T E) (V)

in which the map g is a homotopy equivalence. (That is, (e.8) is obtained from (e.9)
by deleting the middle column.) According to (e.6), diagram (e.8) is isomorphic to

nat(F, E) —=— nat(F,T,E)

(e.10) lp* lp*

nat(G, E) —=— nat(G,T,E)
and clearly (e.10) can be enlarged to

nat(F, E) —— nat(T,F,T,F) ——— nat(F,T,F)

(e.11) Jp* | oy Jp*

nat(G, F) —— nat(T,,G, T, E) ——— nat(G,T,FE)

where the arrows labelled res are restriction maps. We are now very close to having
constructed a diagram like (e.9). The idea is that since T,p : T,,G — T, F is
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an equivalence by lemma e.7, the middle arrow in (e.11) ought to be a homotopy
equivalence. Of course, it does not work exactly like that.

What is needed here is the notion of cofibrant object in £ from the appendix of
[W]. If v : A — B is an equivalence in £ where A and B are cofibrant, then v admits
a homotopy inverse u : B — A, with (natural) homotopies relating vu and uv to
the respective identity maps. Every object in £ is the codomain of an equivalence
whose domain is a so—called CW-object [W, A.4], and CW-objects are cofibrant
[W, A.3]. More generally, every morphism w : C'— D in £ has a factorization

C—D°—D

where D® — D is an equivalence and D¢ is a CW—object relative to D. (I leave def-
inition and proof to the reader.) This factorization can be constructed functorially
inw:C — D, and if C is already cofibrant, then D¢ will be cofibrant.

We apply this with w equal to the inclusion F' — T, F or to the inclusion
G — T,G. It follows from (e.6) that F' and G are cofibrant. Therefore (7,,F)° and
(T,,G)® in the factorizations

F— (T, F)° —>T,F, G — (T,G)° - TG

are cofibrant. Replacing T, F and T,,G by (T,F)°® and (T,,G)° in (e.11) we obtain
a commutative diagram

nat(F, B) —— nat((T,,F)°, T,E) ——— nat(F,T,E)

(e.12) |» | |»

nat(G, E) —— nat((T,,G)°, T,E) ——— nat(G,T,F)

and now the middle arrow is a homotopy equivalence. Diagram (e.12) is the explicit
form or fulfillment of (e.9).

Proof of (1) in 6.3. We have to show that p : T, E(V) — 7,(T,E)(V) is a homotopy
equivalence. It is enough to show that the vertical arrows in the commutative
diagram

EWV) 2 n,EV) Y- 72E(V) 22— B2EV) —L— ...
(e.13) lp lp lp lp

rB(V) 2 gy O spyy 0 gy @)
induce a map between the homotopy colimits of the rows which is a homotopy

equivalence. It is enough because 7, commutes with homotopy colimits over N up
to homotopy equivalence, and because we can define T,, F as the homotopy colimit
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of (e.2). Denote the homotopy colimits of the rows in (e.13) by P and @, and the
map under investigation by r : P — . For each i > 0 the commutative diagram

TE(\V) —S— P

L I

HEB(V) ——

can be enlarged, as in (e.9) and (e.12), to a commutative diagram

TiE(V) X P
g [
T E(V) v Q

where the middle vertical arrow is a homotopy equivalence. It follows easily that
r: P — @ is a homotopy equivalence. [

REFERENCES

[Gol]: T.G. Goodwillie, Calculus I: The first derivative of pseudoisotopy theory, K-theory 4
(1990), 1-27.

[Go2]: T.G. Goodwillie, Calculus II: Analytic functors, K-theory 5 (1992), 295-332.

[Go3]: T.G. Goodwillie, Calculus III: The Taylor series of a homotopy functor, Preprint/in
preparation.

[W]: M.Weiss, Orthogonal Calculus, Trans. Amer. Math. Soc. 347 (1995), 3743-3796.

DEPT. OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556, USA
E-mail address: weiss.13@nd.edu



