Comparison of the regulators of Beilinson and of Borel

M. Rapoport

This contribution is the fruit of a collaboration with U.Stuhler. Although he in
the end refused to have his name appear as an author, he played an important part in
the preparation of this paper, which I consider as the result of a joint effort. Our aim
here is to give an exposition of A.Beilinson’s proof ([1], App. to §2) that in the case of
a number field the Beilinson regulator map coincides with the Borel regulator map up
t0 a non-zero rational factor. This compatibility is needed in order to regard Borel’s
results [5] as a confirmation of the Beilinson conjecture in this particular case, and
thereby enters into Beilinson’s proof of the Gross conjecture in the cyclotomic case
(compare [1], [17]). (In fact, Borel’s results are stronger in a certain sense, compare
our remarks at the end of §1).

The Beilinson regulator map is defined under very general circumstances and
behaves functorially in a pleasant way. However, it is hard to calculate explicitly, if
only because the source of this map is closely related to K-groups which are very
poorly understood in general. In the case of a number field, k, the (rational) K-groups
can be explicitly determined, thanks to our knowledge of the cohomology of discrete
arithmetically defined groups [4]. Furthermore, the periods of an explicitly defined
differential form over homology cycles coming from the K -group can be calculated [5].
This then leads to the definition of the Borel regulator map and to Borel’s theorem
that the co-volume of the image of the n-th regulator map equals ¢t(1—n). We refer
the reader to [5] where in the introduction Borel gives a lucid exposition of his proof.

We now explain the plan of this article. In §1 we recall the definition of the
Beilinson regulator map in this special case and give the definition of the Borel regu-
lator map which uses continuous cohomology; a slightly different way of constructing
the Borel regulator map appears at the end of §4. In §2 it is proved that the nor-
malization functor induces an equivalence of categories of reduced small co-simplicial
algebras and reduced small differential graded algebras. The concept of smallness in-
troduced by Beilinson was invented for the proof of the comparison theorem. Recall
that in the simplicial context D.Quillen (Rational homotopy theory, Ann. of Math.



90, 1969, p. 205-295) has proved that the normalization functor from the category
of reduced simplicial commutative algebras to the category of reduced commutative
differential graded algebras (over a field of characteristic zero) induces an equivalence
of the corresponding homotopy categories. By putting the smallness restriction on
the algebras in question (and working in the co-simplicial context) no homotopies
are needed. This result is used to define a kind of “de Rham complex” of a small
differential graded algebra, and thereby also to give a sufficiently canonical defini-
tion of the Weil algebra. We also recall the definition of Chern classes by means of
the Weil algebra. In §3 we present the second main ingredient of Beilinson’s proof,
namely the interpretation of the van Est isomorphism in continuous cohomology as a
restriction map to the cohomology of an infinitesimal version of the classifying space,
namely the largest small simplicial subscheme. As L.Illusie pointed out to us it seems
that again the concept of smallness allows one to avoid complications which occur
in Quillen’s formal categories [16]. In §4 we then prove that the two regulator maps
essentially coincide.

In Beilinson’s manuscript there is also a description of theorems of Bloch, Beilin-
son, Tsygan, and Feigin on additive K-theory, for which we refer the reader to the
original source. Thus we have tried here to give an account of the remaining 3 1/2
pages. Even though these have expanded into some 20 pages we are not confident
that we have done them justice; one of the reasons is that, not being topologists
ourselves, we do not have sufficient insight into the deeper topological significance
of Beilinson’s proof. On the other hand, we tried to fill some gaps in Beilinson’s
argument.

We wish to express our gratitude to F.Grunewald, T.Zink, and especially
R.Weissauer for very helpful conversations on these topics.

The notations used here are in conformity with the notation used elsewhere in
this volume, compare esp. [13].



§1. Definition of the two regulators

Let k be a finite number field and let X = Speck. We wish to recall the definition
of Beilinson’s regulator map in this special case,

T H}t(X7Q(n)) - H%J(X/IR’IR("')) <
Here n > 1, and H}(X,Q(n)) is a certain piece of the K-group Kon_1(k)®@Q ([14].).

We remark that the complex IR(n)p on Spec € reduces for n > 0 to
IR(n) — € (degrees 0 and 1)
and is isomorphic via m,—; : € — IR(n — 1) to IR(n — 1)[~1]. It follows that

H%(Speca:,lR(n))={'R(no—l) ;;1 |

We consider the morphism of simplicial schemes given by evaluation

e:SpecC x B.GLn(C) — B.GLN/C .

Here on the left the simplicial set B.GLn(C) is considered as a scheme (disjoint
union of points) and the morphism is the obvious one. The n-th Chern class ¢, €
HZ(B.GLN,Q(n)) ([13]) defines an element ¢, € H3*(B.GLy,R(n)) which yields
by restriction and using the Kiinneth formula (legitimate since the coefficient system
is a vector space over IR)

e*(cn) € HZE*(SpecC x B.GLn(C),RR(n)) ~

o~ | H},(Spec €, IR(n)) ® H*»(B.GLy(C),R)
L ERB.GLN(C), R — 1)) = BN (CLy(C), R(n - 1))

We note that the element obtained is invariant under the simultaneous action of
Gal(C/IR) on the discrete group GLy(C) and the coefficient system IR(n — 1). This
construction is compatible with increasing N which is to be taken large compared
to n. We now note that

H*™Y(GLn(C),R(n — 1)) = Hom(Hzn—1(GLN(C), Z), R(n — 1)) .
Composing with the Hurewicz map we obtain finally a map
(1.1.) . Kz_n_l(C) = 11'27,,_1(BGL(¢)+) — Hzn_l(GL(C),Z) — IR(n - 1) =
. = Hp(Spec C,IR(n)) .
Returning to our number field k, we write X /¢ =Speck®C = J] C andfind

o:k—C
using the previous calculation

] Gal(C/IR)

HY(X g, R(n)) = [ P Hy(SpecC,RR(n))
ork—C

] Gal(C/IR)

= [ P R(r-1)

a:k—C



(The dimension of this vector space is thus equal to rq, resp. ry + 72 according as
n is even or odd, where 7; and 7; have the customary meaning.) The regulator
map is now defined by first extending scalars from Q to € and then taking in every
component the map (1.1.) defined by the n-th Chern class above. As a matter of
fact, the Chern character (which really is the regulator) is the product of this map
with the rational number (—1)"~1/(n — 1)!; but this will be of no importance to us.

We next give the definition of Borel’s regulator [5]. We base ourselves on [15]. We
need some preparation. Let G be a Lie group and V a continuous G-module. There
is a cohomology theory of continuous G-modules which is defined just as Eilenberg-
MacLane cohomology for discrete G-modules, but using continuous cochains. In
practice these cohomology groups can in fact be computed using C'*-cochains ([6],
p.276).

Let K C G be a maximal compact subgroup. Denoting as usual by $'(G/K) the
de Rham complex with real C*°-coefficients we obtain a homomorphism of complexes
in the category of continuous G-modules

(1.2.) R — §(G/K) = [S"(G/K) — S*(G/K) — ..]

Using the fact that G/K is diffeomorphic to a euclidean space, (1.2.) may be shown
to be a resolution in a suitable sense ([6],p.279). On the other hand, G-modules like

SY(G/ K) areinjective in a strong sense ([6], p.278) so that the continuous cohomology
of §(G/K) may be computed by simply taking G-invariants, so that?)

(13) H:ont(G7 IR) =.H:ont(G7 S(G/K)) = H*(S(G/K)G)
' = H*(g,k;R) .

Here the last term is the relative Lie algebra cohomology group which we now proceed
to recall. '

Let g be a Lie algebra over a field of characteristic zero and let V be a g-module.
The Lie algebra complex C'(g, V) is

Cig,V)=Hom(A%g,V)=A%g'®V, ¢=0,1,...

(8’ = dual vector space), with differential d : C¥(g, V) — C1t1(g,V) given as follows:
df(zg, ..., Zq) = Z(—l)izif(zo, oy Biy ey Tg)+
Z(-—l)i‘*’jf([x,-,mj],:no, ey Biy ey £y ey Tg)

i<j

The relative cohomology groups for a sub Lie algebra k C g are the cohomology
groups of the sub-complex

C(g,k; V) = Homy (AY(g/k),V) ,

1 ALl this holds for more general G-modules than the trivial module IR.



where the action of k on A%(g/k) is induced by the adjoint action. In the above chain
of isomorphisms we used the isomorphism

5(G/K)° ~ C'(g,k;R)

given by assigning to a differential form its value at the identity. The isomorphism
between continuous cohomology and relative Lie algebra cohomology is called the
van Est isomorphism. '

We need to calculate the relative Lie algebra cohomology in the case of interest.
Let G be a reductive Lie group. Let g = k @ p be the Cartan decomposition cor-
responding to k and let g, = k® ip C g ® € be the compact form. Extension of
scalars defines canonical isomorphisms (in the middle is Lie algebra cohomology over
C with trivial coefficients) '

(1.4) H*(g,k;R) ® € ~ H*(g¢,k¢) ~ H*(g,,k;R) @ C .
Denoting by G, the Lie group corresponding to g, we have as before
(1.5.) H*(g,,k;IR) > H*(S'(G/K)C*) = H*(S'(Gy/K)) =

~ Hp1:(Gu/K; R) .

Here the second isomorphism is obtained by an average argument using the fact that
G, is compact, and the third isomorphism is the de Rham isomorphism. Similarly
H*(g,,R) = Hp 1 i(Gu, IR).

Combining now (1.3.) — (1.5.) we obtain a canonical isomorphism
(16) 7 : H.Eetti(Gu/K; IR) ® C L) H:ont(G’ IR) ® C *

It does not carry the IR-cohomology into one another since under the isomor-
phism (1.4.) the IR-cohomology in degree m is carried into 5™ - H™(g,,k;IR). This

is due to the fact that in the definition of g, there is an i standing in front of the p
so that H*(g,,k;IR) = H*(Homy (Ai - p, R)).

We now apply these considerations to the case where G = GL ~(C), with maxi-
mal compact subgroup K = Uy, the unitary group. In this case we may identify G,
with Uy X Un, with Uy embedded diagonally. Explicitly, denoting by o : X — —tX
the Cartan involution on g with respect to k we obtain a C-linear isomorphism

(1.7.) g®l —gog
X®A— (AX, (X)) .

In terms of this identification, the action of complex conjugatibn with respect to the
real form g of g ® € becomes

(X1, X2) = (¢(X2), 0(X1))
and the Cartan involution
O'(Xl,Xz) = (Xg,Xl) .
Therefore g,,, which is the fixed space under the product of these two involutions is

g.=k®kCgog ,
with k embedded diagonally.



We identify R
G./K — Un

(z,y) —z-y' .

We note that the action of Gal(C/IR) on H *(g,k; IR) which under the van Est

isomorphism corresponds to the obvious action on H?,,,,(G,R) is the one induced by
~ conjugation on p. This action corresponds to the action by conjugation on p, and
hence also by conjugation on Uy = G, /K. Therefore under the isomorphism

H:ont(G? C) = H*(UN) C)
the actions of Gal(C/IR) by simultaneous conjugation correspond to one another.
v The cohomology of Uy, say with coefficients in Q is the free exterior algebra
generated by the cohomology classes of odd spheres, coming from the action of Ux

on €V (e.g., [3], 9.1.)

ngt‘ti(UN’ Q) = %(ul, UZyeeey u2N—-1) .
The action of Un on €% is compatible with complex conjugation,i.e. T-v = Z-7 and

complex conjugation on €™ induces a homeomorphism of degree (—1)™ on §2*~1. It
follows that '

(18) 77211.—1 = (—1)" *Upn—-1 -
We consider
(2m8) uzn 1 € HEpH(Un, R(n)) C HEZA(UN, €) .

Its image under the isomorphism 7 (1.6.) lies in H2>'(G,R(n — 1)) and is invariant
under the action of Gal(C/IR):

(1.9.) ban—1 = ¥((2m8)" - uzn_1) € H2"71(GLn(C), R(n — 1) .

Its image under the natural map from continuous to discrete cohomology (= forget
the topology)

HZ (GLN(C), R(r — 1) — H*™}(GLn(C), R(n — 1))
is the Borel regulator element. Just as for the Beilinson regulator it defines a homo-
" morphism
K3n-1(€) — R(n — 1)

and, in case k is a finite number field, the Borel regulator map

(1.10.) Kan-1(k) ® Q — Hp(X g, R(n)) .

We refer to the end of §4 for a slightly different construction of the Borel regulator
map.



We conclude this section with two remarks. It follows from the localization sequenée
and the fact that the higher K-groups of a finite field are finite that for n > 1

Kon1(0k)®Q ~ Ky, 1(k)®Q .

On the other hand, Borel [5] has shown that for n > 1 the homomorphism (1.10.)
is injective, defines a Q-structure on HL(X,,IR(n)) and that the co-volume of its
image is equal (modulo Q™) to ¢;(1 — n)Y), whereas Beilinson’s conjecture predicts
the corresponding facts for a suitable piece HY(X, Q(n)) of the K -group. However,
it follows from the compatibility of the Chern character with the Adams operators
(compare [18]) that Borel’s result implies that -

Kan-1(k) ® Q = Hy(X,Q(n)) .
This reasoning (i.e., using [18] as a reference for the compatibility of the regulator

map with the Adams operators) presupposes of course that the Beilinson regulator
and the Borel regulator coincide. The result also holds for n = 1.

1) In fact, Borel’s result is stated differently but boils down to the above.



§2 Some auxiliary considerations

So as not to interrupt the later discussions we collect here some definitions and facts
which will be needed. Let k be a field of characteristic zero and let A be a k-linear
®-category with unit object 1. We assume that End 1 = k. One has the concepts of
algebra objects in A (an object X with morphisms 1 — X, X @ X — X satisfying
certain obvious axioms), of graded objects of A, of complexes in A (here always with
differentials of degree 1) of differential graded algebras (DGA for short - always in_
non-negative degree).

Let X" be a co-simplicial algebra in A (i.e., a co-simplicial object in the category
of algebras in A). We have the standard cup product (e.g., [16], p.7, but translate
from simplicial to co-simplicial)

XP@X? — XPta

T,y — Uy =dPt0o..0d?P*(z)-d%0...0d"y)
This product is associative. The normalization N X' is the DGA
NX? =NKers*: X? — XP~1 |
with differential induced from d = Y (-1)d* : X? — X?*+! and product induced

from the cup product. Even when X" is a commutative co-simplicial algebra, NX" is
not necessarily a graded-commutative DGA. This leads to the following definitions.

2.1. Definitions (Beilinson):

-a) A co-simplicial algebra X in A is called small if X' is a commutative algebra with

unit which is generated by X° and X (in the sense of the cup product) and such that
the ideal Ker s® C X' has square zero. '

b) ADGA Y" is called small, if Y" is graded-commutative and is generated by Y°
and Y (as an algebra).

For simplicity we shall only consider reduced co-simplicial algebras X' (i.e.,
X% =1, 50 that d® = d' : X° — X' and X! = X° @ NX') and reduced DGA Y° |
(ie., Y?=1,s0 that d® =0: Y? — Y1),

2.2. Proposition:

The normalization functor induces an equivalence of categories between the category
of reduced small co-simplicial algebras in A and the category of reduced small DGA
in A.

For simplicity of exposition we shall do as if A was the category of k-vector spaces,
in particular calculate with elements. We shall need the following lemmas.

2.3. Lemma:
Let X* be a reduced commutative co-simplicial algebra in A. Then X is generated
by X' if and only if NX " is generated by NX1, '

We postpone the proof for a while and explain first the strategy of the proof of
2.2.. We shall need some facts about co-simplicial objects X and their associated



complex X~ and normalized subcomplex NX C X~. We translate from simplicial
theory into co-simplicial theory. Denote by A(X xY') the diagonal co-simplicial object
in the bi-co-simplicial object X x Y (= X? ® Y? in degree (p, ¢), with obvious mor-
phisms). There are natural homomorphisms of complexes, the Alexander-Whitney
map and the shuffle map (comp. [16], p.7, or [10], VI, §12)

(2.4.) x~ox~ A AX x X)~
(2.5.) AX x X)~ 2 X~ @ X~
Here AW is given componentwise by

XP X1 — XPte @ Xprte

Ty +— dPTLdPt(z) @d0...d(y)
and S is given componentwise, for each (p, g) with p+ g =mn, by
X*"@X"® — X?P Q@ X1
t®y = Y e(p,v)s"...s"1z @ str..sP1y
(/"’v") .
The sum ranges over all (p, g)-shuffles (i, v) with sign e(u,v). Both maps respect
the normalized complexes, i.e., for 2.4. NX ® NX is carried into' N A(X x X) and
similarly for 2.5..Using the Alexander-Whitney map the definition of the cup product
may now be rephrased as follows. A co-simplicial algebra in A is a co-simplicial ob ject
X together with a morphism’
AX xX)— X
satisfying certain conditions. The morphism induces homomorphisms of complexes
X~ X~ HAX x X)~ — X~ |
i.e., an algebra structure on X ~, and similarly an algebra structure on NX. This is
the cup product. We shall use the shuffle map to make a co-simplicial algebra out of
a DGA. To this end we shall use the Dold-Puppe theory which shows that N induces
an equivalence of categories between the category of co-simplicial objects in .4 and

the category of complexes in A concentrated in non-negative degree. A quasi-inverse
K is given as follows. It associates to a complex Y the co-simplicial object

(KY)™ = EB Y?
f:[oin]-—»[o’p]

where the sum is indexed by the surjective monotonic maps f and where Y? = Y.
If u: [0,m] — [0,n] is a monotonic map then to each diagram

[0,m] — [0,n]

g l i f
J
[0,q] < [0, p]
where f and g are surjective and j injective (note that j is uniquely determined by
f and g) we associate the morphism
| K(u)g,s: Vg — Y7

equal to the identity if p = ¢, to the differential d : Y?~! — Y? if j = d° and equal to
zero in all other cases. For pairs (g, f) not occurring in such a diagram the component
K(u)g,s is put equal to zero.
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It is easy to see ([11], p.222) that NKY = Y where Y? lies in (KY)? as Y2,
Furthermore, calling D? C (KY)™? the remaining direct summands we have, as one
checks easily ([11], 3.18)
r—1
D?=>"Imd" .
=0
Since K is an equivalence of categories we have for all co-simplicial objects X
(2.6.) ‘ X“=D@®N ,

a decomposition into subcomplexes. With respect to the cup product. D is aleft ideal
in X~. Indeed this follows from the formula for € X? and y € X?~!

(2.7) zUd(y) = (& o...0 &P(3)) - ()P di(y)) =
= (d*PdP*+17 o o dPH(2)) - (dHHP(d0)P (y))
= d*2(zUy)

We now show how to produce a co-simplicial algebra from a DGA. Let Y be a DGA,
YRY —Y .

Applying the functor K we obtain homomorphisms of complexes

NA(KY xKY) 2s NKY®NKY =Y ®Y — Y = NKY

which since N is an equivalence of categories corresponds to a morphism of co-
simplicial objects
A(KY x KY) — KY .

'The properties of the shuffle map (comp. [10] VI, §12) show that the associativity
law holds and furthermore (in contrast to the functor V) that K'Y is a commutative
co-simplicial algebra if Y is graded-commutative. '

2.8. Lemma:

a) If X is a reduced small co-simplicial algebra in A, then NX is a reduced small
DGA in A.

b)IfY is a reduced smallDGA in A, then KY is a reduced small co-simplicial algebra
im Aand NKY =Y.

Assuming this lemma as well for the moment we prove the proposition 2.2. as follows.
By lemma 2.8. we know that K is a fully faithful functor between reduced small
algebras and it remains to show the essential surjectivity. Let A(X x X) -2 X be a
reduced small co-simplicial algebra. Since Ko N is isomorphic to the identity functor
of the category of co-simplicial objects we obtain, neglecting this isomorphism, a
new structure of a reduced small co-simplicial algebra on X which induces the same

algebra structure by cup product on NX as the algebra structure with which we
started (use lemma 2.8.),

AX xX) ™ x .



We show first that the two cup product structures on X~ coincide. Since X~ is
generated by X' (both in the sense of the first and the second cup product) and
using the associativity laws we need to show only that the linear maps

=y
X'@.ex' __ X°

w=u

are identical for all p. We decompose X! as X! = 1 @ N! (a special case of the
decomposition 2.6.), which then defines a decomposition of the tensor product above.
The restriction of y or ' to the summand N!' ® ...® 1® ... ® N! (factor 1 in the
positions 4; < ... < ¢,) is given by

(2.9.) W1 ® .. Q1@ ...Qz,) = dr 117 d (UL Uzy)

as follows by a repeated application of the identity (2.7.). An obvious induction shows
that u = p', so that the two cup product structures on X~ are identical. To show
that the two co-simplicial algebra structures on X coincide and since X' generates
X, it suffices to show that the two maps
m(U,U)
(X'®.9X)®(X'®..0XY) ~_ XP

—
m’(U’,U')

(twice p factors) coincide. This follows from the bi-multiplicativity of the cup product
(which holds since X is commutative for either algebra structure) '

(zUy)-(e'Vy)=(z-2")U(y-7)
and the obvious fact that on X! both algebra structures coincide.

It remains to prové lemmas 2.3. and 2.8..

Proof of 2.3.: The argument is similar to the above. We have to consider
p:X'®..0 X' — X?

and its restriction fz to the summand N'®...Q N! in the direct sum decomposition of
the tensor product induced from the decomposition X! = 1@ N!. Then the image of
p lies in NP, From the identity (2.9.) we conclude that x maps all direct summands
other than N' ® ... ® N' into D?. Therefore 4 is surjective if and only if the image
of 1z is all of NP,

Proof of 2.8.: a) It is obvious that NX is reduced and by 2.3. NX is generated by :

N'. It remains to show that N X is commutative. Since N! generates NX it suffices
to show that 2 Uz = 0 for z € N!. Consider

p:X'ext L x2 .

This map is surjective. Since (3 (—1)*d*)(z) € N?, it is by the argument in the proof
of 2.3. the image of an element v € N! @ N1,

d(z) = d’(z) + d?(z) + p(v) .

11



Since N1 is an ideal of square zero we get
0=d'(z®)=(d"(z))*=2-zUz .

b) That KY is reduced is obvious, that it is commutative follows from the properties
of the shuffle map which have been mentioned earlier, and that KY is generated by
KY? follows from 2.3.. Therefore KY is a small co-simplicial algebra, since an easy
calculation using the definition of the algebra structure on K'Y shows that NKY!
- has square zero. The last assertion follows from the commutative diagram

YRY — Y

sT - |
NA(KY x KY) —s NKY

AW 1 Il

NKY® NKY — NKY

| I
YeY -— . Y

in which the first and last horizontal arrows are identical since on the normal co-
chains the composition S o AW is the identity morphism ([12], II, Thm. 2.1.a)).

In what follows we shall be interested in only two ®-categories.

1) The category Vecy of k-vector spaces. In this case the concepts of co-simplicial
algebras and DGA are the usual ones. We shall call them c-algebras resp. d-algebras.

2) The category C»(Vecs) of complexes of vector spaces in degree > 0. In this case
we shall call a co-simplicial algebra a cd-algebra and a DGA a dd-algebra. It is clear
that a cd-algebra is simply a co-simplicial DGA, whereas a dd-algebra is a bigraded
algebra in A*" with two differentials d* and d of degree (1,0) and (0, 1) respectively,
with dd* = d*d and which are graded derivations with respect to the first resp. the
second degree.

There is an obvious functor
020 (Veck) — Veck
which assigns to a complex its zero’th component. Correspondingly we have functors

reduced small cd-algebras — reduced small c-algebras
reduced small dd-algebras — reduced small d-algebras

These functors have left-adjoints, to be denoted by Q.

Explicitly, if R is a reduced small c-algebra one associates as follows to R’
a reduced small cd-algebra Q*(R’) with a homomorphism R° — Q*(R’) with the
required universal property.

Q*(R’) = Q*(R’)/cd — ideal spanned by
[Kers® : Q*(R!) — Q*(R%))? .

12



Here Q*(R) = Q},. /& is the de Rham complex of R'. From the fact that N is

an equivalence of categories (Proposition 2.2.) we obtain a natural isomorphism of

functors
: NO=QN .

We shall now apply these concepts to an explicit example. Let g be a Lie algebra
over k and let C"(g) = C'(g, k) be the Lie algebra complex with values in the trivial
representation (see §1). Then C'(g) is a reduced small d-algebra. We consider the
complex which is concentrated in degrees 1 and 2,

d*=id: g — g,

where as before g' denotes the dual vector space. We form the free graded-commu-
tative DGA, '

W=Ag —g)=5&)0Ag) .

Then W is graded in an obvious way (total degree), but also graded according to the
word length in terms of generators, i.e., the direct summand

W = 5'(g") @ AVi(g)
has total degree 2i +j — i = i + j, and word length i + (j — §) = j. The differential
d* extends uniquely as a graded derivation w.r.t. the first degree. It is the Koszul

differential ([7], §9,3.) d* : Wi — Withi,

d*(m...xi ui AL A yj—i) —
E(—l)sysaf'l---zi QU A.AYs A A Yj—i

On the other hand there is a canonical embedding A'g' < W and, as one checks

easily, the differential in the Lie complex extends in a unique way into a differential

d:W* — W*+1 guch that dd* = d*d, and indeed d induces on W*" the differential
in the Lie complex C'(g, $*(g')). It is obvious from the construction that W*" has a
universal property!) which implies that v

W = Q*(C(g)) .
W™ is called the Weil algebra. |

The Koszul complex W* is acyclic in degree > 0 and a resolution of & in degree
0 ([7], §9,3, Prop. 3.). We therefore obtain the first statement in the following lemma
(cohomology of the simple complex associated to a double complex).

2.10. Lemma:
o) HI(W*") =0 for j > 0 and H*(W*") = L.
b) H*"(W2™") = (S"g')8.

D In fact, W*" has the universal pioperty within all graded-commutative DGA,
not just reduced small ones. :

13
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Proof of b): Since W*# = 0 for i < j we obtain
H"(W2™) = Ker(5™(g') @ A8 - 5™(s') @ A'g)
= H'(g,5"(¢") = 5™(g)8 .
From now on G is a reductive algebraic group over k with Lie algebra g. Extending

scalars from k£ to € and using the existence of a compact form we deduce from the
results of §1 that

(2.11.) Hpr(G) = H*(g)
The isomorphism is induced by restricting a differential form to the identity.

2.12. Lemma:
There is one and only one ring homomorphism
HER(B.G) — 5*(g')8

which is functorial in G and such that for G = G, it identifies g' = S*(g')8 with
the space of invariant differentials on G = B1G (first component of B.G). This
homomorphism is an isomorphism.

Proof: The last condition means the following. The edge homomorphism
H12DR(3~G) - H}JR(G)
which appears in the Eilenberg-Moore spectral sequence ([9], 9.1.5)
B} = H}p(G?) = HpR(B.G)

is an isomorphism for G = Gp. Under the identification of H%R(B.Gm) with
Hpp(Gm) the morphism in the statement of 2.12. becomes the isomorphism

HLp(Gm)SHY(GR\ Q') = g'. Let T C G be a maximal torus. The first asser-
tion follows from the diagram in which W is the Weyl group (not the Weil algebra!)
(e-g- [9], 6.1.6.) | |

H%%(B.G) —  HER(B.T)

| |

S(g)8 = 5"t — S5
The second assertion follows from the strong form of the splitting principle which
identifies Hp(B.G) with the W-invariants in H} 5(B.T) (loc.cit.).

We next consider the following chain of homomorphisms defined via 2.10.. Let n > 0.
(Sngl)g — Hzn(WZn,-) — Hzn—l(W*,-/Wzn,-) — H2n-1(W*,-/W21,-) —
=H""(g) .
Let
P*(g) = 5*(g"8/(5%(g)8 - $2'(g)8)
be the factor space of indecomposable elements and let Prim*(g) be the sub-space

of primitive elements in H*(g). The following theorem is due to H.Cartan [8]; for a
proof we refer to [14], 6.14.



2.13. Theorem:

The above homomorphism induces an isomorphism

P*(g) < Prim*""'(g) .

We now apply the results to G = GLy over Q. In this case, as is well known,
the Chern class ¢, € HE,(B.Gq) defines via 2.12. a generator of the vector space
pPin(g /q) Which thus has to go under the isomorphism in 2.13. to a generator von_; of

Prim®"~%(g), which via 2.11. is also a generator of Prim¥5 (G /q) C HEyw (G /Q)-
Under the comparison isomorphism

HBR(GN) = Héeui(G(‘[ ), ‘[)

the subspace P2y (G /@) goes into HE*-1(G(C),Q(n)). Indeed, this follows from
(5], 4.3., using the restriction isomorphism

Hpeui(G(C), ) = Hp.,i(K,C) .

Here as in §1, K = Uy is the maximal compact subgroup of GLy(C). Making use
of the element 3,1 introduced in §1, at least up to a rational factor, we conclude

2.14. Corollary:

Let G be GLy g. The image van—1 of the n’th Chern class cn € HE(B.G) under
the homomorphism

HEn(B.G)"%" 5™(g)8 ™% B*1(g) = H*™*(k, €)

is equal to a non-zero rational multiple of the image of (2mi)*uzn—; € HEI'7H(K,C)
under the comparison isomorphism H}p(K)® € ~ H}_,..(K,C).

We conclude this section with two questions which are raised by the preced-
ing considerations. Let G be a reductive algebraic group over €. Then the edge
homomorphism in the Eilenberg-Moore spectral sequence ([9], 9.1.5.) gives for n > 0

HEeu(B-G(0),Q) — E;*"' = HEZH(G(C),Q) -

Does this homomorphism correspond under the comparison isomorphism between
Betti cohomology and de Rham cohomology to the map defined in 2.14.7

Let G be a reductive group over an arbitrary field of characteristic zero. Is the
isomorphism in (2.13.) the inverse of the transgression homomorphism associated to
the Leray spectral sequence in de Rham cohomology of the universal G-bundle over
B.G? This is stated without proof by Beilinson, [1], A 3.1.
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§3. Beilinson’s version of the van Est isomorphism

Let G be an algebraic group over R. Let B.G(*) be the largest simplicial closed
subscheme of B.G with first component the first infinitesimal neighbourhood of the
identity, GV,

poE= GO = BGW =

We thus have inductively (inverse images inside of B,G)
P i —
B,GW = N ()7} (Bp-1GW)

Clearly B,G™M € GM x...x @M, but this is in general a strict inclusion. On the other
hand, B.G®) contains the first infinitesimal neighbourhood of the identity in each
component. The simplicial scheme B.G(?) is the largest small simplicial subscheme
in B.G. Beilinson’s interpretation of the Borel regulator is based on the following
lemma.

3.1. Lemma:

There is a canonical isomorphism of reduced DGA

NH*(B.GW,5% = NH*(B.GM,0) = C(g)

Proof: We are dealing here with the cohomology of (simplicial) analytic spaces over
IR ([13], 2.1.). Clearly H*(B,G\1),0) = H%(B,GM), 5% = R@ g', with g being the
augmentation ideal of square zero. Therefore both sides coincide in degrees 0 and
1, and we shall show that there is a unique extension to an isomorphism of DGA.
Uniqueness is clear. '

Let O be the completion of the local ring at the identity element of G, so that
Reog = @/mz, with m denoting the maximal ideal. Choose an isomorphism
O = R[[X1,...,X5]] such that the formal group law of G is described by n power
series in 2n variables G1(X,Y), ..., Gn(X,Y) with

Gi(X,Y)=X; +Yi+ > cl*X; X, moddeg3 .
By definition, the affine ring of B,G() is the ring
(O/m? ® O/m?)/J,
where J, is the image of dl(mz), i.e., of the ideal generated by the products G; - G;
in O®0 = R[[X,Y]]. But
Gi G =(Xi+Yi+ Y F'XiYy)(X; + Y5+ D ¥ X Ye) mod deg 3

=X;Y;+Y:X; in O/m?’@ O/m? .

For the normalization we obtain

N?H(B.GW,S% = N?H°(B.GV,0)=¢g'® g'/ ], =

!

=g'®g'/Sym’g = A%g

16



Recalling the definition of the face and degeneracy operators in higher degree we
see that the left hand side in 3.1. in degree p is the factor space of g'®? by the
symmetrizer subspace of two consecutive variables, i.e., APg'. To see that the vector
space isomorphism thus obtained respects the DGA structures it suffices to show
that it is multiplicative in degree 1 and that the first differentials coincide. The
multiplicative structure on C*(g) is given by the wedge product. To z,y € g' there
is associated the alternating bilinear form on g ‘

z Ay(&,m) = () - y(n) — z(n) - y(€) .

The multiplicative structure on NO(B.GW) is induced by the cup product, so that
for f=2z € g',9g =y € g' we obtain the element fUg = zQy € g ®g'/Js, to which
corresponds the alternating bilinear form z A y on g. Thus multiplicativity is clear.
It remains to compare the first differentials and for this we use the following formula
for the Lie bracket in g (comp. [20], exercise 1.44., p-20). Let & € g be the dual
basis corresponding to the coordinates X;. Then

(€6l = S(ck — cf¥) - &

The differential on the left side
d:g' —g'®g'/h
is given by .
d(X:) = X; — (Xi+ Yi+ ) cF*X4Y2) + Yimod J
= - Z C?th-Y'l ? '
to which corresponds the alternating bilinear form on g
d(X;)(€xs&2) = —(ci* — ¢f*)
= —Xi([£r, &) -

Recalling the definition of the differential in the Lie complex (§1) this proves the -

assertion.

We now return to the definition of the Borel regulator which was based on the
continuous group cohomology H,,..(G(IR), R).(In fact we shall take g = R¢/rRGLn).
Since continuous cohomology may be calculated by C*°-cochains we have

(3.2.) H,..(G(R),R) = H*(B.G,S°) .

Here on the right side is the cohomology of the simplicial scheme over IR with values

in the sheaf of real-valued C*-functions (cf. [13]). The restriction homomorphism -

and lemma 3.1. now define a homomorphism
Honi G(IR),IR) = H*(B.G, $°) — H*(B.GM,5°/J) = H*(g,R) .

Here J C S° denotes the simplicial ideal generated by m? in degree 1, so that
SO/J - S%-G(I).

17
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3.3. Theorem:

- The above homomorphism is the composition of the van Est isomorphism and the
canonical map from the relative Lie algebra cohomology to the absolute Lie algebra
cohomology.

By construction, this composition is obtained as follows. Consider the homo- ‘ |
morphism of complexes

R — [$%(G) — SY(@) — O I
It induces a homomorphism in continuous cohomology,

H;,i(G(R),IR) — H,.(G(R),S(@)) = H*(S5'(G)¢W)
| = H*(g,R) .

If M is a continuous G(IR)-module we associate to it a simplicial S°-module sheaf on

- B.G, to be denoted by M. Explicitly, let
MP = Mapge (G?, M)

(or rather “sheafification of”), with arrows d’ : M? — M?+! given by

. f(g2’ ooy 9P+1) .7 = 0
N1 gpt1) = § 15193954150 9p11) 1< <p
Ipt1 - F(915-19p) i=p+1

Then just as in (3.2.) we have H7,,,(G(IR), M) = H*(B.G, M).

We denote by M) the sheaf 1 ® 5°/J on B.G™. We need the following
generalization of lemma 3.1..

3.4. Lemma:
NH(B.GW, MWy = ¢ (g, M).
Proof: Both sides are modules in the differential graded sense over the DGA

NH°(B.GW,0) = C'(g) and are generated by their zero’th component, which is
M in both cases. Furthermore, as graded vector spaces we have

NH'(B.GM,MW) = NHY(B.GV,0)9 M
C(g,M)=C(g)®@ M .

Hence both sides are isomorphic as graded vector spaces. Since the differentials on
both sides agree in degree zero, the two modules are isomorphic.

Denoting as before by O the completion of the local ring at the identity we put

M=M®50(G)@ .



Then there is a natural identification ([20], p.21)
§9(G) = Hom(U(g), A'g") ,

where U(g) denotes the universal enveloping algebra. It follows that (Shapiro iso-
morphism)

H(g, SJ(G)) = H"(g, Hom(U(g), A’g")) = A’g'[0] .

_The assertion now follows from the commutativity of the following diagram (here
commutativity means that isomorphisms going the “Wrong way” have to be inverted).

cont(G(IR))IR) - cont(G(lR) SO(G) - Sl(G) . ) - ‘H*(S (G)G(IR))

l I~ - I

H*(B.G,S5% — H*(B.G,5°(G) — §Y(@Q) — ...) H*(g,R)
! | |
H*(B.GM,8°/J) - H*(B.GW, $%@)M = §Y(G)D 5 ..)
v L |
H*(C'(g,R))  — H*(C'(g,5°(@)) — C'(8,S*G)) — ...)
| - !
H*(C'(g,8%(@)) — C"(g, S1(&)) — ...)
| !

H*(C"(8, Hom(U(g),R)) — C*(g, Hom(U(g), A'g')) — .. )

H*(R — jT\?g' - ...) d/
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84. Eqﬁality of the two regulator maps

We continue with the set-up of §3. On B.GM we consider the following analogue of
the Deligne complex ‘ ‘

A(n)p = (92" © A(n) — A1) .

Here 0* = 0*(O(B.GM)) is the value of the functor {* on the reduced small c-
algebra O(B.G()), which we may also consider as a complex of sheaves on B.G(1).
Clearly H7(B.G™M), A(n)) = 0 for j > 0. On the other hand we deduce from lemma,
3.1. that ; '

Hi(B.GW,0*) = HI(NO*) = HI(Q*(NO(B.GM)) = H (Q*(C'(g))) =
=H(W*)=0 for j>0
by the results of §2. We thus obtain for n > 0 an isomorphism
H*(B.GW, A(n)p) = H*™(B.GV,02") .

We now have a commutative diagram (the upper horizontal arrow is an isomorphism
(compare [13])) '

HY(B.G,A(n)) — H™B.G,F") = H};}ziB.G)
: ¢
H™B.GW,A(n)p) — H™(B.GM,027) = En(W2w)

Here the vertical arrows are defined using the maps (comp. §2)

ps = Qpga) — O = Qygqy/cd — ideal generated by
| | [Kers® : Q*(O(GM)) = IR]? .

4.1. Proposition:

The composition of ¢ : HEy(B.G) — H2(W2™) with the isomorphism of 2.10.,
H2*™(W2m) =~ §7(g")8, coincides with the isomorphism of lemma 2.12.

Proof: Indeed, the construction of ¢ is clearly functorial and for G = G,, is the

required isomorphism.

4.2. Corollary:

The Beilinson regulator and the Borel regulator are identical maps (up to a factor in
Q*)
Kgn_l(q:) — IR(n - 1) .
In this proof we shall have to distinguish whether we consider the Lie algebra g
of G = GLy/¢ as a real or complex Lie algebra; correspondingly we write g /R OT 8

By proposition 4.1. the composition of the following homomorphisms coincides with
the map considered before 2.13.

HER(B.G) 5 H*™(W2") 5 B3 (W [W2m) o B3 [W2ir) =
= H*(g) = HE5(G)
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'Therefore the image of the n-th Chern class is the canonical primitive element
van-1 € H2""(g). We consider the commutative diagram where as usual 7,_; :
IR(n)p — IR(n)p denotes the natural homomorphism to the “real version” of the
Deligne complex ([13]) :

. HE(B.G,R(n)) 5" H*(B.G,R(n)p) = H*~}(B.G, S'(n—1)/F") — H™-1(B.G, $9(n—1))

1
1 B _ L | H”;"(g/m R(n—.-l)).= H"‘“V(B..G(‘),S"/J(An‘-'-'l).)
k s o S | —
A Hﬁ(s.@%ﬁ?ﬁ,ﬂ '—. H’n-_l(g.aﬂ),ﬁ'/ﬁz" + R(n)) — H"""(B‘.G(‘),-O/R(n)) = H"‘“(B..G(‘),O)l_.’

HWar) o i wen) o EmewE)  om pe),

Here the interesting arrows come by projecting * resp. S on its zero’th
component. Now the n-th Chern class ¢, may be considered as an element in
HZ(B.G,R(n)). By what we saw already the image of ¢, in H 2n=1(g)is the element
V2n—1. On the other hand, the homomorphism ‘ K

e : HY'(B.G,R(n)) — H™(B.GLn(C),R(n —1))
mé,y be factored as the composition of | ' | .
| H%"(B.G, |R(n)) — H*(B.G,8%n — 1))
and the fdrgef—the-topology-map o |
B2 (GL(C), R(n — 1) — H*»Y(GLy(C),R(n—1)) ,

“where the first map is the composition of the maps in the upper horizontal line in
~the diagram above. Therefore, to conclude the proof, since the map

H*(g,k;IR) = H*(gly(C), un; R) — H*(gly(C), R) = H*(g o R)

is injective ([5] 5.2.), it suffices to show that the image byn—1 of van—; under mn_; :
H*™"l(g) - H* (g /R IR(n — 1)) coincides with the image of the Borel regulator
element by, under the injection H2"~1(g,k;R(n — 1)) - H?*"!(g, R(n — 1)).

The first map is the composition of the map -

¢: H*(g) N H*(g/IR;C) ,



which comes about by considering a C-multilinear form on g as an IR-multilinear
form, and the projection 7,_; on the coefficients. In terms of the isomorphism (1.7.)

gc=g0g

and identifying H*(g /R €) with H *(g¢ ), the map ¢ is induced by the projection on
the first factor, i.e., under the Kiinneth isomorphism

H*(g¢) ~ H*(gdg) = H*(g) @ H*(g)

the map ¢ sends ¢ to z ® 1. We were unable to show the equality of bs,-; and
ban—1, but less is required to prove 4.2.. Indeed, the image of the Hurewicz map
Ton-1(BGLN(C)T)®R — Hppn— 1 (GLy(C), IR) is contained in the primitive subspace
(compare [18]) which is dual to the factor space of indecomposable elements in the
cohomology. It therefore remains to show that the images of ba,_1 and by,,—; in the
indecomposable quotient coincide.

~ On H*(g¢) there is a canonical rational structure induced from the Kiinneth
decomposition. The algebra map induced from the diagonal g —» g @ g,

d:H*(g¢) — H*(g) ,

is defined over Q and is surjective. Furthermore, there is an exact sequence of spaces
of indecomposables in (relative) Lie algebra cohomology (compare [5], 5.2.). -

* D* d *
0— P*(gg.ke) — P(gg) = P*(g) - 0 .

In degree 2n—1 the middle space has dimension 2 and the space on the right dimension
1. Our claim therefore follows from the following lemma.

4.3. Lemma:

The images of by,—1 and EZn—l in P*(gc) are both rational, non-zero, and lie in the _

kernel of d.

Proof: We first consider bs,—;. Applying the compaﬁson isomorphism, its image in
P*(g¢) comes from the composition of maps

Héétti(Gu/K,C) = Hp.y(Gu, C)
Hpes:(K, C)
Since these are induced from continuous maps they preserve rational cohomology.

Therefore the rationality of b,,_; follows just as in 2.14. from [5], 4.3. The other
assertions about by,_; are trivially true. -

We now consider I-Jz,,_l. This also gives another description of the Borel regula-
tor. The involution on H*(g /IR»€) induced by complex conjugation on the coefficient
system corresponds to the involution on H *(g¢) which is induced by the involution
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on the complex A*gg which sends a multilinear form f on g¢ to the multi-linear

form ¢f with
(ef)( X150y Xp) = F(uU(X1)y s (X))

where ¢ : g¢ — g¢ is induced from X ® A — X ® ], i.e., in terms of the isomorphism
(1.7.),

(Xl,Xz) _— (—t)-fz,—txl) .

Let 7: X — —'X be the canonical outer automorphism of g. It is defined over Q.
Since on k we have X = 7(X), we conclude from (1.8.) and (2.14.) that

T(V2n-1) = (—1)" - van_1 .
Since vzn_i is real we therefore obtain
e(v2n-1©1) =1 ® 7(v2n-1) = (=1)" - 1 ® v2n_1
and hence, since m,_1 = Id + (—1)""!¢,

(4.4.) ban-1 = (Id+ (=1)""2c)(vzn_1 ® 1)
=V2-19®1—-1Q@vy,1 .

Now all required properties of b5,—; are obvious.
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