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Adaptive Projection Operators in
Multiresolution Scientific Visualization

Mario Ohlberger and Martin Rumpf

Abstract—Recently, multiresolution visualization methods have become an indispensable ingredient of real-time interactive postprocessing.
The enormous databases, typically coming along with some hierarchical structure, are locally resolved on different levels of detail to achieve
a significant savings of CPU and rendering time. Here, the method of adaptive projection and the corresponding operators on data
functions, respectively, are introduced. They are defined and discussed as mathematically rigorous foundations for multiresolution data
analysis. Keeping in mind data from efficient numerical multigrid methods, this approach applies to hierarchical nested grids consisting of
elements which are any tensor product of simplices, generated recursively by an arbitrary, finite set of refinement rules from some coarse
grid. The corresponding visualization algorithms, e.g., color shading on slices or isosurface rendering, are confined to an appropriate depth-
first traversal of the grid hierarchy. A continuous projection of the data onto an adaptive, extracted subgrid is thereby calculated recursively.
The presented concept covers different methods of local error measurement, time-dependent data which have to be interpolated from a
sequence of key frames, and a tool for local data focusing. Furthermore, it allows for a continuous level of detail.

Index Terms—Adaptive projection operators, multiresolution, efficient data analysis, error indicators, hierarchical grids, visualization

of large data sets.

1 INTRODUCTION

T ODAY’s computing hardware and the rapid development
of efficient numerical algorithms allow the successively
finer approximation of physical quantities in scientific com-
puting. Sophisticated multigrid methods [30], [1], [24], [27],
[47] are especially capable nowadays of resolving complex
solution structures. In a postprocessing step, the user wants
to interactively explore the corresponding large amount of
data with typically millions of unknowns to improve his un-
derstanding of interesting features. The numerical methods
are mostly based on a variety of domain discretizations, such
as structured or unstructured Finite Difference, Finite Ele-
ment, or Finite Volume grids, which are, in general, supplied
with a natural hierarchical structure. The corresponding
meshes may consist of a single or of mixed element types,
e.g., simplicial, prismatic, rectangular, or cubic ones. The re-
cursive generation of elements is, in general, described by a
finite set of refinement rules. Furthermore, very often in the
implementation of numerical methods, nonstandard and
application dependent data structures are essential for an
efficient implementation of the simulation algorithm.

Data analysis, especially by suitable visualization meth-
ods, is an indispensable tool to study and understand the
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simulation results. Typical basic tools are the drawing of
isolines, respectively, the color-shading or texturing on 2D
domains, on surfaces, or on arbitrary slices in 3D, and the
rendering of isosurfaces in 3D. Efficiency of the visualization
is requested to extract the required information from the
enormous database at a high frame rate. A variety of multire-
solution visualization methods has been designed to serve
this purpose for certain grid types in two and three dimen-
sions. For a more detailed overview, we refer to the next
paragraph. These methods correspond to a specific local er-
ror measurement. The considered error type, e.g., in the L™,
L’ norm, or in terms of wavelet coefficients, is, in general,
closely related to the physical problem underlying the simu-
lation. If error indicator values are below a certain threshold,
the algorithm locally stops on coarser levels of detail. Algo-
rithmic effort is needed to avoid cracks in the resulting ap-
proximation of surface graphs, isolines, and isosurfaces, or
jumps in color and texture values.

We present here a unified approach to multiresolution
visualization on nested grids which covers multiple types of
error indication and comes along with a robust and efficient
solution of the above continuity problem for a large class of
visualization applications. The approach is based on the
definition of an appropriate adaptive projection of the consid-
ered discrete function. Throughout the paper, the term pro-
jection is always meant in the sense of the mathematical op-
eration which can be applied to some function. Here, a dis-
crete function, the data given on a Finite Element mesh, is
projected onto an adaptive grid that consists of different lev-
els of mesh elements. The projection is recursively defined on
the grid hierarchy and depends on some error indicator
given on the grid nodes. It is guaranteed to be continuous if a
natural saturation condition is fulfilled by the error indicator.
Various types of indicators are supported. One possibility is
that the saturation condition may fail. This typically happens
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on coarse grid levels. Therefore, in a preroll step, a slight
modification is introduced which again “saturates” the indi-
cator values. Furthermore, we point out that the use of hier-
archical offset values as an error indicator in addition espe-
cially allows an estimation of min/max values on grid cells,
which is essential, e.g., for hierarchical isosurface generation.

The concept applies to time-dependent data as well,
where a finite number of key frames is given and, in be-
tween, some interpolation is used. It is explained how to
interpolate error indicator values to obtain an appropriate
adaptive projection at any time.

Furthermore, a continuous level of detail, in our concept,
the continuity of the adaptive data projection with respect
to the user prescribed threshold, can easily be obtained by a
slight generalization of the projection criterion.

Finally, in case of Finite Element spaces of higher-order
polynomial degree, the presented methods can be adapted to
enable a “virtual,” adaptive refinement of the finest grid
cells to resolve the local function with arbitrary prescribed
precision.

The paper is organized as follows: First, we review related
work on multiresolution visualization in Section 1.1 and, in
order to especially clarify the notation, we give a brief over-
view on nested grids and function spaces in Section 1.2. In
Sections 2 and 3, we introduce adaptive data projections de-
pending on some type of error measurement and explain a
general adaptive visualization algorithm. Next, various types
of projection criteria, respectively, error indicators, are dis-
cussed in Section 4. In Section 5, we derive additional projec-
tion criteria for geometric shapes, as well as time-dependent
and vector-valued functions. In Section 6, we explain how to
guarantee a continuous level of detail with respect to the user
prescribed threshold value and Section 7 discusses adaptive
projection in case of higher-order polynomial degree of the
discrete function spaces. Although the discussion of algo-
rithmic aspects is not this paper’s main intention, in Section
8, we comment on some aspects concerning the implementa-
tion and, in Section 9, we discuss the efficiency of the pre-
sented approach and compare it with other methods. Finally,
in Section 10, we draw conclusions.

Let us remark that, although the presented concept ap-
plies to 2D and 3D visualization applications, with a strong
focus on the 3D case, most of the schematic figures deal
with the 2D case. This is solely to simplify the presentation.

1.1 Related Work

As already described, improving the efficiency of visuali-
zation methods with respect to very large data sets in two
and three dimensions is a key issue in recent research. A
variety of applications, such as terrain visualization, surface
modeling, medical imaging, and, especially, numerical
simulations, deliver enormous amounts of data. An inter-
active exploration is indispensable to analyze the output,
understand solution features, and modify input parameters.
Multiresolutional techniques have proven to be the ade-
quate solution for a large class of applications. Authors
have approached them in a multitude of ways. Here, we
give a brief and, naturally, incomplete overview.

The efficient rendering of height fields in geographic im-
aging, especially for flight simulation purposes, has been

studied, e.g., by Certain et al. [7], Faust et al. [20], and De
Floriani et al. [14]. Applying some hierarchical algorithm,
they adaptively extract conforming triangular meshes from
the underlying regular database. Data in the center of the
typically moving viewpoint is thereby resolved finer than
in outer areas. Errors are measured in the L™ norm, respec-
tively, in pixels in image space. Gross and Staadt [25] con-
sider a wavelet compressed data representation and use
wavelet coefficients as an error indicator. Cohen-Or and
Levanoni [12] study continuous level of detail rendering in
case of Delaunay triangulated terrain.

For arbitrary triangular surfaces, e.g., isosurfaces in nu-
merical data fields, surfaces generated by some 3D scan-
ning process, or shapes in geometric modeling and adap-
tive coarsening strategies, have been presented by Turk
[58], Hamann [28], and Schroeder et al. [53]. In a noninterac-
tive preparatory step, requested surface reduction rates are
achieved by successive elimination of vertices. Hoppe [31]
introduced so-called progressive meshes, which allow an
efficient complexity reduction and fast transmission of data
over the net at any prescribed resolution. A conceptional
overview on hierarchical triangulations is given by De Flori-
ani and Puppo [15]. For a comparison of different mesh sim-
plification algorithms, we refer to Cignoni et al. [11].

In 3D, the efficient storing and handling of hierarchical
data coded in octrees has been studied by, among others,
Gargantini [21], Williams [61], Tamminen and Samet [57],
and Levoy [38]. Ghavamnia and Yang [22] have discussed
how to address hierarchically compressed data in fast vol-
ume rendering.

Hierarchical searching for isosurfaces was first consid-
ered by Wilhelms and Van Gelder [59] on hexahedral
meshes. They thereby speed up the classical marching cube
algorithm introduced by Lorensen and Cline [40]. The grid
elements are encoded in an octree, which allows the recur-
sive search for isosurface intersections starting on the
coarse grid elements. This method is especially efficient in
case of smooth functions at the expense of extra storage for
the min and max values on each node in the octree struc-
ture (cf. Section 4.4). The hierarchical approach competes
with other efficient isosurface extraction methods which
use some efficient presorting [23], [55], [39] or seed cell al-
gorithms, such as the extremal graph methods by Itoh et al.
[32], [33]. These approaches are preferable if the data is
governed by high frequencies.

But, in contrast to these approaches, the hierarchical data
access, as, for instance, in 2D, can be combined with an
adaptive choice of the desired data resolution. A fast and
adaptive visualization of volume data is implemented in the
hierarchical splatting algorithm by Laur and Hanrahan [37].
They have used an L -type error indicator on an octree en-
coded voxel database to speed up rendering substantially.
Wilhelms et al. [60] use such a hierarchical speed up in a
scan-plane-type approach to volume rendering, especially for
preview purposes. Cignoni et al. [8] have applied a succes-
sive adaptive refinement of volumes by Delaunay methods,
which leads to nonnested hierarchical meshes. They discuss
further issues in [9]. Additional points are successively in-
serted in areas where an L™-type error indicator measures
differences above a certain threshold value. Adaptive isosur-
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Fig. 1. Basic element types in two and three dimensions with possible refinements.

faces on regular data fields are treated by the octree based
decimation algorithm presented by Shekhar et al. [54]. Based
on error indicator values on the octree cells, the recursive tree
traversal is stopped locally on coarser grid levels. They
thereby enforce at most one-level transitions between cells on
which they definitely draw local isosurfaces.

Different approaches have been presented to solve the
outstanding continuity problem, e.g., to avoid cracks in
adaptive isosurfaces. In the Delaunay approach by Cignoni
et al. [8] and in the nested mesh method by Grosso et al.
[26], the successive remeshing during the refinement guar-
antees the continuity. On the other hand, Shekhar et al. [54]
rule out hanging nodes by inserting additional points on
faces with a transition from finer to coarser elements due to
an adaptive stopping criteria.

Any adaptive visualization algorithm in 2D and 3D is
based on a specific local error measurement. Different ap-
proaches to measure errors have been considered. Often, the
hierarchical data offset from one grid level to the next finer
one is measured in the L™ norm (cf,, e.g., [31], [54], Klein et al.
[36]) to achieve higher reduction rates measuring surface
distances in the more natural Hausdorff norm. Grosso et al.
used L2, respectively, H 2 [26], projections of regular field
data onto adaptive unstructured meshes. Finally, wavelet
coefficients are often appropriate error indicators. Among
many other contributions, we here especially cite Gross and
Staadt [25] and Certain et al. [7]. Bonneau et al. [5] studied a
problem dependent blending of different wavelet based error
indication. Eck et al. [17] and Schréder and Sweldens [52]
have worked out multiresolution visualization methods on
triangulated surfaces based on local error measurement in
wavelet spaces. Compare Sections 4 and 5 for a comparison
of different types of error measurement.

1.2 Data on Nested Grids

In the following section, we will discuss a general approach
to adaptive projection methods based on nested grids. Let
us, therefore, briefly introduce some basic concepts of nest-
ed grids and of function spaces defined on them Letz" cR"

be the set of S|mpI|ces of dimension m, e, 30 ' the set of line
segments, 3’ the set of triangles, and >’ the set of tetrahe-

. n . .
drons. Here, we consider all elements E ¢ R consisting of
tensor products of simplices, i.e., for some integer k

k

E=Q) o
i1

with o; € =™ where m; denotes the dimension of ¢; and k,
k
m,, ---, M, have to be chosen such that Z m; = n (cf. [46]
for the definition of simplices and tensor products)
Examples are triangles (E Z) rectangles (E= = xz)m
2D, and tetrahedrons (E 2) prisms (E = ¥ ><Z) or hexa-
hedrons (E = sixsixs ) in 3D (cf. Fig. 1).
A conforming mesh M is a set of elements E such that
any two elements of M are disjoint or they intersect in a
boundary simplex, e.g., a common face, edge or vertex. A

family of conforming meshes {3\/1'}OSISIrnaX is called a nested

grid if, for all E"** € M'*, there exists an E' ¢ M' with E™*
_ ol .

NE=E " and UE'“EM'“ El = UEIEMI E'. These kinds of

grids are mostly recursively generated by refinement of
certain elements of the preceding coarser mesh. Corre-

sponding to a nested grid {JVI'}Oslglmax , we consider a family

{Vl}oggumax of discrete function spaces which, in most ap-
plications, are ordered by set inclusion:
VeVt "CVI CVMC --CVI"‘"’X.

Since we consider only tensor product elements, we assume
a corresponding tensor product structure for the function

spaces as well. That is, if UI IS V' and EI e M : with
I m [ - .
E =), 0o then U ‘E, is in the span of functions

HLUi with functions U; defined on ¢, e.g., in the case of

a rectangle [Xq, X{] X [Yo, Y4, the bilinear function

U X=X, Y-y X=Xy y‘)’o
%Xy =% Yo — Vi 0 Xy =Xy Y1~ Yo
X=X, Y- yl X=Xy Y=Y

0% =%y Yo — y1 X =% Y1 = Yo

U(x,y) =

+U
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is the prototype of a tensor product function. The coeffients
coincide with the values at the nodes of the rectangle.

Moreover, for the time being, we restrict ourselves to con-
forming Lagrangian finite element function spaces generated
by tensor products of linear functions U; on simplices &;. This
especially includes the elements sketched in Fig. 1 with, for
instance, linear, bilinear, or trilinear functions defined on them,
i.e.,, data is prescribed on the nodes of the elements and there
are no further degrees of freedom. In case of higher-order
function spaces, the method presented here works on the em-
bedded tensor product subspaces. Nevertheless a generaliza-
tion seems possible, cf. Section 7. In multigrid applications,
function values on vertices may vary from one grid level to the
other because of the so-called coarse grid correction [27]. For
visualization purposes, we suppose that the unique finest level
value is always given on each vertex.

Let us finally introduce some further useful notation. We

define U' := PV,U , Where PV' denotes the nodal interpola-

tion operator on the grid M and U is a given, mostly dis-
crete, continuous function. For E € .’M', the set of child ele-

ments in M is denoted by C(E) (cf. Fig. 1). Furthermore,
let us denote the set of nodes of E and ({(E) by /ME), and
INIC(E)), respectively, and define

NEHE) := N(C(E))\ N (E),
N(E) := UN(E)\N(E), N(M') = [ JNE).

EcE EeM'
Thus, :N'C*l(E) denotes the set of new nodes which are cre-

ated when refining an element E once, whereas NC(E) col-
lects all nodes of elements generated form E by the recur-

sive refinement up to the finest level. Finally, ﬁ\f(.’Ml) de-
notes the set of all nodes corresponding to elements of the
refinement level I.

The set of (open) faces F of a specific element E is de-

noted by F(E). It is noteworthy that every vertex X in
N'C”(E) can be evaluated as a weighted sum over the co-

ordinate vectors of its thereby defined parent vertices X e
1+1

P(x ) € N(E) with weights o ., x'):

X' = Z a)xm(x')x'. 1)
x'e?(x'*l)

The weights are assumed to depend solely on the refinement
rule and on a numbering of child and parent vertices. In gen-
eral, the number of refinement rules is small such that ele-
ment and vertex production rules, including the weights, can
easily be stored in a lookup table. Different refinement rules
such as the bisection strategy, the so-called red-green refine-
ment or the refinement of prismatic grids are, for instance,
discussed in [3], [50], [18], and [56], respectively.

2 ADAPTIVE DATA PROJECTION

Before we develop a rigorous concept of adaptive projec-
tion methods in multiresolution visualization, let us intro-
duce the basic idea with some simple considerations. First

of all, let us stress that finding appropriate data projections
is a key issue in this field. Typical visualization methods,
such as the extraction of isosurfaces, the color shading on
slices in 3D, or the drawing of height fields on 2D domains,
successively visit cells and invoke local rendering opera-
tions. In the hierarchical context, we process all grid cells on
the coarsest level and, depending on certain user defined
criteria, recursively pass over to child cells or confine our-
selves with stopping at the current cell and the corre-
sponding data resolution. The criterion whether to stop or
to proceed is mostly related to some error measurement,
i.e., if the true data is already sufficiently approximated on
a coarse cell, then we can skip the expensive search for de-
tailed features to be visualized on the child level. A very
first, preliminary version of such a recursive visualization
algorithm Inspect() applied to any macro element is
sketched in the following pseudocode

Inspect(E) {
if C(E) #3 A —=S(E)
forall E e C(E)

Inspect( E);
else Extract(E);
}

where S(E) is the Boolean valued stopping criterion and the
procedure Extract() finally performs the local rendering on
the element E. If 77(E) is some error evaluation on E and €is a
user prescribed error tolerance, then one possible stopping
criterion is S(E) := (7(E) < ¢). Let us remark that, in the above
algorithm, we have also skipped local search restrictions,
such as, in the case of isosurface extraction, the consideration
of min/max bounds for some hierarchical guidance (cf. [59]).

It is obvious that this rudimentary strategy comes along
with the drawback of cracks in isolines or jumps in the color
intensity at edges in 2D or on slices in 2D, cracks in isosur-
faces in 3D, respectively. They occur because of the noncon-
formity of the resulting triangulation (cf. Fig. 2). In explicit, at
transition faces between leaf elements of the recursive tra-
versal on different grid levels, different approximations of
the true function U are taken into account. On the one ele-
ment, additional finer-level nodal values have to be consid-

20

Fig. 2. An adaptive traversal of a 2D grid leads to nonconforming grids,
respectively, hanging nodes.
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ered, whereas, on the other, adjacent element, an interpola-
tion of coarser nodal values defines the actually considered
data approximation. In order to achieve an appropriate visual
output from multiresolution visualization methods, we have
to guarantee consistent data projections in case an adaptive
stopping criterion is applied during the mesh traversal.

At first, one might ask for some adjustment procedure
which explicitly refers to adjacency information among ele-
ments on the same, or on different grid levels (cf. [54]). But,
in this case, the adaptive visualization method can no long-
er be coded as a strict, easy to implement, and fast depth-
first hierarchical tree traversal. Even worse, in practical
application, especially on economically stored unstructured
grids [43], adjacency information is often not stored, but has
to be retrieved from the grid hierarchy and the knowledge of
the refinement process, i.e., depending on the refinement
rule, we have to express adjacent elements of children as
children of adjacent elements. If we only store neighborhood
relations on the macro grid, this allows a recursive, but, in
general, expensive, evaluation of adjacency [16], [43].

Therefore, we ask for a different approach which does
not refer to adjacency information explicitly. It motivates
the introduction of an appropriate adaptive data projection
which turns out to be a mathematically rigorous and algo-
rithmically flexible and efficient tool. We are thus able to
formulate various multiresolution visualization operations.
They can be applied to a large class of computational, hier-
archical grids, consisting of elements which are tensor
products of simplices with at least the corresponding tensor
products of linear functions as the accompanying discrete
function spaces. Furthermore, there are provisions for much
more general discrete functions, such as those from general
hp-Finite Element methods (cf. Section 7).

First of all, we replace the stopping criterion on elements
by some projection criterion S(x') for every vertex X e 3\/(.7\/1)
with | <1, For the time being, we assume S to attain val-
ues FALSE (0) and TRUE (1). If n(x) is some error indicator
onx and eis a user prescribed threshold, then we define

1 . |
(<) 1= o) < )
A variety of different projection criteria will be discussed in
Sections 4 and 5. In Section 6, we will slightly generalize

this to ensure a continuous level of detail in the animation
of parameters such as the above threshold value. Now, we

uniquely define the adaptive projection operator P corre-
sponding to the above point-wise defined projection crite-
rion S. It maps a discrete function U e V'max to a continu-

ous, but now adaptive, function PQU. Here, we take the ten-
sor product structure of the local function space into ac-
count and obtain by (1) the following recursive formula for

values of PUon vertices x' e N(jvl'maX)\j\f(j\/lO);
(Projection Operator)

(PSU)(XI) = S(XI) oy (X'_l)(PSU)(x"l)
xlfleT(xl)

+ (1—S(x'))U(x'). @)

Furthermore, on the coarsest grid, (PSU)(xo) = U(xo) for x° e

JV(JVIO). We choose the interpolated values if the projection
criterion is fulfilled, else the true values are retrieved frorr|1
the database. If S(x) is true for all x e NC(E), where E € M,
then

PSU|E :PSUI|E’

that is, the projection remains unchanged if we recursively
process elements and vertices on finer grid levels. This im-
plies a deduced natural stopping criterion on elements

/\S()

xeN¢(E)

S(E) :=

Although the adaptive projection is continuous by defini-
tion, in case of isosurfaces on specific grid types, we have to
carefully handle the restriction of P .U at transition faces
between different levels of resolution, on which bilinear
discrete functions are involved. For a detailed discussion,
we refer to [45]. Checking for the element stopping crite-
rion, that is, testing the nodal projection criterion at all
nodes x € N (E) involves a look ahead onto all fine grid
details on element E. But, this is computationally expensive
and not very handsome. Therefore, we require a natural
saturation condition for the projection criterion:

(Saturation Condition) If the Projection criterion S(x') is

true for a node X e N(E), then S(x'”) is true for all nodes
1+1

e N ().

Based on this condition the stopping criterion simplifies to

S(E) := Eﬂ?%)suy

If the saturation condition is not fulfilled for a specific
type of projection criterion, then we can adjust the crite-
rion in a preprocessing step. In case of a typical error indi-
cator, this generally turns out to be necessary only on
coarse grid levels. On finer grid levels, on the other hand,
we are already in a saturated state, except at singularities
approximated in the data which are still not well resolved.
For a detailed numerical background, we refer to [2], [18].
Such a saturation condition is very often implicitly as-
sumed in multiresolution visualization. Here, we state it
explicitly. This especially prevents us from overlooking
details on fine grid levels. If a certain error indicator does
not fulfill the above condition, a slight modification leads
to a properly saturated indicator and an induced projec-
tion criterion, respectively. A simple update algorithm for
an error indicator 7 and, thereby, the corresponding pro-
jection criterion S, is the following level-wise traversal of
the grid hierarchy, starting on the second-finest level and
ending on the macro grid (cf. Fig. 2).

for (1= 1, ~1;1>0;1--)
for all E e M {
_ 1+1Y.
77 - X|+121:,\??1(E) 77(X )’
forall x' € ME)
- 3k 3k
if () <7) nx)=n";
}

Let us emphasize that a depth first traversal of the hierar-
chy in the adjustment procedure would not be sufficient.
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AN

/M

Fig. 3. A schematic sketch of the preroll to adjust indicator values and ensure the saturation condition. On the left, different grid levels of a trian-
gular mesh are indicated by color. On the right, it is indicated that the sets of four child elements are taken into account to adjust the error indica-

tor values on the parent elements.

3 A MULTIRESOLUTION ALGORITHM

The general multiresolution algorithm is based on the ap-
plication of the above introduced adaptive projection op-
erator. It computes a continuous function on an adaptive
grid performing a depth first traversal of the mesh hierar-
chy. This can be written in pseudocode

Inspect(E) {

P U = AdaptiveProjection(U, E);
if ElementOfinterest(P U, E) {
if C(E) # QD A =S(E)
for all E e C(E)
Inspect(E);
else Extract(E);
}

}
where AdaptiveProjection() is the above introduced nodal
projection operation (2) and ElementOfinterest() checks
whether features to be visualized are possibly inside the
element or not, e.g., it is verified if the element is a candi-
date for the intersection with an isosurface or if there are
critical points where to place some icons. For an imple-
mentation of such a routine along the guidelines of adap-
tive error measurement, see Section 4.4. Let us emphasize
that the saturation condition is the key which prevents us
from having to check complex adjacency information.

This saturation condition comes along with another de-
sirable and straightforward consequence. Performing the
adaptive visualization algorithm, we end up with at most
one level transitions at faces of elements on which the local
rendering takes place, i.e., on each such face, vertices of
only two, not necessarily successive, levels will occur (cf.
Fig. 2). We prove this by contradiction.

Let us suppose that two elements E, E meet at a certain
face F. On E, the above algorithm already stops, i.e., S(E) is
true, whereas on E elements, E' ¢ E? ¢ E of two different
finer levels are traversed, i.e., S(E), S(Ez) are false (cf. Fig. 4).
Furthermore, we assume that El, E% have faces Fl, respec-

tively F2, with F' cF c F. By assumption, there exists a node

x' e 3\/(C(E2))\,7\/(E2) for which the projection criterion S(xl)
fails. We then know by means of the saturation condition
that S(xz) also fails for all nodes x° e :N(Ez), especially for
those on F> c F. Therefore, S(x) fails at least on one node

X € NC(E). But, this contradicts our assumption that S(E),
is true, once more because of the saturation condition.

If we run the adaptive algorithm, the full grid hierar-
chy is partially traversed. Obviously, we cannot do bet-
ter, i.e., resolve the considered physical quantity finer
than provided by the actual local depth of the hierarchi-
cal database. Let us suppose that the projection criterion
is related to the same error estimator 7 that was origi-
nally used in the adaptive numerical algorithm to com-
pute the data. Then, the adaptive projection in the post-
processing resamples the computational grid history for
decreasing threshold value € down to the threshold value
€ at which the computation was finally stopped. Fig. 5
depicts this schematically and compares it with a simple
cut-off at some level of the grid hierarchy. If we use a
different projection criterion, the computational grid hi-
erarchy and the portion of it traversed during the visu-
alization algorithm will not match properly. In certain

Fig. 4. In the adaptive traversal, at most one level transitions occur. Thus,
child element of E would not be visited, if the algorithm stops on E .
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Fig. 5. A solely hierarchical traversal of the grid would stop at a certain
level of the hierarchy, whereas an adaptive traversal allows a stopping
criterion depending on the data.

v
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Fig. 6. A schematic sketch of the jump of the normalized gradients
across an edge in 2D.

local areas, a recomputing would be necessary to over-
come this shortcoming.

4 PRIMARY PROJECTION CRITERIA

Up to now, the projection criterion S(x) on nodes x on dif-
ferent grid levels is still some abstract Boolean valued
function which is admissible if the saturation condition is
fulfilled. The almost trivial choice is the level wise post

processing which is induced by the projection criterion S(x)

=(I>1"forxe 3\/(3\/1')\3\/(.7\/1'_1), where I” is the considered
recursion depth. We will now discuss further suitable and
more advanced projection criteria, corresponding to differ-
ent aims of a multiresolution strategy.

4.1 Visual Error Indicator

The visual impression and a sufficient resolution of numeri-
cal data in the visualization process is closely related to cur-
vature, for instance, curvature of isosurfaces or isolines on
slices. Therefore, we ask for a discrete curvature quantity
which locally measures the quality of the data approximation
from the viewpoint of the visual appearance [45]. One thing
we can easily recognize in images consisting of isosurfaces
are folds at surface edges or, in case of isolines on slices, folds

at polygon vertices. In each element, the data gradient vU'is

always perpendicular to an isosurface or an isoline on any

chosen plane. Therefore, at any point x on an element face F,

the normal component of the jump of the normalized gradi-
|

ent, denoted by [%1 locally measures the fold in the data
F

function (cf. Fig. 6). Here, the jump operator applied to some

function W is defined as

W], := lim (xr)—W(xi‘)‘

for sequences {xi’} and {x,*} converging to x from different

sides of F. Let us remark that, for linear functions u on sim-
plices, the gradients are constant on elements. This jump
obviously serves as a well-founded graphical error criterion
and motivates the following definition of an error indicator
for a node x e N(M)

vU'(x)

X) 1= max [N
) FeN(M')axeF ‘VUI(X)‘ ]
and the corresponding projection criterion S\(x) = (1(X) < €
for a threshold value € (cf. [45]). Fig. 7 shows isosurfaces for
a test data set resulting from applications of the adaptive
algorithm for different values of € and, in Fig. 8, we sketch
the statistical behavior in a diagram. Fig. 9 demonstrates
the applicability of the method for simulation data.

Fig. 7. Adaptive isosurface extraction on a test data set, the grid of which consists of 12 million tetrahedrons, for different threshold values.
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4.2 Numerical Error Indicator and Wavelet
Coefficients

Adaptive numerical methods have become popular, espe-
cially in the last decade, and proven to be efficient strate-
gies to adequately resolve solution features in simulation
computations. Features of significant interest are, for in-
stance, general singularities, boundary layers, or vortices
which cannot be sufficiently resolved by numerical meth-
ods on standard uniform grids. Many of these adaptive
methods have in common that they successively cycle
over the following three steps: Compute an approximate
solution on the current grid, calculate local error estimator
or indicator values 7(x) for grid nodes x, adapt the grid
applying local refinement or for time-dependent problems
also local coarsening. This cycle is stopped if a prescribed
error tolerance is falling short. Depending on a given
norm | - ||, for some partial differential equations true error
estimators are known such that a reliable a posteriori error
estimate

[u-ul<c

D,

holds [44], where u, U are the continuous, respectively nu-

merical, solution on the grid M and H| . m is an appropriate
#N(m') .
norm on the space R , €.9., for Poisson’s problem we
are led to
. |
N (X) i= he [VU (X)nF]F "
L*(F)

as an error indicator on faces F, respectively on vertices X,
which are going to be created on theses faces after some

local refinement, where hg is the diameter of face F.
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hierarchical ——
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Fig. 8. On a logarithmic scale, we compare different visualization strate-
gies concerning the overall number of visited cells for increasing grid
level. Compare with Fig. 7 for the corresponding data set. We expect the
purely hierarchical isosurface extraction to distinguish from the marching

cube method in the slope of the curve by a factor of % This is obviously

reflected by the above diagram. Furthermore, for successively increased
threshold value, the method reaches a saturated state successively ear-
lier. The behavior at the singularity is not visible in the diagram.

Seen against this background, it appears convenient to
use these estimator values also for the visual post process-

ing and define the error projection criterion Sy(X) = (7y(X) < ),
where € is again some user defined threshold.

Wavelet-based methods have also become very popu-
lar and effective instruments in numerical methods [34],
data compression [62], and, especially, in multiresolution
visualization [25], [42], [19]. They are especially powerful
when considered on regular, structured grids. A key is-
sue of wavelet type multiresolution visualization is the
error measurement in terms of local frequencies, which is
often a desirable feature, e.g., for geographical maps. At
first, if data is not already given in wavelet space, it is
analyzed and a hierarchy of wavelet coefficients is ex-
tracted from the input data set. These wavelet coeffi-
cients correspond to wavelets or prewavelets z//'(~) with 1
< | £ lax evaluated at the nodes x € 3\/(3\/1') of a specific
hierarchical depth. In terms of our approach, during a
recursive wavelet synthesis which locally converts back
to the standard function basis, the wavelet coefficients
can serve as the appropriate error indicator 7,,(x) if we
ensure saturation. Therefore, this important class of
methods also fits into the presented frame. For a detailed
discussion of this topic, we refer to the variety of effi-
cient and specialized methods in the literature.

4.3 Magnifying Glasses

Another desirable feature of multiresolution data proc-
essing is the focus on a specific domain in image or object
space. Inside some lens domain Q, we thus expect at least

a certain fineness h,;, of the grid on which we extract and
visualize information. Outside a significantly coarser

mesh width, h,., is supposed to be sufficient. To focus on
certain details using a lens has already been discussed by
Bier et al. [4] and by Cignoni et al. [10]. Here, we embed
such an approach in the concept of adaptive projection
operators. In what follows, we will restrict ourselves to
lens domains Q in object space with Lipschitz continuous
boundary. For domains Qin image space, we consider the

pull back Q = M’l(fz), where M is the affine transforma-
tion from object space to image space. We ask for a projec-
tion criterion, which leads to the requested behavior of the
visualization method. Furthermore, it has to be admissi-
ble, that is, to fulfill the saturation condition, to ensure
continuity of the adaptive projection, and result in an ap-
pealing graphical output. Here, the saturation condition
can be weakened: Projection criteria on parent nodes have
to imply projection criteria on nodes. Let us define the
lens projection criterion
S.(x) = (h(x) < min{h .., Cy, dist(x, Q) + hmin}),

max’

where h(x) = dist(x, P(x)), P(x) is again the set of parent

nodes of x, and CM is some constant which solely depends
on the type of refinement rules and will be fixed later. For a
variety of domains Q, this criterion is obviously easy to cal-
culate and we are left to prove that the saturation condition
holds.
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Fig. 9. On the top, color shading on slices and isosurfaces for increasing threshold values is applied to a porous media data set. The isosurface
corresponds to the interface between fresh and salt water in this two-phase flow calculation. On the bottom, the intersections with element faces
are outlined in black.
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Fig. 10. Application of a magnifying lens to a 3D data set on a hexahedral grid. An adaptive isosurface and color shading on a slice are drawn for
a ball-shaped magnifying lens. Outside the lens domain, isosurface and color shading are only resolved on coarse grid levels. In the lower-left
corner, a full resolution image is added for comparison.

Fig. 11. Color shading of the density in a 2D phase transition simulation is shown on the left with respect to an applied circular lens and, on the
right, equally fine on the whole domain. Data is thereby given on a uniform triangular grid.

Let us assume that S (x) is true for one x' € ME) on ‘dist(x',Q) - dist(x'”,Q)‘ < X" o x"
some element E. For any x'*! € N4(E) with X' e P(x™) L l-a
h(x'”) < |yt _ x" <a h(x') <a h(x ) < » h(x )
for a fixed constant € (0, 1) depending on the refinement  This immediately yields
rules used in the grid generation. Then, taking into account Cmdist(x',Q) —(1- a)h(xl) < CMdist(x'“, Q).

that dist(x, Q) is Lipschitz continuous in x with Lipschitz
constant 1, we obtain for C,, < -« Using the above estimates, we finally observe
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Fig. 12. Adaptive color shading and isosurface extraction based on the hierarchical error indicator are applied on a hexahedral grid.

h(x”l) <a h(x')

min{h

IA

Coydist(x', Q) + hyo b = (1= @)h(x')

max’

IA

min{hg,. Cogdist(x', @) = (1= a)h(x') + o}

max’

IN

min{h g, Cogdist(x'™, Q) + Ny, |

max’
Therefore, SL(x'+l) holds, which had to be proven.

In case of a regular hexagonal octree « =+ (cf. Fig. 1).

Therefore, 1 is an admissible value for C, . If we apply tri-
angular or tetrahedral bisection [50], [41] or the so-called
red refinement of simplices [18], where triangles and tetra-
hedrons are divided into four, respectively eight, child ele-
ments, o depends on the regularity of the initial mesh. Let

us remark that, for decreasing values of the constant C, ,
we obtain an increasing thickness of the transition zone
between fine and coarse grid granularity. Figs. 10 and 11
depict examples for 2D and 3D meshes, where we have
chosen a ball-shaped lens domain in object space, whereas
Fig. 13 points out that also nonstandard domains can be
handled as lens domains. In the application, the lens do-
main will be parameterized to ensure an effective and in-
teractive exploration of the database. To underline the close
relation to the projection criterion derived from error indi-
cators and a corresponding user defined threshold, here we

define 7.(x) := h(x) as indicator and e(X) := min{hya
C, dist(x, Q) + hy;p} as threshold. In what follows, we refer
to this analogy.

4.4 Hierarchical Values

Frequently, the data values stored on higher-order grid
nodes X' are not the original function values U(x'+1), but
the offset Ué(xlﬂ) at the nodes corresponding to the canoni-

cal nodal projection operator onto 2% applied to U. They are
related to the U-values by the following recursive formula

1+1) _ | | 1+1
UeE) = 20 (U] + Ug).
Xle'P(XHl)
The U svalues allow an economical 6-compression of the
data and the original values can easily be retrieved, if the

above recursion is applied during the mesh traversal in a
visualization method. Furthermore, we can choose

S, (x) = (|U5(x)| < e)

as a projection criterion. As before, it is admissible if the
saturation condition is fulfilled. For smooth data, e.g.,

U(X) = u(x) for all x e N (M) with u e C*, JU4X"™)] =
o(diam(E)°) for x'*! € N 1(E), which implies the satura-
tion condition asymptotically on grids M for | sufficiently
large (cf. Fig. 12). We can apply the adjustment algorithm
from Section 2 to precompute an admissible hierarchical
L™-error indicator. Alternatively, we can compute a robust

upper bound for the offset values on elements by the recur-
sive formula
1+1
)

max

X) 1= U(x)| + max
M (X) | s )| [E] xeN ()} XL enii(E)
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Fig. 13. The application of a magnifying glass for a nonstandard lens domain combined with a geometry error control.

where, on the second-finest grid level, n4(x) := JUs(x)] for

all x e N (M'maX). These values can also be used to perform
the necessary intersection test during the hierarchical extrac-
tion of an isosurface. We thereby avoid the expensive storing
of min/max values as discussed in [59] (cf. also Section 5.3).
For the sake of completeness, let us sketch the corre-
sponding ElementOfinterest() routine (cf. Section 3):

ElementOfinterest(P U, E) {
if(ming P U — 74(E) < C < maxg P U + 74(E))
return true;
else
return false;

}
whereby 7, (E) := mMaX, . cEenE) TH (x) and C denotes
the isovalue currently of interest.

5 DERIVED PROJECTION CRITERIA

Up to now, different projection criteria have been discussed
mainly for stationary and scalar discrete functions on 2D and
3D hierarchical grids. How to derive appropriate criteria from
them, especially for vector-valued, time-dependent functions
or for geometric shapes will be discussed in what follows.

5.1 Combining Different Criteria

In the previous paragraphs, we have discussed several
types of projection criteria which we apply to define adap-
tive data projections in multiresolution visualization. They
all ensure a sufficient resolution of the visual image with
respect to some quality criterion, e.g., an acceptable error
for the considered physical quantity, a suitable resolution of
the geometric shape, or a detailed data enhancement in a
user defined focus. It is frequently required to fulfill several
criteria at the same time. Therefore, we combine the set of
corresponding projection criteria {S;};<i<m to one criterion

S =S A5 A AS,. (3)

Again, the saturation property for S is inherited from
those for the different S;. Fig. 13 presents a combination of

magnifying lens and geometric error indicator for a geo-
graphical map.

A different combination of error indicators is needed in
case of vector valued function data, where we already have
error indicator values at hand for the components of the
data function. Therefore, we can collapse a vector of corre-
sponding error indicators 7; to one error indicator 7 for
each node defining

(%) = y(my(X), ..., 74(x))

for a function y: R — R which is increasing in all its com-
ponents. It can easily be proved that this induces the admis-
sibility of the adjoint projection criterion S(x) = (77(x) < e).
Especially, every norm on the space R d, such as the maxi-
mum norm, is well-suited.

5.2 Geometry Error Indicator

Up to now, we have considered discrete functions on do-
mains in two and three dimensions. But, instead of planar

domains in Rz, we can similarly deal with surfaces G in R®
which are approximated by polygonal grids M for | < 1_
starting with a coarse initial approximation M. Letus empha-

size that G does not have to be a parameterized surface (cf.
Fig. 18, which displays the deformation of an elastic cylin-

drical shell). Nevertheless, we can parameterize M'mx over
M by some function G which is supposed to be closed to a
parameterization g of G over M (cf. [17]). Following the

guidelines for the adaptive projection of discrete functions,
we can analogously define adaptive geometry projections

PG = (RG)(M°),

applying the above results to the in general vector valued
parameterization G of G (cf. Section 5.1). Fig. 14 shows re-
sults for some geographical map.

5.3 Time-Dependent Data

In most physical simulations and for many applications in
geometric modeling, the discrete function U or the geometry



86 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 1, JANUARY-MARCH 1999

Fig. 14. Geometry error control for geographical maps. We compare data representation on a regular and on a triangular mesh. The elements on
which the stopping criterion is fulfilled are outlined for the two grid types. The same type of error indicator and the same threshold value lead to

slightly different results, as is visible, especially in the lower-left corner.

time

Fig. 15. Interpolation in time for adaptive color shading on slices: The pictures show the distribution of the concentration in a two phase flow cal-
culation at different time steps, which do not coincide with timesteps from the computation.

G are time-dependent. Typically, a sequence of time steps,
also called key frames, is given and an appropriate interpo-
lation is used in between. We here restrict ourselves to the
case of multiscalar functions. As already mentioned in Sec-
tion 5.2, a geometric multiscale analysis works analogously.
Let us denote by {U, },.;., the sequence of time steps. An

interpolation U(t, x) is uniquely defined by a corresponding
interpolation

Ut x) = 1(t,Uy (%), .., U, (x)

on the nodes x eN(le'maX). The concrete interpolation
scheme, however, depends on the application. Here, we
implicitly assume a uniform mesh M and rule out
adaptivity of the considered numerical grids in time. For a
concept to handle adaptive data in time and space, we refer
to [48]. On the set of time steps {Uti he<i<m» @ corresponding

set of admissible indicators {7,},.;., is assumed to be given.

We ask for an appropriate indicator 7(t, X) on every node
X € N(J\/I'max), which again should be admissible. As we

already know from Section 5.1, %(m(X), ---, 7m(X)) is admis-
sible for any family of component-wise increasing functions

% with t e [ty, t,]. If we suppose the interpolation to be de-
fined as a weighted sum

1t Uy (0, Uy, (0) 1= 2 a1 (DU, (%)
i=1

with continuous nonnegative weights Hy, (t), we gain an
appropriate induced and admissible indicator

%) = ({1, O, 00) ),

where yis a standard norm in R", fixed in time (cf. Fig. 15).
For the linear interpolation in time, the weights coincide
with the simple hat functions
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Fig. 16. Interpolation in time for adaptive isosurfaces. Above, at different times, an isosurface of a porous media density is extracted on a hexahe-
dral grid. Below, in a projective view from the top, the edges of the cells on which the local isosurfaces are extracted show the adaptive approach.
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Compare Fig. 15 for an adaptive color shading on slices
on a tetrahedral mesh and Fig. 16 for adaptive isosurfaces
on hexahedral grids, both extracted from interpolated
data. Let us remark that if we take the indicator 74(x) as
defined in Section 4.4 into account, the induced indicator

Bt = 3 4 O, (0

can be used to calculate reliable data bounds for the inter-
polated function. To check this, we stralghtforwardly esti-
mate the difference U(t, x) — U(t x), where U(t x) is the
local restriction to a certain grid level |

‘U(t, x) - U'(t, x)‘

‘( U )=t Ul .,ut'm)‘
i t>\U (U} () < Zut (O, ().

From our point of view, this important property points out
a significant advantage of the hierarchical intersection test
compared to other acceleration algorithms for isosurface
extraction, including the span-space methods [55], the k-tree
method [39], or the extremal graph approach [32]. Without
any sophisticated adjustment, the expensive preparatory
step which comes along with these algorithms has to be
invoked on every new interpolation in time. This turns out
to be a major drawback compared to almost no extra cost
for the hierarchical strategy, provided time-dependent data
is considered.

6 CONTINUOUS LEVEL OF DETAIL

For fixed projection criterion, we have so far obtained con-
tinuous, adaptive projections in space and time and, thereby,
an appropriate visual output for a variety of visualization
methods. If we apply the adaptive projection method corre-
sponding to some nodal indicator 7 for varying threshold e,
and parameters of €(x), respectively (cf. Section 4.3), conti-
nuity is no longer ensured. Indeed, every time the projec-
tion criterion switches on a node x, an immediate local tran-
sition between original data and projection will cause local
jumps in the visual appearance of the animation. To over-
come this shortcoming, we slightly generalize the projec-
tion criterion. Instead of the Boolean-valued projection cri-
terion S(x) = (77(x) < €(x)) for some indicator 77 and a thresh-
old &(x), we introduce a real-valued function

S() = z(n(x), &(x)),

where y : Ry xRy — [0, 1] is supposed to be a Lipschitz
continuous function, monotone decreasing in 7, with (7, €)

=1 for 7< e Now, we replace S by S in the definition of the
adaptive projection and obtain

U= 3, ool
S

By construction P:U continuously depends on 7, e The

corresponding stopping criterion S(E) can be adapted in a
straightforward manner

S, max
X “eN¢c T (E)

§(XI+1) :
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Fig. 17. On the top, a typical function y is sketched and, on the bottom, the
scale of indicator values on different grid levels is drawn schematically.

i.e., we test for S(E). Moreover, in order to achieve an ap-
propriate blending result for varying values of ¢ we as-
sume x(n, €) = 0 for n > Ce (cf. Fig. 17) and C > 1. Here, ap-
propriate means that P§(U) on a finally extracted element E

locally only depends on original U-values on nodes of at
most two grid levels. This is a desirable property which is
already satisfied for the original projection P (U) due to the
saturation condition (cf. Section 2), i.e., if

min n(x')

X' eN'(E)
n(xhl)

for all elements E up to the second-finest grid level this
property also holds for the modified projection PS-(U). We

obtain smooth transitions between different levels of detail
without any additional interaction on the hierarchy com-
pared to the case of the nonmodified adaptive projection.
As is typical for smooth data on sufficiently fine grid levels,

C<C* =

ma
XI+1 eNgrl(E)

C* is strictly larger than 1 (cf. Section 4.4). But, in general,

4
P

especially on coarse grid levels, we only have C* > 1 be-
cause of the saturation condition. To overcome this draw-
back, we can introduce a modification of the suggested ad-
justment algorithm for indicators and replace the condi-
tional blowup of the indicator (cf. Section 2) by the follow-
ing pseudocode statement

| F
nx)=Cn’;

where C is the constant later on used for the definition of y.
Otherwise, we have to accept additional interaction effects

between different grid levels. In the case of the magnifying
lens, the situation is simpler. Here, we have to decrease the

if 7(x) < Crf'

constant CM

Finally, the combined projection criterion (cf. (3)) for a
set of different real valued projection criteria {§i}1si£m can
be redefined by

To summarize, we have so far obtained a data projection
continuously depending on a threshold value e. Nevertheless,
the visual appearance of the graphical results will only re-
flect this continuity if we guarantee that the parameters of
the finally generated graphical primitives also depend con-
tinuously on P (U) (cf., e.g., [20], [31]).

7 HP—FINITE ELEMENT DATA

Up to now, we have solely considered Finite Element data
which is—for each element in the function space—spanned
by tensor products of linear functions (cf. Section 1.2). A
higher-order polynomial degree is often used in the nu-
merical code to improve the approximation order whenever
the approximate solution is smooth enough. Recently,
adaptive methods, which adapt the grid size and the poly-
nomial degree locally have become popular [6], [49]. In
general, in areas where the solution points out higher-order

s *\L\.

Fig. 18. Deformation of an elastic shell, which has been computed with a higher-order Finite Element method. The black lines indicate edges of
the elements. Virtual refinement is used to obtain a much better approximation to the actual polynomial shape and the stress coded in color.
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differentiability, the polynomial degree p is successively
increased to obtain an exponential decay of the numerical
error. In contrast, in areas where the solution properties
indicate singularities, a refinement of the grid size h in gen-
eral turns out to be the preferable strategy for error reduc-
tion. The combination of both is called the hp-Finite-
Element approach. An efficient visualization of data from
these effective discrete function spaces is a challenging task.
Here, we discuss a generalization of the presented adaptive
approach for meshes with successively refined grid size.
Therefore, error information is measured on leaf elements
of the grid hierarchy and, if necessary, additional “virtual”
grid levels are introduced (cf. Fig. 18).

On the corresponding “virtual” elements E,, we define
standard adaptive projections PShp corresponding to some

projection criterion Sy, on “virtual” nodes X, The corre-
sponding function spaces are again spanned by linear
functions but, now, on the later-on refined grid. We can in-
terpret this strategy as an h-subsampling of the actual poly-
nomial data.

For the sake of simplicity, let us assume that the con-
sidered grid consists solely of one element type, which is
triangular, or rectangular in 2D, respectively tetrahedral,
prismatic, or hexahedral in 3D. For each of these element
types, we consider a fixed refinement rule which de-
creases the element diameter by a factor of <, e.g., in the

case of simplices, this is the red refinement rule [18],
whereas, for right-angled cells the quad-, or octree con-
struction is considered (cf. Fig. 1). These refinement rules

come along with additionally created nodes N,(E) on
element edges and faces and in the interior. Let us sup-

pose some projection criterion S,(x,,) to be defined on
these nodes. On child elements E, of a “virtually” refined

element, we introduce the stopping criterion S(E,;) de-
duced from the projection criterion on the corresponding

vertices (cf. Section 2). Starting on E,, = E as the initial
“virtual” element with nodes x;, and projection criterion

Sip(Xnp) inherited from the adaptive projection on the
original grid the adaptive visualization algorithm can be
defined analogously to the standard case. Finally, we ask
for easy-to-compute projection criteria on nodes and for a
replacement of the above saturation condition. It is much
too expensive to store error indicators on all “virtual”
nodes. They therefore have to be computed from the
original data during runtime. To ensure efficiency of the
final algorithm, only local information, which resides on

the currently inspected element Ey,, should be taken into
account for the definition of an error indicator. Further-
more, it is now ruled out to look ahead onto much finer
grid levels in a preroll step in order to fulfill the saturation
condition. To overcome this difficulty, we suppose

Ty (i), TeSpectively S, (x+), to be uniquely defined

depending on U(x;,)¥xy, € P(x) and U(xy:"). For in-
stance, a suitable first choice for the error indicator would

be the hierarchical offset value (cf. Section 4.4)

1+1

(i) = Ulew) - @ s (U ()

dpert)

With these restrictions, indicator values on edges, respec-
tively faces, depend solely on data values on this edge or face
and coincide with those evaluated on the adjacent element.
Therefore, continuity of the induced adaptive projection is
guaranteed if we do not apply the adaptive stopping crite-
rion. In order to also allow an adaptive stopping, which is
the actual aim of our considerations, a modification of the
indicator values 71, is necessary. We recursively define

nhp(XLgl) 1= min ﬁhp(x:‘;l) Q;i(l;]|+1){nhp(x:1p)} '

,XLp
It is thereby especially ensured that “virtual” nodal values
on element faces are always generated by interpolation
whenever the algorithm stops at a coarser level on the
corresponding adjacent element. This definition is neces-
sary to overcome the saturation assumption. In a certain
sense, we construct a somewhat saturated error indicator in
a top-down manner instead of assuming the bottom up
implication of the saturation condition. The construction
also properly matches the original projection criterion S on
true nodes x from the original grid hierarchy and the new
projection criterion Sy,

Therefore, we no longer need the stronger saturation
condition. But, we can also no longer be certain that we do
not overlook fine details in the data when stopping on in-
sufficiently refined “virtual” elements. Furthermore, the
useful property of finding at most one level transitions at
faces no longer holds. Nevertheless, on higher-order poly-
nomial data, the experimental results are satisfying, which
seems to rely on the sufficient smoothness of the considered
data function. If we apply the same strategy for general
data on arbitrary grids, serious difficulties concerning im-
age quality occur.

For a visualization method which draws isolines or dis-
plays some color shading on slices, a straightforward sim-
plification is possible. Instead of subdividing the three di-
mensional elements which intersect the slice, we first com-
pute the intersection polygons and, then, subdivide them
into triangles (cf. Fig. 19). Finally, we apply the above algo-
rithm on such triangles extracted on leaf elements of the
original grid hierarchy. Fig. 20 demonstrates the significant
improvement in data resolution obtained by the adaptive
approach.

8 SOME ALGORITHMIC ASPECTS

We have implemented the concept of adaptive projections
in 2D and 3D based on a general interface to data on arbi-
trary nested grids. This interface handles mesh elements
procedurally. In detail, hierarchical access procedures address
single elements and deliver information on the considered
element in a prescribed data structure for a general ele-
ment. A coarse grid, as well as a recursive depth-first tra-
versal, is thereby supported by a set of specific interface
routines. No conversion to a prescribed mesh format is nec-
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Fig. 19. On the left, the subdivision of a polygon into triangles is shown, whereas, in the middle picture, vertices and edge midpoints of a triangle
are marked. The sketch on the right shows an extracted adaptive grid with more than one level transitions.

/7

Fig. 20. On the left, the color shading on a slice applied to a 3D data set with an only h-refined grid and, on the right, the “virtual” h-subsampling

on the same coarse grid.

essary in advance. The data mapping is performed only
temporarily while running a visualization method. For de-
tails on the general element description, we refer to [51] and
concerning the hierarchical access routines, especially, com-
pare [43]. The images presented here are all generated ap-
plying this type of interface. Its major advantage is its gen-
erality. A large class of visualization methods, once imple-
mented, and based on the procedural interface, immedi-
ately works on new nested-grid structures if an appropriate
interface has been adapted to the specific user data struc-
ture. The visualization needs no significant extra memory.
Very large hierarchical grids, especially, which are often
stored economically, are thereby opened up for an effective
post processing. Here, economical means that vertex and
adjacency information is present only on the coarse grid
elements. On the finer grid levels, we solely store references
to refinement rules and references to new nodes. Complete
data is then generated recursively during the procedural
mesh traversal in the visualization (cf. [43]).

The presented multiresolution concept guarantees con-
formity of the extracted adaptive projection. If isosurfaces are
considered, a local triangulation has to be generated on a leaf
element in the adaptive mesh traversal algorithm and an
overall smoothly shaded appearance is often required. We
retrieve the local triangulation from a lookup table [40]
which corresponds to the element type. For every element
type, a lookup table is automatically generated whenever the
algorithm picks up an element of this type for the first time.

As in the nonhierarchical case, if smooth shading is con-
sidered unique, surface normals have to be calculated at
nodes. One approach is to interpret function gradients,
which coincide with isosurface normals after normaliza-
tion, as a vector valued discrete function. Then, we can ap-

ply the projection criterion already used for the original
function and end up with continuous normals and
smoothly shaded isosurfaces. An in advance calculation of

interpolated gradients on all nodes, x e .N(J\/l'max) is often
much too expensive concerning CPU time and storage re-
quirement. We use hash tables to identify nodes on which a
gradient has to be evaluated and which appear several
times on different elements traversed in the isosurface
methods [59]. The required hashing key depends on the
coordinates of the nodes. On revisited nodes, we can then
use the already calculated gradients. A presentation of the
corresponding algorithmic details is beyond the scope of
this paper and we refer to a forthcoming publication.

Let us finally comment on the use of color shading or
texture mapping on discrete surfaces for data visualization
when an adaptive projection has been applied. As long as the
mapping from the function space into color or texture space
is linear, the resulting appearance of color and texture is
guaranteed to be continuous at the corresponding 2D ele-
ment faces. If other mappings into color or texture space are
considered, we have to perform the recursive adaptive pro-
jection not on the data function itself but on the resulting
color and texture.

9 REMARKS ON GENERALITY AND EFFICIENCY

The presented approach is restricted to nested grid hierar-
chies as they especially appear in numerical methods for
partial differential equations describing physical phenom-
ena in two or three dimensions. It is highly flexible in this
mainly intended field of application, i.e., it is independent
of the concrete element types, the refinement rules, and the
possibly compressed user’s data formats. Let us point out
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Fig. 21. Different isosurfaces of the salt concentration in a groundwater flow are extracted from a compressed 10 million element data set.

that there are other, more general, approaches especially for
surfaces by De Floriani et al. [13] and Hamann and Chen
[29] which also apply to nonnested grid hierarchies, but
with a different focus concerning the field of applicability.

Concerning efficiency, we especially have to pay for the
described flexibility in terms of CPU time if we settle the
algorithms on the base of the described procedural data
access (cf. Section 8). From our experience, there is a factor
of about 2-3 compared to the same visualization method
implemented and adapted on a specific data structure.
Fig. 21 depicts a real-world problem from ground water
flow on a hierarchical, unstructured mesh consisting of 10
million elements and 1.4 million elements (courtesy of K.
Johannsen, ICA IIl, University of Stuttgart). The grid is
adaptive and a set of different refinements rules is applied
to generate it. Using the general procedural interface to
address this data in highly compressed form, we still obtain
about 93k triangles per second in the adaptive isosurface
generation. Table 1 lists the number of triangles generated in
the algorithm for an isosurface, the number of visited tetra-
hedra, respectively those on which we finally extract a local
isosurface, and the resulting frame rate on an SGI Onyx2
with R10000 processor for different threshold values e.

Here, we have taken the hierarchical error indicator 7y
into account, including the adjustment procedure described
in Section 4.4.

Finally, if optimal performance is required, the presented
concept can easily be implemented on any optimized
nested grid data structure which fits into our general frame.
For instance, consider a regular hexahedral grid. If we ap-
ply the tetrahedral bisection strategy presented by Mau-

bach [35] without storing tetrahedrons explicitly, but
tracking the prescribed refinement rules in terms of quad-
tuples of index vectors for the vertices, we obtain a method
similar to the one presented by Zhou et al. [63]. Fig. 22
shows results of the corresponding implementation of the
isosurface algorithm for different threshold values. Again,
we have applied the adjusted, hierarchical error indicator
(cf. Section 4.4). The overall number of tetrahedrons is
12,582,912 and the grid consists of 2,146,689 nodes. Table 2
lists threshold values, triangle, respectively tetrahedra
counts, and frame rates.

If we store min/max values on the tetrahedrons, the
number of visited tetrahedron for e = 0.0 reduces to 1,216,638,
which is a saving of only 3.4 percent , at the expense of an
additional 3,145,728 floating-point values in storage (two for
every tetrahedron up to second-finest level).

10 CONCLUSIONS

A mathematically rigorous foundation of multiresolution
data analysis is given here which applies to general hierar-
chical nested grids. The implementation of the correspond-
ing visualization algorithms is confined to an appropriate
depth-first traversal of the grid hierarchy, combined with the
recursive calculation of continuous adaptive data projections.
A corresponding stopping criterion, which indicates if the
current data projection will locally remain unchanged on
finer grid levels, allows a stopping on coarser grid levels and,

TABLE 1
drawn visited extracted | frames/sec
€ triangles | tetrahedra | tetrahedra
0.0 93k 204k 71k 1.0
0.01 34k 78k 26k 2.6
0.1 3k 10k 2.4k 21

TABLE 2
triangles visited
€ drawn tetrahedra frames/sec
0.02 81,184 201,757 3.45
0.01 128,709 307,384 2.27
0.005 211,219 487,107 1.43
0.0025 315,440 727,419 0.98
0.00125 439,230 984,029 0.74
0.0 590,018 1,259,669 0.58
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Fig. 22. Flat shaded adaptive isosurfaces are extracted from a 1293 sized Bucky Ball data set (courtesy of AVS Internation Centre). We consider

the hierarchical error indicator for threshold values € = 0.02, 0.004, 0.0.

thereby, a considerable saving of CPU and rendering time.
This enables interactive visualization even for very large data
sets. Combined with a procedural access to the user data,
especially, economically stored hierarchies of millions of
elements can be handled efficiently on standard worksta-
tions. The presentation is stimulated mainly by the strong
relations to adaptive numerical methods and multiscale nu-
merical analysis. The presented concept covers very general
grid types, different methods of local error measurement,
and local data focusing. It applies to time-dependent data as
well and allows a continuous level of detail. Algorithmic
details have been kept at a minimum to concentrate on a
compact conceptual discussion. We especially regard hierar-
chical and adaptive methods for nonnested function spaces,
gridless discretizations, and particle tracing type methods as
interesting fields for future research. Furthermore, the appli-
cation of related methods to direct volume rendering will be
the subject of a forthcoming publication.
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