Die Renormierungsgruppe Antrittsvorlesung — 15. November 2006

Raimar Wulkenhaar

Mathematisches Institut der Westfälischen Wilhelms-Universität

Einleitung

Einleitung

- typische physikalische Systeme haben sehr viele Freiheitsgrade (∼ 10²³ pro cm³ Material)
- theoretische Methoden im wesentlichen auf einen Freiheitsgrad beschränkt
- exakte Beschreibung eines typischen physikalischen Systems deshalb unmöglich

In Wirklichkeit: enorme Reduktion der Zahl der Freiheitsgrade

Beispiel: Zustand eines Gases im wesentlichen durch Druck p und Temperatur T bestimmt:

für ideales Gas:

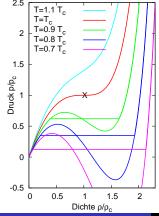
$$p\varrho^{-1}=cT$$

 $(\varrho - Dichte)$

Kritische Phänomene

Zustandsgleichung für reale Gase (van der Waals)

$$(p+a\varrho^2)(\varrho^{-1}-b)=cT$$



Einleitung

- Dichte kann bei Druckabnahme nicht zunehmen → Maxwellsche Gerade
- Phasenübergang gasförmig-flüssig Dichte unstetig
- kritischer Punkt (T_c , p_c)
 Unterschied der Phasen verschwindet
 Wasser: $T_c = 374$ °C, $p_c = 218$ atm, $\varrho_c = 0.3$ g/cm³
- besondere Eigenschaften bei (T_c, p_c) keine natürliche Längen-Skala, fraktal

Anwendungen

$$\left(\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\rho}}\right)_{T=T_{c}} = 0$$

$$\left(\frac{\partial^2 \boldsymbol{p}}{\partial \varrho^2}\right)_{T=T_c} = 0$$

van-der-Waals-Gleichung ausgedrückt durch kritische Werte:

$$\left(\frac{p}{p_c} + 3\left(\frac{\varrho}{\varrho_c}\right)^2\right)\left(\frac{\varrho_c}{\varrho} - \frac{1}{3}\right) = \frac{8}{3}\frac{T}{T_c}$$

- universell
- Linearisierung in Umgebung des kritischen Punktes liefert universelle kritische Exponenten

$$ightarrow$$
 z.B. $(arrho_{ ext{flüssig}} - arrho_{ ext{gasf\"ormig}})(T) \left\{ egin{array}{ll} \sim (T_c - T)^eta & ext{f\"ur } T \leq T_c \ = 0 & ext{f\"ur } T \geq T_c \end{array}
ight.$

Die Korrelationslänge

Einleitung

- Zustandsgleichung für 10^{23} Moleküle unverändert für $\frac{1}{2} \times 10^{23}$ Moleküle, nicht aber für $\frac{1}{2^{75}} \times 10^{23}$ Moleküle
- Wie weit kann man die Größe des Systems reduzieren, ohne seine qualitativen Eigenschaften zu verändern?
 - \longrightarrow Korrelationslänge ξ

Zwei entgegengesetzte Situationen:

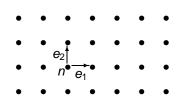
- Volumen ξ^3 enthält nur wenige (z.B. < 10) Moleküle ⇒ Näherungsverfahren
- Volumen ξ^3 enthält sehr viele (z.B. $> 10^6$) Moleküle
 - \Rightarrow Phasenübergänge und kritische Phänomene $\xi = \infty$ am kritischen Punkt

Das Ising-Modell

Einleitung

• jedem Gitterpunkt $n \in \Gamma \subset \mathbb{Z}^d$ wird Spin $s_n = \pm 1$ zugeordnet

nur benachbarte Spins wechselwirken



Energie (= Hamilton-Funktion) im Magnetfeld B ist

$$H(s,B) = -J\sum_{n\in\Gamma}\sum_{e}s_ns_{n+e} + B\sum_{n\in\Gamma}s_n$$

Wahrscheinlichkeit der Konfiguration s:

$$p(s, T, B) = \frac{1}{Z} e^{-H(s, B)/kT}$$

$$Z(T, B) = \sum_{s} e^{-H(s, B)/kT} - \text{Zustandssumme}$$

$$F(T, B) = -kT \ln Z - \text{freie Energie}$$

• Magnetisierung
$$M(T, B) = \left\langle \frac{1}{vol(\Gamma)} \sum_{n \in \Gamma} s_n \right\rangle = -\frac{\partial}{\partial B} \left(\frac{F}{vol(\Gamma)} \right)$$

• Spin-Korrelation $\Gamma_n = \langle s_n s_0 \rangle - \langle s_n \rangle \langle s_0 \rangle$

Phasenübergang am kritischen Punkt $T = T_c$ (Curie-Punkt)

- ferromagnetsiche Phase für $T < T_c$: $M \neq 0$ bei B = 0 (spontane Magnetisierung)
- paramagnetische Phase für $T > T_c$: $M = \text{const} \cdot B$

•
$$M(T,0)$$

$$\begin{cases} \sim (T_c - T)^{\beta} & \text{für } T \leq T_c \\ = 0 & \text{für } T \geq T_c \end{cases}$$

$$\bullet \ \Gamma_n(T,0) \left\{ \begin{array}{l} \sim \frac{\exp\left(-\frac{\|n\|}{\xi(T)}\right)}{\|n\|^{|d-2}} \ , \quad \xi(T) \sim |T - T_c|^{-\nu} \quad \text{für } T \neq T_c \\ \sim \frac{1}{\|n\|^{|d-2-\eta}} \end{array} \right.$$

kritische Exponenten β, ν, η, \dots universell für alle Ferromagnete

Anwendungen

Einleitung

Block-Spins [Kadanoff, 1966]

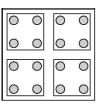
Einleitung

Situation: $\xi \gg 1$ (Spins korreliert)

 Blöcke B_n ⊂ Γ aus L^d Gitterpunkten Block-Spins

$$s_n pprox \tilde{s}_n := \frac{1}{L^y} \sum_{k \in B_n} s_k, \quad 0 \le y \le d$$

(thermische Fluktuationen reduzieren Gesamtspin)



Anwendungen

② ersetze $s_n = L^{y-d}\tilde{s}_n + \sigma_n$ in Zustandssumme:

$$Z = \sum_{\tilde{\mathbf{s}}, \sigma} \exp\left(-\frac{H(\tilde{\mathbf{s}}, \sigma, B)}{kT}\right) =: \sum_{\tilde{\mathbf{s}}} \exp\left(-\frac{\tilde{H}(\tilde{\mathbf{s}}, T, B, y)}{kT}\right)$$

 $\tilde{H}(\tilde{s}, T, B, y)$ beschreibt effektive Wechselwirkung von Block-Spins \tilde{s}_n auf Gitter der Weite L

Nach Reskalierung aller Längen um $\frac{1}{L}$ können wir \tilde{s} wieder s nennen; Korrelationslänge wird ξ/L

Die Renormierungsgruppe [Wilson, 1971]

Ergebnis: Transformation $R_L: H(s) \mapsto \tilde{H}(s)$

• Eliminierung der Freiheitsgrade führt auf $R_{L^2} := R_L \circ R_L$ allgemein Halbgruppe $R_L \circ R_{L'} = R_{LL'}$ mit $L, L' \ge 1$

Definition

Einleitung

Die Menge der Transformationen $\{R_L\}$ heißt die Renormierungs*gruppe*.

- \Rightarrow Führt auf Hamilton-Funktion $H_{\xi}(s) := R_{\xi}(H)$ mit $\tilde{\xi} \approx 1$ (exakte Lösung des Problems)
- \rightarrow im allgemeinen $R_{\varepsilon}(H)$ nicht bestimmbar

Anwendungen

Annahmen über allgemeinste Form der Hamilton-Funktion

$$H = -J \sum_{n} \sum_{e} s_{n} s_{n+e} + B \sum_{n} s_{n}$$

$$R_{L}(H) = J_{1} \sum_{n} \sum_{e} s_{n} s_{n+e} + B_{1} \sum_{n} s_{n} + \ddot{\mathbf{u}}. \mathbf{n}. \mathbf{N} + \mathbf{s}^{3} - \text{Terme} + \dots$$
mit $J_{1} = f(J)$ reell analytisch.

Korrelationslänge ist Funktion von *J*, also $\frac{1}{I}\xi[J] = \xi[f(J)]$

$$f(J_c) = J_c \quad \Leftrightarrow \quad \xi[J_c] = \infty \text{ (oder 0)}$$

Kritischer Punkt = Fixpunkt der Renormierungsgruppe

Völlig andere Problemstellung

Anstatt das Modells für gegebenes H zu lösen, finde Fixpunkte $H^* = R_I(H^*)$ der RG im Raum aller Hamilton-Funktionen

Fixpunkte sind selten! (z.B. Ising, mean-field, Gauß, Yang-Mills) ⇒ Universalität

Renormierungsgruppenfluß

```
\{ \text{ Hamilton-Op. } H \} \quad \Leftrightarrow \quad P := \{ \text{Kopplungskonstanten } K \}
```

RG definiert Fluß auf P durch $K(L) := R_L(K)$, $L \ge 1$

- Fixpunkt der Renormierungsgruppe: $R_L(K^*) = K^*$
 - → Nullvektor von P
- Kritische Fläche $P^* = \left\{ K \in P : \lim_{L \to \infty} R_L(K K^*) = 0 \right\}$

Physikalische Annahme

 R_L ist linearer Operator bezüglich kleiner $(K - K^*)$ und besitzt vollständiges System $\{e_k\}$ von Eigenvektoren $R_L(e_k) = L^{x_k}e_k$

- $x_k > 0$ (relevante Wechselwirkungen): $R_L(e_k) \to \infty$
- $x_k = 0$ (marginale Wechselwirkungen): $R_L(e_k) \rightarrow const$
- $x_k < 0$ (irrelevante Wechselwirkungen): $R_L(e_k) \rightarrow 0$

```
RG-Fluß für \left\{\begin{array}{c} \text{negative } x_k \text{ zum} \\ \text{positive } x_k \text{ weg vom} \end{array}\right\} Fixpunkt gerichtet
```

- $\operatorname{codim}(P^*) = \operatorname{Zahl} \operatorname{der} \operatorname{positiven} x_k$ (i.a. klein)
- am Fixpunkt, d.h. makroskopisch, kann es nur relevante (evtl. marginale) Wechselwirkungen geben

Konsequenz

Systeme, die sich mikroskopisch durch unendlich viele irrelevante Wechselwirkungen unterscheiden, haben makroskopisch ein ähnliches Verhalten

- Makroskopische Phänomene zerfallen je nach Existenz und Art von Fixpunkten in Universalitätsklassen
- In jeder Klasse: Reduktion der Freiheitsgrade makroskopische Parameter \Leftrightarrow positive x_k

Anwendungen: I. Ising-Modell

- zwei makroskopische Parameter: T und B
- kritischer Punkt K^* bei $T = T_c$ und B = 0

$$T-T_c$$
 klein, aber $eq 0$ $B=0$, dann $x_k>0\Leftrightarrow k=1$

- K(T) glatt $\Rightarrow R_I(K(T))$ nähert sich K^* mit wachsendem L
- $T \neq T_c$ \Rightarrow $R_L(K(T))$ entfernt sich von K^* für $L \to \infty$

$$K(T)-K^* = \sum_k u_k(T) e_k$$
, $u_1(T) = A(T-T_c) + \dots$ (anaytisch)

$$R_{L}(K(T) - K^{*}) = u_{1}(T) L^{x_{1}} e_{1} + \sum_{k>1} u_{k}(T) L^{x_{k}} e_{k}$$

$$= A(T - T_{c}) L^{x_{1}} e_{1} + \ldots = \pm (L/\xi)^{\frac{1}{\nu}} e_{1} + \mathcal{O}(\epsilon)$$

für
$$\xi = |A(T - T_c)|^{-\nu}$$
 mit $\nu = \frac{1}{x_1}$ – kritischer Exponent

Anwendungen: II. Quantenfeldtheorie

• Wirkungsfunktional S statt Hamilton-Funktion, \hbar statt $\frac{1}{kT}$

z.B.
$$S = \int d^4x \left(\frac{1}{2}\phi(x)(\Delta + m^2)\phi(x) + \frac{\lambda}{4!}\phi^4(x)\right)$$

zwar erscheint Raum und Zeit als Kontinuum, Existenz der Erwartungswerte erfordert aber Regularisierung der Raumzeit

Annahme: Diskretisierung ist real

- Diskretisierungslänge a definiert Maßeinheit; Masse \tilde{m} , Kopplungskonstante $\tilde{\lambda}$, Korrelationslänge $\xi(\tilde{m},\tilde{\lambda})$ sind dimensionslose reelle Zahlen
- Physikalische Korrelationslänge durch Masse $m = \frac{1}{\xi a}$ bestimmt; diese bleibt festgehalten
- Kontinuumslimes $a \to 0$ entspricht $\xi \to \infty$: Quantenfeldtheorie lebt auf kritischer Fläche

Einleitung

beobachtbare Physik bei Energie E = m ist $S_{phys} = R_{\xi}(S_0)$

Konsequenzen aus der Renormierungsgruppe

- Gäbe es irrelevante Wechselwirkungen mit $x_k < 0$ in S_{phys} , so wären ihre Quellen in S_0 um $\xi^{-x_k} \to \infty$ skaliert. Dann existiert der Kontinuumslimes nicht.
- ⇒ Makroskopisch vorhandene irrelevante Wechselwirkungen sind nicht renormierbar.
 - Umgekehrt: Ist S₀ allgemein gewählt mit beschränkten irrelevanten Wechselwirkungen, dann werden diese in S_{phys} mit ξ^{xk} unterdrückt.
- ⇒ im Kontinuumslimes überleben nur die renormierbaren relevanten/marginale Wechselwirkungen

Folgerung: Physik der Elementarteilchen wird notwendig durch renormierbare Quantenfeldtheorien beschrieben!

Einleitung

- Einsteins Gravitationstheorie ist nicht renormierbar
 - ⇒ Gravitation wird durch Kontinuumslimes zu Null skaliert
- Gravition ist $\mathcal{O}(10^{40})$ mal schwächer als die elektomagnetische Kraft, aber sie existiert
- \Rightarrow Korrelationslänge ξ muß endlich sein, d.h. es gibt diskrete Struktur von Raum+Zeit bei Planck-Skala $a = 10^{-33}$ cm

Vorschlag: Nichtkommutative Geometrie

- Programm: kritische Punkte und Skalenexponenten x_k für Feldtheorien auf nichtkommutativen Geometrien
 - → entspricht Renormierung
- Theorem [H. Grosse+R.W., 2004] Im ϕ^4 -Modell auf der 4-dimensionalen Moyal-Ebene gibt es neben m, λ eine weitere marginale Kopplungskonstante Ω
- dank Ω hat das ϕ^4 -Modell auf der Moyal-Ebene bessere nichtperturbative Eigenschaften