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Chapter 1Introdution.The purpose of these notes is to provide a rapid introdution to von Neumannalgebras whih gets to the examples and ative topis with a minimum oftehnial baggage. In this sense it is opposite in spirit from the treatises ofDixmier [℄, Takesaki[℄, Pedersen[℄, Kadison-Ringrose[℄, Stratila-Zsido[℄. Thephilosophy is to lavish attention on a few key results and examples, and weprefer to make simplifying assumptions rather than go for the most generalase. Thus we do not hesitate to give several proofs of a single result, or repeatan argument with di�erent hypotheses. The notes are built around semester-long ourses given at UC Berkeley though they ontain more material thanould be taught in a single semester.The notes are informal and the exerises are an integral part of the ex-position. These exerises are vital and mostly intended to be easy.
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Chapter 2Bakground and Prerequisites2.1 Hilbert SpaeAHilbert Spae is a omplex vetor spaeH with inner produt 〈, 〉 : HxH →
C whih is linear in the �rst variable, satis�es 〈ξ, η〉 = 〈η, ξ〉, is positivede�nite, i.e. 〈ξ, ξ〉 > 0 for ξ 6= 0, and is omplete for the norm de�ned by test
||ξ|| =

√

〈ξ, ξ〉.Exerise 2.1.1. Prove the parallelogram identity :
||ξ − η||2 + ||ξ + η||2 = 2(||ξ||2 + ||η||2)and the Cauhy-Shwartz inequality:

|〈ξ, η〉| ≤ ||ξ|| ||η||.Theorem 2.1.2. If C is a losed onvex subset of H and ξ is any vetor in
H, there is a unique η ∈ C whih minimizes the distane from ξ to C, i.e.
||ξ − η′|| ≤ ||ξ − η|| ∀η′ ∈ C.Proof. This is basially a result in plane geometry.Uniqueness is lear�if two vetors η and η′ in C minimized the distaneto ξ, then ξ, η and η′ lie in a (real) plane so any vetor on the line segmentbetween η and η′ would be stritly loser to ξ.To prove existene, let d be the distane fromC to ξ and hoose a sequene
ηn ∈ C with ||ηn − ξ|| < d + 1/2n. For eah n, the vetors ξ, ηn and ηn+1de�ne a plane. Geometrially it is lear that, if ηn and ηn+1 were not lose,some point on the line segment between them would be loser than d to ξ.Formally, use the parallelogram identity:

||ξ − ηn + ηn+1

2
||2 = ||ξ − ηn

2
+
ξ − ηn+1

2
||25



= 2(||ξ − ηn
2

||2 + ||ξ − ηn+1

2
||2 − 1/8||ηn − ηn+1||2)

≤ (d+ 1/2n)2 − 1/4||ηn − ηn+1||2Thus there is a onstant K suh that ||ηn− ηn+1||2 < K/2n or ||ξ− ηn+ηn+1

2
||2would be less than d2.Thus (ηn) is Cauhy, its limit is in C and has distane d from ξ.Exerise 2.1.3. If φ ∈ H∗ (the Banah-spae dual of H onsisting of allontinuous linear funtionals from H to C), kerφ is a losed onvex subsetof H. Show how to hoose a vetor ξφ orthogonal to kerφ with φ(η) = 〈ξφ, η〉and so that φ 7→ ξφ is a onjugate-linear isomorphism from H∗ onto H.We will be espeially onerned with separable Hilbert Spaes where thereis an orthonormal basis, i.e. a sequene {ξ1, ξ2, ξ3, ...} of unit vetors with

〈ξi, ξj〉 = 0 for i 6= j and suh that 0 is the only element of H orthogonal toall the ξi.Exerise 2.1.4. Show that an orthonormal basis always exists (e.g. Gram-Shmidt) and that if {ξi} is an orthonormal basis for H then the linear spanof the {ξi} is dense in H.A linear map (operator) a : H → K is said to be bounded if there is anumberK with ||aξ|| ≤ K||ξ|| ∀ξ ∈ H. The in�mum of all suh K is alledthe norm of a, written ||a||. The set of all bounded operators from H to Kis written B(H,K) and if H = K we use B(H). Boundedness of an operatoris equivalent to ontinuity.To every bounded operator a between Hilbert spaesH and K, by exerise2.1.3 there is another, a∗, between K and H, alled the adjoint of a whih isde�ned by the formula 〈aξ, η〉 = 〈ξ, a∗η〉.Exerise 2.1.5. Prove that
||a|| =

sup

||ξ|| ≤ 1, ||η|| ≤ 1
|〈aξ, η〉|

= ||a∗|| = ||a∗a||1/2.Some de�nitions:The identity map on H is a bounded operator denoted 1.An operator a ∈ B(H) is alled self-adjoint if a = a∗.An operator p ∈ B(H) is alled a projetion if p = p2 = p∗.An operator a ∈ B(H) is alled positive if 〈aξ, ξ〉 ≥ 0 ∀ξ ∈ B(H). We say6



a ≥ b if a− b is positive.An operator u ∈ B(H) is alled an isometry if u∗u = 1.An operator v ∈ B(H) is alled a unitary if uu∗ = u∗u = 1.An operator u ∈ B(H) is alled a partial isometry if u∗u is a projetion.The last three de�nitions extend to bounded linear operators between dif-ferent Hilbert spaes.If S ⊆ B(H) then the ommutant S ′ of S is {x ∈ B(H)|xa = ax ∀a ∈ S}.Also S ′′ = (S ′)′.Exerise 2.1.6. Show that every a ∈ B(H) is a linear ombination of twoself-adjoint operators.Exerise 2.1.7. A positive operator is self-adjoint.Exerise 2.1.8. Find an isometry from one Hilbert spae to itself that isnot unitary. (The unilateral shift on H = ℓ2(N) is a �ne example. There isan obvious orthonormal basis of H indexed by the natural numbers and theshift just sends the nth. basis element to the (n+ 1)th.)Exerise 2.1.9. If K is a losed subspae of H show that the map PK : H →
K whih assigns to any point in H the nearest point in K is linear and aprojetion.Exerise 2.1.10. Show that the orrespondene K → PK of the previousexerise is a bijetion between losed subspaes of H and projetions in B(H).If S is a subset of H, S⊥ is by de�nition {ξ ∈ H : 〈ξ, η〉 = 0 ∀η ∈ S}.Note that S⊥ is always a losed subspae.Exerise 2.1.11. If K is a losed subspae then K⊥⊥ = K and PK⊥ = 1−PK.Exerise 2.1.12. If u is a partial isometry then so is u∗. The subspae u∗His then losed and alled the initial domain of u, the subspae uH is alsolosed and alled the �nal domain of u. Show that a partial isometry is theomposition of the projetion onto its initial domain and a unitary betweenthe initial and �nal domains.The ommutator [a, b] of two elements of B(H) is the operator ab− ba.Exerise 2.1.13. If K is a losed subspae and a = a∗ then

aK ⊆ K iff [a, PK] = 0.In general (aK ⊆ K and a∗K ⊆ K) ⇐⇒ [a, PK] = 0.7



2.2 The Spetral TheoremThe spetrum σ(a) of a ∈ B(H) is {λ ∈ C : a− λ1 is not invertible}.Exerise 2.2.1. (Look up proofs if neessary.) Show that σ(a) is a non-empty losed bounded subset of C and that if a = a∗, σ(a) ⊆ [−||a||, ||a|| ]with either ||a|| or −||a|| in σ(a).The spetral theorem takes a bit of getting used to and knowing howto prove it does not neessarily help muh. If one annot �see� the spetraldeomposition of an operator it may be extremely di�ult to obtain�exeptin a small �nite number of dimensions where it is just diagonalisation. Butfortunately there is nothing like a ourse in operator algebras, either C∗ orvon Neumann, to help master the use of this theorem whih is the heart oflinear algebra on Hilbert spae. The book by Reed and Simon, �Methods ofmathematial physis� vol. 1, Funtional Analysis, ontains a treatment ofthe spetral theorem whih is perfet bakground for this ourse. We willmake no attempt to prove it here�just give a vague statement whih willestablish terminology.The spetral theorem asserts the existene of a projetion valued measurefrom the Borel subsets of σ(a) (when a = a∗ or more generally when a isnormal i.e. [a, a∗] = 0) to projetions in B(H), written symbolially λ →
E(λ), suh that

a =

∫

λdE(λ).This integral may be interpreted as a limit of sums of operators (neessitatinga topology on B(H)), as a limit of sums of vetors: aξ =
∫

λdE(λ)ξ or simplyin terms of measurable funtions 〈ξ, aη〉 =
∫

λd〈ξ, E(λ)η〉. The projetions
E(B) are alled the spetral projetions of a and their images are alled thespetral subspaes of a.Given any bounded Borel omplex-valued funtion f on σ(a) one mayform f(a) by f(a) =

∫

f(λ)dE(λ).Exerise 2.2.2. If µ is a sigma-�nite measure on X and f ∈ L∞(X,µ),the operator Mf : L2(X,µ) → L2(X,µ), (Mf g)(x) = f(x)g(x), is a bounded(normal) operator with ||Mf || = ess-supx∈X(|f(x)|). If f is real valued then
Mf is self adjoint. Find σ(f) and the projetion-valued measure E(λ).Exerise 2.2.3. If dim(H) < ∞ �nd the spetrum and projetion-valuedmeasure for a (whih is a Hermitian matrix).8



The example of exerise 2.2.2 is generi in the sense that there is a versionof the spetral theorem whih asserts the following. If ξ ∈ H is any vetorand a = a∗ ∈ B(H), let K be the losed linear span of the {anξ : n =
0, 1, 2, 3, ...}, then a de�nes a self-adjoint operator on K and there is a �nitemeasure µ on the spetrum σ(a) suh that (K, a) is isomorphi in the obvioussense to (L2(σ(a), µ), multipliation by x). Continuing suh an argument byrestriting to K⊥ one obtains a full spetral theorem.Exerise 2.2.4. Show that a self-adjoint operator a is the di�erene a+−a−of two positive ommuting operators alled the positive and negative parts of
a, obtained as funtions of a as above.2.3 Polar deompositionExerise 2.3.1. Show that every positive operator a has a unique positivesquare root a1/2.Given an arbitrary a ∈ B(H) we de�ne |a| = (a∗a)1/2.Exerise 2.3.2. Show that there is a partial isometry u suh that a = u|a|,and that u is unique subjet to the ondition that its initial domain is ker(a)⊥.The �nal domain of this u is Im(a) = ker(a∗)⊥.2.4 Tensor produt of Hilbert Spaes.If H and K are Hilbert spaes one may form their algebrai tensor produt
H ⊗alg K (in the ategory of omplex vetor spaes). On this vetor spaeone de�nes the sesquilinear form 〈, 〉 by:

〈ξ ⊗ η, ξ′ ⊗ η′〉 = 〈ξ, ξ′〉〈η, η′〉and observes that this form is positive de�nite. The Hilbert spae tensorprodut H ⊗K is then the ompletion of H⊗alg K. It is easy to see that if
a ∈ B(H), b ∈ B(K), there is a bounded operator a⊗ b on H⊗K de�ned by
a⊗ b(ξ ⊗ η) = aξ ⊗ bη.Exerise 2.4.1. Let L2(X,H, µ) be the Hilbert spae of measurable squareintegrable funtions (up to null sets) f : X → H, with H a separable Hilbertspae. For eah ξ ∈ H and f ∈ L2(X,µ) let fξ ∈ L2(X,H, µ) be de�nedby fξ(x) = f(x)ξ. Show that the map ξ ⊗ f 7→ fξ de�nes a unitary from
H⊗ L2(X,µ) onto L2(X,H, µ). 9



10



Chapter 3The de�nition of a von Neumannalgebra.3.1 Topologies on B(H)1. The norm or uniform topology is given by the norm ||a|| de�ned inthe previous hapter.2. The topology on B(H) of pointwise onvergene on H is alled thestrong operator topology. A basis of neighbourhoods of a ∈ B(H) isformed by the
N(a, ξ1, ξ2, ..., ξn, ǫ) = {b : ||(b− a)ξi|| < ǫ ∀i = 1, · · · , n}3. The weak operator topology is formed by the basi neighbourhoods

N(a, ξ1, ξ2, ..., ξn, η1, η2, .., ηn, ǫ) = {b : |〈(b−a)ξi, ηi〉| < ǫ ∀i = 1, · · · , n}Note that this weak topology is the topology of pointwise onvergene on Hin the �weak topology� on H de�ned in the obvious way by the inner produt.The unit ball of H is ompat in the weak topology and the unit ballof B(H) is ompat in the weak operator topology. These assertions followeasily from Tyhono�'s theorem.Exerise 3.1.1. Show that we have the following ordering of the topologies(strit in in�nite dimensions).(weak operator topology) < (strong operator topology) < (norm topology)Note that a weaker topology has less open sets so that if a set is losed inthe weak topology it is neessarily losed in the strong and norm topologies.11



3.2 The biommutant theorem.We will now prove the von Neumann �density� or �biommutant� theoremwhih is the �rst result in the subjet. We prove it �rst in the �nite dimen-sional ase where the proof is transparent then make the slight adjustmentsfor the general ase.Theorem 3.2.1. Let M be a self-adjoint subalgebra of B(H) ontaining 1,with dim(H) = n <∞. Then M = M ′′.Proof. It is tautologial that M ⊆M ′′.So we must show that if y ∈M ′′ then y ∈M . To this end we will �amplify�the ation ofM onH to an ation onH⊗H de�ned by x(ξ⊗η) = xξ⊗η. If wehoose an orthonormal basis {vi} of H then H⊗H = ⊕n
i=1H and in terms ofmatries we are onsidering the n xn matries over B(H) and embeddingMin it as matries onstant down the diagonal. Clearly enough the ommutantofM on H⊗H is the algebra of all n xn matries with entries inM ′ and theseond ommutant onsists of matries having a �xed element of M ′′ downthe diagonal.Let v be the vetor ⊕n

i=1vi ∈ ⊕n
i=1H and let V = Mv ⊆ H ⊗ H. Then

MV ⊆ V and sine M = M∗, PV ∈M ′ (on H⊗H) by exerise 2.1.13. So if
y ∈M ′′ (on H⊗H), then y ommutes with PV and yMv ⊆ Mv. In partiular
y(1v) = xv for some x ∈M so that yvi = xvi for all i, and y = x ∈M .Theorem 3.2.2. (von Neumann) LetM be a self-adjoint subalgebra of B(H)ontaining 1. Then M ′′ = M (losure in the strong operator topology).Proof. Commutants are always losed so M ⊆ M ′′.So let a ∈ M ′′ and N(a, ξ1, ξ2, ..., ξn, ǫ) be a strong neighbourhood of
a. We want to �nd an x ∈ M in this neighbourhood. So let v ∈ ⊕n

i=1Hbe ⊕n
i=1ξi and let B(H) at diagonally on ⊕n

i=1H as in the previous theorem.Then the same observations as in the previous proof onerning matrix formsof ommutants are true. Also M ommutes with PMv whih thus ommuteswith a (on ⊕n
i=1H). And sine 1 ∈ M , av = ⊕aξi is in the losure of Mv sothere is an x ∈M with ||xξi − aξi|| < ǫ for all i.Corollary 3.2.3. If M = M∗ is a subalgebra of B(H) with 1 ∈M , then thefollowing are equivalent:1. M = M ′′2. M is strongly losed.3. M is weakly losed. 12



De�nition 3.2.4. A subalgebra of B(H) satisfying the onditions of orollary3.2.3 is alled a von Neumann algebra.(A self-adjoint subalgebra of B(H) whih is losed in the norm topologyis alled a C∗-algebra.)3.3 Examples.Example 3.3.1. Any �nite dimensional *-subalgebra of B(H) ontaining 1.Example 3.3.2. B(H) itself.Exerise 3.3.3. Let (X,µ) be a �nite measure spae and onsider A =
L∞(X,µ) as a *-subalgebra of B(L2(X,µ)) (as multipliation operators asin exerise 2.2.2). Show that A = A′, i.e. A is maximal abelian and hene avon Neumann algebra. (Hint: if x ∈ A′ let f = x(1). Show that f ∈ L∞ andthat x = Mf .)Example 3.3.4. If S ⊆ B(H), we all (S ∪ S∗)′′ the von Neumann algebragenerated by S. It is, by theorem 3.2.2 the weak or strong losure of the*-algebra generated by 1 and S. Most onstrutions of von Neumann algebrasbegin by onsidering some family of operators with desirable properties andthen taking the von Neumann algebra they generate. But is is quite hard,in general, to get muh ontrol over the operators added when taking theweak losure, and all the desirable properties of the generating algebra maybe lost. (For instane any positive self-adjoint operator a with ||a|| ≤ 1is a weak limit of projetions.) However, if the desirable properties anbe expressed in terms of matrix oe�ients then these properties will bepreserved under weak limits sine the matrix oe�ients of a are just speialelements of the form 〈ξ, aη〉. We shall now treat an example of this kind ofproperty whih is at the heart of the subjet and will provide us with a hugesupply of interesting von Neumann algebras quite di�erent from the �rst 3examples.Let Γ be a disrete group and let ℓ2(Γ) be the Hilbert spae of all funtions
f : Γ → C with∑

γ∈Γ

|f(γ)|2 <∞ and inner produt 〈f, g〉 =
∑

γ∈Γ

f(γ)g(γ). Anorthonormal basis of ℓ2(Γ) is given by the {εγ} where εγ(γ′) = δγ,γ′ so that
f =

∑

γ∈Γ

f(γ)εγ in the ℓ2 sense. For eah γ ∈ Γ de�ne the unitary operator uγby (uγf)(γ′) = f(γ−1γ′). Note that uγuρ = uγρ and that uγ(ερ) = εγρ. Thus
γ 7→ uγ is a unitary group representation alled the left regular representation.The uγ are linearly independent so the algebra they generate is isomorphi13



to the group algebra CΓ. The von Neumann algebra generated by the uγgoes under various names, U(Γ), λ(Γ) and L(Γ) but we will all it vN(Γ) asit is the �group von Neumann algebra� of Γ.To see that one an ontrol weak limits of linear ombinations of the uγ,onsider �rst the ase Γ = Z/nZ. With basis u0, u1, u2, · · · , un−1, the element
u1 is represented by the matrix:

















0 1 0 0 . .
0 0 1 0 0 .
0 . 0 1 0 0
0 . . 0 1 0
0 0 . . 0 1
1 0 0 . . 0















whih is a matrix onstant along the �diagonals�. Clearly all powers of u1 andall linear ombinations of them have this property also so that an arbitraryelement of the algebra they generate will have the matrix form (when n = 6):
















a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a















(Suh matries are known as irulant matries but to the best of our knowl-edge this term only applies when the group is yli.) If Z/nZ were replaedby another �nite group the same sort of struture would prevail exept thatthe �diagonals� would be more ompliated, aording to the multipliationtable of the group.Now let Γ be an in�nite group. It is still true that the (γ, ρ)matrix entry ofa �nite linear ombination of the uγ's will depend only on γ−1ρ. As observedabove, the same must be true of weak limits of these linear ombinations,hene of any element of vN(Γ).We see that the elements of vN(Γ) have matries (w.r.t. the basis εγ)whih are onstant along the �diagonals� : {(γ, ρ) : γρ−1 is onstant}.Exerise 3.3.5. Chek whether it should be γ−1ρ or γρ−1 or some othersimilar expression.....Using the number cγ on the diagonal indexed by γ we an write, formallyat least, any element of vN(Γ) as a sum ∑

γ∈Γ

cγuγ. It is not lear in what14



sense this sum onverges but ertainly∑
γ∈Γ

cγuγ must de�ne a bounded linearoperator. From this we dedue immediately the following:(i) The funtion γ 7→ cγ is in ℓ2. (Apply∑
γ∈Γ

cγuγ to εid.)(ii) (
∑

γ∈Γ

cγuγ)(
∑

γ∈Γ

dγuγ) =
∑

γ∈Γ

(
∑

ρ∈Γ

cρdρ−1γ)uγwhere the sum de�ning the oe�ient of uγ on the right hand side on-verges sine ρ 7→ cρ and ρ 7→ dρ−1γ are in ℓ2.Exatly what funtions γ 7→ cγ de�ne elements of vN(Γ) is unlear butan important speial ase gives some intuition.Case 1. Γ = Z.It is well known that the map∑ cnεn →∑

cne
inθ de�nes a unitary V from

ℓ2(Γ) to L2(T). Moreover V unV −1(eikθ) = V un(εk) = V ε(k+n) = einθeikθ sothat V unV −1 is the multipliation operator Meinθ . Standard spetral theoryshows that Meinθ generates L∞(T) as a von Neumann algebra, and learlyif Mf ∈ L∞(T), V −1MfV =
∑

cnεn where ∑ cne
inθ is the Fourier seriesof f . We see that, in this ase, the funtions γ 7→ cγ whih de�ne elementsof vN(Z) are preisely the Fourier series of L∞ funtions. In ase we forgetto point it out later on when we are in a better position to prove it, oneway to haraterise the funtions whih de�ne elements on vN(Γ) is as allfuntions whih de�ne bounded operators on ℓ2(Γ). This is not partiularlyilluminating but an be useful at math parties.At the other extreme we onsider a highly non-ommutative group, thefree group on n generators, n ≥ 2.Case 2. Γ = Fn.�Just for fun� let us ompute the entre Z(vN(Γ)) of vN(Fn), i.e. those

∑

cγuγ that ommute with all x ∈ vN(Γ). By weak limits of linear ombi-nations, for ∑ cγuγ to be in Z(vN(Γ)) it is neessary and su�ient that itommute with every uγ. This learly is the same as saying cγργ−1 = cρ ∀γ, ρ,i.e. the funtion c is onstant on onjugay lasses. But in Fn all onjugaylasses exept that of the identity are in�nite. Now reall that γ 7→ cγ is in
ℓ2. We onlude that cγ = 0 ∀γ 6= 1, i.e. Z(vN(Γ)) = C1.Note that the only property we used of Fn to reah this onlusion wasthat every non-trivial onjugay lass is in�nite (and in general it is learthat Z(vN(Γ)) is in the linear span of the uγ with γ in a �nite onjugaylass.) Suh groups are alled i... groups and they abound. Other examplesinlude S∞ (the group of �nitely supported permutations of an in�nite set),
PSL(n,Z) and Q ⋊ Q∗.Unsolved problem in von Neumann algebras:15



Is vN(Fn) ∼= vN(Fm) for n 6= m (for n and m ≥ 2)?Note that it is obvious that the group algebras CFn and CFm are not iso-morphi. Just onsider algebra homomorphisms to C. But of ourse thesehomomorphisms will not extend to vN(Γ).De�nition 3.3.6. A von Neumann algebra whose entre is C1 is alled afator.Exerise 3.3.7. Show that B(H) is a fator.Exerise 3.3.8. Suppose H = K1 ⊗ K2 and let M = B(K1) ⊗ 1 Show that
M ′ = 1 ⊗ B(K2) so that M and M ′ are fators.This exerise is supposed to explain the origin of the term �fator� as inthis ase M and M ′ ome from a tensor produt fatorisation of H. Thus ingeneral a fator and its ommutant are supposed to orrespond to a bizarre"fatorisation" of the Hilbert spae.The fator we have onstruted as vN(Γ) is of an entirely di�erent naturefrom B(H). To see this onsider the funtion tr : vN(Γ) → C de�ned by
tr(a) = 〈aε1, ε1〉, or tr(∑ cγuγ) = c1. This map is learly linear, weaklyontinuous, satis�es tr(ab) = tr(ba) and tr(x∗x) =

∑

γ |cγ|2 ≥ 0 (when
x =

∑

γ cγuγ). It is alled a trae on vN(Γ). If Γ = Z it obviously equals
1
2π

∫ 2π

0
f(θ)dθ under the isomorphism between vN(Z) and L∞(T).Exerise 3.3.9. (i)Suppose dimH < ∞. If tr : B(H) → C is a linear mapwith tr(ab) = tr(ba), show that there is a onstant K with tr(x) = Ktrace(x).(ii) There is no non-zero weakly ontinuous linear map tr : B(H) → Csatisfying tr(ab) = tr(ba) when dim(H) = ∞.(iii) There is no non-zero linear map tr : B(H) → C satisfying tr(ab) =

tr(ba) and tr(x∗x) ≥ 0 when dim(H) = ∞.(iv) (harder) There is no non-zero linear map tr : B(H) → C satisfying
tr(ab) = tr(ba) when dim(H) = ∞.Thus our fators vN(Γ) when Γ is i... are in�nite dimensional but seemto have more in ommon with B(H) when dimH < ∞ than when dimH =
∞! They ertainly do not ome from honest tensor produt fatorisations of
H. Let us make a ouple of observations about these fators.1)They ontain no non-zero �nite rank operators, for suh an operatorannot be onstant and non-zero down the diagonal. (Take x∗x if neessary.)2)They have the property that tr(a) = 0 ⇒ a = 0 for a positive element
a (a positive operator annot have only zeros down the diagonal).16



3)They have the property that uu∗ = 1 ⇒ u∗u = 1 (i.e. they ontain nonon-unitary isometries).Proof. If u∗u = 1, uu∗ is a projetion so 1 − uu∗ is too and tr(1 − uu∗) =
1 − tr(u∗u) = 0.Exerise 3.3.10. Show that in vN(Γ), ab = 1 ⇒ ba = 1. Show that if F isany �eld of harateristi 0, ab = 1 ⇒ ba = 1 in FΓ.Hints: 1) You may use elementary property 8 of the next hapter.2) Only �nitely many elements of the �eld are involved in ab and ba in
FΓ .As far as I know this assertion is still open in non-zero harateristi. Theabove exerise is a result of Kaplansky.The next observation is a remarkable property of the set of projetions.4) If Γ = Fn, {tr(p) : p a projetion in vN(Γ)} = [0, 1].Proof. It is lear that the trae of a projetion is between 0 and 1. To see thatone may obtain every real number in this interval, onsider the subgroup 〈a〉generated by a single non-zero element. By the oset deomposition of Fn therepresentation of 〈a〉 on ℓ2(Fn) is the diret sum of ountably many opiesof the regular representation. The biommutant of ua is then, by a matrixargument, vN(Z) ating in an �ampli�ed� way as blok diagonal matrieswith onstant bloks so we may identify vN(Z) with a subalgebra of vN(Γ).Under this identi�ation the traes on the two group algebras agree. But aswe have already observed, any element f ∈ L∞(0, 2π) de�nes an element of
vN(Z) whose integral is its trae. The harateristi funtion of an intervalis a projetion so by hoosing intervals of appropriate lengths we may realiseprojetions of any trae.We used the biommutant to identify vN(Z) with a subalgebra of vN(Γ).It is instrutive to point out a problem that would have arisen had we triedto use the weak or strong topologies. A vetor in ℓ2(Γ) is a square summablesequene of vetors in ℓ2(Z) so that a basi strong neighbourhood of a on
ℓ2(Γ) would orrespond to a neighbourhood of the form {b :

∑∞
i=1 ||(a −

b)ξi||2 < ǫ} for a sequene (ξi) in ℓ2(Z) with ∑∞
i=1 ||ξi||2 < ∞. Thus strongonvergene on ℓ2(Z) would not imply strong onvergene on ℓ2(Γ). Thisleads us naturally to de�ne two more topologies on B(H).De�nition 3.3.11. The topology de�ned by the basi neighbourhoods of a,

{b :
∑∞

i=1 ||(a − b)ξi||2 < ǫ} for any ǫ and any sequene (ξi) in ℓ2(H) with
∑∞

i=1 ||ξi||2 <∞, is alled the ultrastrong topology on B(H).17



The topology de�ned by the basi neighbourhoods
{b :

∞
∑

i=1

|〈(a− b)ξi, ηi〉| < ǫ}for any ǫ > 0 and any sequenes (ξi), (ηi) in ℓ2(H) with
∞
∑

i=1

||ξi||2 + ||ηi||2 <∞is alled the ultraweak topology on B(H).Note that these topologies are preisely the topologies inherited on B(H)if it is ampli�ed in�nitely many times as B(H) ⊗ 1K with dimK = ∞.Exerise 3.3.12. Show that the ultrastrong and strong topologies oinideon a bounded subset of B(H) as do the weak and ultraweak topologies. Thatthey di�er will be shown in 5.1.4.Exerise 3.3.13. Repeat the argument of the von Neumann density theorem(3.2.2) with the ultrastrong topology replaing the strong topology.Here are some questions that the inquisitive mind might well ask at thisstage. All will be answered in sueeding hapters.Question 1) If there is a weakly ontinuous trae on a fator, is it unique(up to a salar multiple)?Question 2) If there is a trae on a fator M is it true that {tr(p) :
p a projetion in M} = [0, 1]?Question 3) Is there a trae on any fator not isomorphi to B(H)?Question 4) Are all (in�nite dimensional) fators with traes isomorphi?Question 5) If M is a fator with a trae, is M ′ also one? (Observe thatthe ommutant of a fator is obviously a fator.)Question 6) Is vN(Γ)′ the von Neumann algebra generated by the rightregular representation?Question 7) If φ : M → N is a ∗-algebra isomorphism between vonNeumann algebras on Hilbert spaes H and K is there a unitary u : H → Kso that φ(a) = uau∗ for a ∈M? 18



3.4 Elementary properties of von Neumann al-gebras.Throughout this hapter M will be a von Neumann algebra on a Hilbertspae H.EP1) If a = a∗ is an element of M , all the spetral projetions and allbounded Borel funtions of a are in M . Consequently M is generated by itsprojetions.Aording to one's proof of the spetral theorem, the spetral projetions
E(λ) of a are onstruted as strong limits of polynomials in a. Or the prop-erty that the spetral projetions of a are in the biommutant of a may bean expliit part of the theorem. Borel funtions will be in the biommutant.EP2) Any element in M is a linear ombination of 4 unitaries in M .Proof. We have seen that any x is a linear ombination of 2 self-adjoints,and if a is self-adjoint, ||a|| ≤ 1, let u = a+ i

√
1 − a2. Then u is unitary and

a = u+u∗

2
.EP3) M is the ommutant of the unitary group of M ′ so that an alter-native de�nition of a von Neumann algebra is the ommutant of a unitarygroup representation.This follows from EP2)Exerise 3.4.1. Show that multipliation of operators is jointly strongly on-tinuous on bounded subsets but not on all of B(H).Show that ∗ : B(H) 7→ B(H) is weakly ontinuous but not strongly on-tinuous even on bounded sets.The following result is well known and sometimes alled Vigier's theorem.Theorem 3.4.2. If {aα} is a net of self-adjoint operators with aα ≤ aβfor α ≤ β and ||aα|| ≤ K for some K ∈ R, then there is a self-adjoint

a with a = limαaα, onvergene being in the strong topology. Furthermore
a = lub(aα) for the poset of self-adjoint operators.Proof. A andidate a for the limit an be found by weak ompatness ofthe unit ball. Then 〈aαξ, ξ〉 is inreasing with limit 〈aξ, ξ〉 for all ξ ∈ H and
a ≥ aα ∀α. So limα

√
a− aα = 0 in the strong topology. Now multipliationis jointly strongly ontinuous on bounded sets so s−limaα = a.19



Note that we have slipped in the notation s−lim for a limit in the strongtopology (and obviously w−lim for the weak topology).If a and (aα) are as in 3.4.2 we say the net (aα) is monotone onvergentto a.EP4) M is losed under monotone onvergene of self-adjoint operators.The projetions on B(H) form an ortholattie with the following proper-ties:
p ≤ q ⇐⇒ pH ⊆ qH

p ∧ q = orthogonal projetion onto pH ∩ qH
p⊥ = 1 − p

p ∨ q = (p⊥ ∧ q⊥)⊥ = orthogonal projetion onto pH + qH.Exerise 3.4.3. Show that p ∧ q = s−lim n→∞(pq)n.The lattie of projetions in B(H) is omplete (i.e. losed under arbitrarysups and infs) sine the intersetion of losed subspaes is losed.EP5) The projetions in M generate M as a von Neumann algebra, andthey form a omplete sublattie of the projetion lattie of B(H).Proof. If S is a set of projetions inM then �nite subsets of S are a diretedset and F →
W
p∈F p is a net in M satisfying the onditions of 3.4.2. Thus thestrong limit of this net exists and is inM . It is obvious that this strong limitis W

p∈Sp, the sup being in B(H).Easier proof. For eah projetion p ∈M , pH is invariant under eah elementof M ′. Thus the intersetion of these subspaes is also.EP6) Let A be a *-subalgebra of B(H). Let W be T
a∈Aker(a) and K =

W⊥. Then K is invariant under A and if we let B = {a|K : a ∈ A}, then 1K isin the strong losure of B, whih is thus a von Neumann algebra. Moreoveron K, B ′′ is the strong (weak, ultrastrong, ultraweak) losure of B.Proof. By the above, if p and q are projetions p ∨ q = 1 − (1 − p) ∧ (1 − q)is in the strong losure of the algebra generated by p and q. By spetraltheory, if a = a∗ the range projetion Pker(a)⊥ is in the strong losure of thealgebra generated by a so we may apply the argument of the proof of EP5)to onlude that W
a∈APker(a)⊥ is in the strong losure of A. But this is 1K.20



Finally, on K, let C be the algebra generated by 1 and B. Clearly C ′ = B ′and just as learly the strong losure of B is the same as the strong losureof C. So B ′′ is the strong losure of B by the biommutant theorem.Thus if we were to de�ne a von Neumann algebra as a weakly or stronglylosed subalgebra of B(H), it would be unital as an abstrat algebra but itsidentity might not be that of B(H) so it would not be equal to its biommu-tant. However on the orthogonal omplement of all the irrelevant vetors itwould be a von Neumann algebra in the usual sense.EP7) If M is a von Neumann algebra and p ∈M is a projetion, pMp =
(M ′p)′ and (pMp)′ = M ′p as algebras of operators on pH. Thus pMp and
M ′p are von Neumann algebras.Proof. Obviously pMp and M ′p ommute with eah other on pH. Nowsuppose x ∈ (M ′p)′ ⊆ B(pH) and de�ne x̃ = xp(= pxp) ∈ B(H). Then if
y ∈ M ′, yx̃ = yxp = ypxp = (xp)(yp) = xpy = x̃y, so x̃ ∈ M and x = px̃p.Thus (pM ′)′ = pMp whih is thus a von Neumann algebra.If we knew that M ′p were a von Neumann algebra on pH we would bedone but a diret attempt to prove it strongly or weakly losed fails as wewould have to try to extend the limit of a net in M ′p on pH to be in M ′.So instead we will show diretly that (pMp)′ ⊆M ′p by a lever extensionof its elements to H. By EP2 it su�es to take a unitary u ∈ (pMp)′. Let
K ⊆ H be the losure of MpH and let q be projetion onto it. Then K islearly invariant under M and M ′ so q ∈ Z(M). We �rst extend u to K by

ũ
∑

xiξi =
∑

xiuξifor xi ∈M and ξi ∈ pH. We laim that ũ is an isometry:
||ũ
∑

xiξi||2 =
∑

i,j

〈xiuξi, xjuξj〉

=
∑

i,j

〈px∗jxipuξi, uξj〉

=
∑

i,j

〈upx∗jxipξi, uξj〉

= ... = ||
∑

xiξi||2This alulation atually shows that ũ is well de�ned and extends to anisometry of K. By onstrution ũ ommutes with M on MpH,hene on K.So ũq ∈M ′ and u = ũqp. Hene (pMp)′ = M ′p.21



Corollary 3.4.4. If M is a fator, pMp is a fator on pH, as is pM ′.Moreover the map x 7→ xp from M ′ to M ′p is a weakly ontinuous *-algebraisomorphism.Proof. As in the proof of the previous result, the projetion onto the losureof MpH is in the entre of M , hene it is 1 . So if xp = 0 for x ∈ M ′,
xmpξ = mxpξ = 0 for any m ∈ M , ξ ∈ H. Hene the map x 7→ px is aninjetive ∗-algebra map and pM ′ is a fator. So by the previous result (pMp)′is a fator and so is pMp. Continuity and the is obvious.Corollary 3.4.5. If M is a fator and a ∈ M and b ∈ M ′ then ab = 0implies either a = 0 or b = 0.Proof. Let p be the range projetion of b and apply the previous orollary.Exerise 3.4.6. Show that if M is a von Neumann algebra generated by theself-adjoint, multipliatively losed subset S, then pSp generates pMp (if p isa projetion in M orM ′). Show further that the result fails if S is not losedunder multipliation.Exerise 3.4.7. Show that if M is a fator and V and W are �nite dimen-sional subspaes of M and M ′ respetively then the map a ⊗ b 7→ ab de�nesa linear isomorphism between V ⊗W and the spae VW spanned by all vwwith v ∈ V and w ∈W .EP8) If a ∈M and a = u|a| is the polar deomposition of a then u ∈Mand |a| ∈M .Proof. By the uniqueness of the polar deomposition both |a| and u ommutewith every unitary in M ′.EP9) None of the topologies (exept || ∗ ||) is metrizable on B(H) butthey all are on the unit ball (when H is separable) and B(H) is separable forall exept the norm topology.Proof. First observe that a weakly onvergent sequene of operators is bounded.This follows from the uniform boundedness priniple and 2.1.5 whih showshow to get the norm from inner produts.Here is the unning trik. Let {ηi, i = 1, · · ·∞} be an orthonormal basis of
H and let ei be projetion onto Cηi. Consider the family {em+men : m,n =
1, · · ·∞}. Let V a basi ultrastrong neighbourhood of 0 de�ned by ǫ and {ξi :
∑ ||ξi||2 < ∞} and let | − |V be the orresponding seminorm, then writing22



ξi =
∑

j ξ
i
jηj we have∑i,j |ξij|2 <∞. Now hoose m so that ∑i |ξim|2 < ǫ2/4and n so that ∑i |ξin|2 < ǫ2/4m2. Observing that ||en(ξi)||2 = |ξni |2 we have

|em +men|V ≤ |em|V +m|en|V

=

√

∑

i

||emξ||2 +m

√

∑

i

||enξ||2

≤ ǫ/2 + ǫ/2so that en +men ∈ V .On the other hand no subsequene of {em + men : m,n = 1, · · ·∞} antend even weakly to 0 sine it would have to be bounded in norm whih wouldfore some �xed m to our in�nitely often in the sequene, preventing weakonvergene! So by the freedom in hoosing m and n to fore em + men tobe in V , there an be no ountable basis of zero for any of the topologies(exept of ourse the norm).If we onsider the unit ball, however, we may hoose a dense sequene ξi ofunit vetors and de�ne d(a, b) = [
∑

i 2
−i||(a− b)ξi||2]1/2 whih is a metri onthe unit ball de�ning the strong topology. (Similarly for the weak topology.)We leave non-separability of B(H) in the norm topology as an exerise.EP10) An Abelian von Neumann algebra on a separable Hilbert spae isgenerated by a single self-adjoint operator.Proof. Let {e0, e1, e2, · · · } be a sequene of projetions that is strongly densein the set of all projetions in the Abelian von Neumann algebra A. Let

a =
∑∞

n=0
1
3n
en. The sum onverges in the norm topology so a ∈ A. Thenorm of the self-adjoint operator a1 =

∑∞
n=1

1
3n
en is obviously at most 1/2so that the spetral projetion for the interval [3/4, 2] for a is e0. Continuingin this way we see that all the e′ns are in {a}′′.This relegates the study of Abelian von Neumann algebras to the spetraltheorem. One an show that any Abelian von Neumann algebra on a sepa-rable Hilbert spae is isomorphi to either ℓ∞({0, 1, · · · , n}) (where n = ∞is allowed) or L∞([0, 1], dx) or a diret sum of the two. This is up to ab-strat algebra isomorphism. To understand the ation on a Hilbert spae,multipliity must be taken into aount.23
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Chapter 4Finite dimensional von Neumannalgebras and type I fators.4.1 De�nition of type I fator.The �rst ruial result about fators (remember a fator is a von Neumannalgebra with trivial entre) will be the following �ergodi� property.Theorem 4.1.1. If M is a fator and p and q are non-zero projetions in
M there is an x ∈M with pxq 6= 0. Moreover x an be hosen to be unitary.Proof. Suppose that for any unitary u ∈ M , puq = 0. Then u∗puq = 0 and
( W
u∈M u

∗pu
)

q = 0. But learly W
u∈M u

∗pu ommutes with all unitaries u ∈Mso is the identity.The reason we have alled this an �ergodi� property is beause of a per-vasive analogy with measure-theoreti dynamial systems (and it will beomemuh more than an analogy). A transformation T : (X,µ) → (X,µ) pre-serving the measure µ is alled ergodi if T−1(A) ⊆ A implies µ(A) = 0 or
µ(X \ A) = 0 for a measurable A ⊆ X. If T is invertible one an then showthat there is, for any pair A ⊂ X and B ⊂ X of non-null sets, a power T nof T suh that µ(T n(A) ∩B) 6= 0. Or, as operators on L2(X,µ), ATNB 6= 0where we identify A and B with the multipliation operators by their har-ateristi funtions. The proof is the same�the union of all T n(A) is learlyinvariant, thus must di�er from all of X by a set of measure 0.Corollary 4.1.2. Let p and q be non-zero projetions in a fator M . Thenthere is a partial isometry u (6= 0) in M with uu∗ ≤ p and u∗u ≤ q. p and q had been swappedaround in the proof, so weinterhanged uu∗ and u∗uin the statement.25



Proof. Let u be the partial isometry of the polar deomposition of pxq for xsuh that pxq 6= 0.De�nition 4.1.3. If M is a von Neumann algebra, a non-zero projetion
p ∈M is alled minimal, or an atom, if (q ≤ p) ⇒ (q = 0 or q = p).Exerise 4.1.4. Show that p is minimal in M i� pMp = Cp.De�nition 4.1.5. A fator with a minimal projetion is alled a type Ifator.4.2 Classi�ation of all type I fatorsWe will lassify all type I fators quite easily. We begin with the model,whih we have already seen.Let B(H)⊗1 be the onstant diagonal matries on H⊗K. Its ommutant
1⊗B(K) will be our model. It is the algebra of all matries de�ning boundedoperators with every matrix entry being a salar multiple of the identitymatrix on H. A matrix with a single 1 on the diagonal and zeros elsewhereis obviously a minimal projetion.Theorem 4.2.1. IfM is a type I fator of a Hilbert spae L, there are Hilbertspaes H and K and a unitary u : L → H⊗K with uMu∗ = B(H) ⊗ 1.Proof. Let {p1, p2, ...} be a maximal family of minimal projetions inM suhthat pipj = 0 for i 6= j. (We assume for onveniene that L is separable.) Our�rst laim is that ∨i pi = 1 so that L = ⊕ipiL. For if 1−∨i pi were nonzero,by orollary 4.1.2 there would be a u 6= 0 with uu∗ ≤ p1 and u∗u ≤ 1−∨i pi.By minimalityuu∗ is minimal and hene so is u∗u ontraditing maximality ofthe pi. Now for eah i hoose a non-zero partial isometry e1i with e1ie

∗
1i ≤ p1and e∗1ie1i ≤ pi. By minimality e1ie

∗
1i = p1 and e∗1ie1i = pi. Then M isgenerated by the e1i's, for if a ∈M we have a =

∑

i,j piapj the sum onvergingin the strong topology, and piapj = e∗1ie1iae
∗
1je1j ∈ p1Mp1 = Cp1. Thus thereare salars λij so that a =

∑

i,j λije
∗
1ie1j. (The details of the onvergene ofthe sum are unimportant�we just need that a be in the strong losure of�nite sums.)If n is the ardinality of {pi}, let X = {1, 2, ..., n} and de�ne the map

u : ℓ2(X, p1L) → L by
uf =

∑

i

e∗1if(i).Observe that u is unitary and u∗e1iu is a matrix on ℓ2(X, p1L) with an identityoperator in the (1, i) position and zeros elsewhere. The algebra generated bythese matries is B(ℓ2(X)) ⊗ 1 on ℓ2(X) ⊗ p1L and we are done.26



Remark 4.2.2. The importane of being spatial.We avoided all kinds of problems in the previous theorem by onstrutingour isomorphism using a unitary between the underlying Hilbert spaes. Ingeneral given von Neumann algebras M and N generated by S and T respe-tively, to onstrut an isomorphism between M and N it su�es to onstrut(if possible !!!) a unitary u between their Hilbert spaes so that T is ontainedin uSu∗. To try to onstrut an isomorphism diretly on S ould be arduousat best.4.3 Tensor produt of von Neumann algebras.If M is a von Neumann algebra on H and N is a von Neumann algebra on
K we de�ne M ⊗N to be the von Neumann algebra on H⊗K generated by when you use \h, make sureit's enlosed in $ signs{x⊗ y : x ∈M, y ∈ N}.Exerise 4.3.1. Show that M ⊗ N ontains the algebrai tensor produt
M ⊗alg N as a strongly dense *-subalgebra.De�nition 4.3.2. Let M be a von Neumann algebra. A system of matrixunits (s.m.u.) of size n in M is a family {eij : i, j = 1, 2, ..., n} (n = ∞allowed) suh that(i) e∗ij = eji.(ii) eijekl = δj,keil(iii) ∑i eii = 1.Exerise 4.3.3. Show that if {eij; i, j = 1, ..., n} is an s.m.u. in a vonNeumann algebra M , then the eij generate a type I fator isomorphi to
B(ℓ2({1, 2, ..., n})) and that M is isomorphi (unitarily equivalent to in thisinstane) to the von Neumann algebra e11Me11 ⊗B(ℓ2({1, 2, ..., n})).4.4 Multipliity and �nite dimensional von Neu-mann algebras.Theorem 4.2.1 shows that type I fators on Hilbert spae are ompletelylassi�ed by two ardinalities (n1, n2) aording to:

n1 = rank of a minimal projetion in M , and
n2 = rank of a minimal projetion in M ′.We see that the isomorphism problem splits into �abstrat isomorphism�(determined by n2 alone), and �spatial isomorphism�, i.e. unitary equivalene.27



A type In fator is by de�nition one for whih n = n2. It is abstratlyisomorphi to B(H) with dimH = n. The integer n1 is often alled themultipliity of the type I fator.We will now determine the struture of all �nite dimensional von Neu-mann algebras quite easily. Note that in the following there is no requirementthat H be �nite dimensional.Theorem 4.4.1. Let M be a �nite dimensional von Neumann algebra onthe Hilbert spae H. Then M is abstratly isomorphi to ⊕k
i=1Mni(C) forsome positive integers k, n1, n2, ..., nk. (Mn(C) is the von Neumann algebraof all n × n matries on n-dimensional Hilbert spae.) Moreover there areHilbert spaes Ki and a unitary u : ⊕iℓ

2(Xi,Ki) → H (with |Xi| = ni) with
u∗Mu = ⊕iB(ℓ2(Xi)) ⊗ 1.Proof. The entre Z(M) is a �nite dimensional abelian von Neumann al-gebra. If p is a minimal projetion in Z(M), pMp is a fator on pH.The theorem follows immediately from theorem 4.2.1 and the simple fatsthat Z(M) = ⊕k

i=1piC where the pi are the minimal projetions in Z(M)(two distint minimal projetions p and q in Z(M) satisfy pq = 0), and
M = ⊕ipiMpi.The subjet of �nite dimensional von Neumann algebras is thus rathersimple. It beomes slightly more interesting if one onsiders subalgebras N ⊆
M . Let us deal �rst with the fator ase of this. Let us point out that theidentity of M is the same as that of N .Theorem 4.4.2. If M is a type In fator, its type Im fators are all uniquelydetermined, up to onjugation by unitaries in M , by the integer (or ∞)
k > 0 suh that pMp is a type Ik fator, p being a minimal projetion inthe subfator N and mk = n.Proof. Let N1 and N2 be type Im subfators with generating s.m.u.'s {eij}and {fij} respetively. If k is the integer (in the statement of the theorem)for N1 then 1 =

∑m
1 eii and eah eii is the sum of k mutually orthogonalminimal projetions of M , hene n = mk. The same argument applies to

N2. Build a partial isometry u with uu∗ = e11 and u∗u = f11 by addingtogether partial isometries between maximal families of mutually orthogonalprojetions less than e11 and f11 respetively. Then it is easy to hek that
w =

∑

i ej1uf1j is a unitary with wfklw∗ = ekl. So wN2w
∗ = N1.Now we an do the general (non-fator) ase. If N = ⊕n

i=1Mki(C) and
M = ⊕m

j=1Mrj (C) and N ⊆ M as von Neumann algebras, let pj be minimal28



entral projetions inM and qi be those of N . Then for eah (i, j), pjqiMqipjis a fator and pjqiN is a subfator so we may form the matrix Λ = (λij)where λij is the integer assoiated with pjqiN ⊆ pjqiMqipj by theorem 4.4.2.Exerise 4.4.3. Show that the integer λij de�ned above is the following:if ei is a minimal projetion in the fator qiN , λij = trae of the matrix
pjei ∈MrjC.Example 4.4.4. Let M = M5(C) ⊕M3(C) and N be the subalgebra of ma-tries of the form:

(

X 0 0
0 X 0
0 0 z

)

⊕ (X 0
0 z )where z ∈ C and X is a 2×2 matrix. Then N is isomorphi toM2(C)⊕Cand if p1 = 1 ⊕ 0, q1 = 1 ⊕ 0, et., we have

Λ = ( 2 1
1 1 ) .The matrix Λ is often represented by a bipartite graph with the numberof edges between i and j being λij . The verties of the graph are labelled bythe size of the orresponding matrix algebras. Thus in the above examplethe piture would be:This diagram is alled the Bratteli diagram for N ⊆ M .Exerise 4.4.5. Generalise the above example to show that there is an in-lusion N ⊆ M orresponding to any Bratteli diagram with any set of di-mensions for the simple omponents of N .4.5 A digression on index.If N ⊆M are type I fators we have seen that there is an integer k (possibly

∞) suh that M is the algebra of k × k matries over N . If k < ∞, M isthus a free left N-module of rank k2. It seems reasonable to all the number
k2 the index of N in M and write it [M : N ]. This is beause, if H < Gare groups and CH ⊆ CG their group algebras, the oset deomposition of
G shows that CG is a free left CH-module of rank [G : H].29
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Chapter 5Kaplansky Density Theorem.5.1 Some simple but telling results on linearfuntionals.We begin with a result about linear funtionals of independent interest.Theorem 5.1.1. Let V be a subspae of B(H) and let φ : V → C be a linearfuntional. The following are equivalent:(i) There are vetors in H, ξ1, ξ2, ..., ξn and η1, η2, ..., ηn with
φ(x) =

n
∑

i=1

〈xξi, ηi〉(ii) φ is weakly ontinuous.(iii) φ is strongly ontinuous.Proof. (i) ⇒ (ii) ⇒ (iii) are obvious, so suppose φ is strongly ontinuous.One may use the seminorms √∑n
i=1 ||aξi||2 as {ξ1, ξ2, ..., ξn} ranges over all�nite subsets of H to de�ne the strong topology. Srong ontinuity impliesthat there is an ǫ > 0 and {ξ1, ξ2, ..., ξn} suh that √∑n

i=1 ||aξi||2 < ǫ implies
|φ(a)| ≤ 1. But then if√∑n

i=1 ||aξi||2 = 0 then multiplying a by large salarsimplies φ(a) = 0. Otherwise it is lear that |φ(a)| ≤ 1
ǫ

√

∑n
i=1 ||aξi||2.Now let ξ = ξ1 ⊕ ...ξn ∈ ⊕iH and let K = (V ⊗ 1)(ξ). Then de�ne

φ̃ on V ⊗ 1(ν) by φ̃(⊕ixξi) = φ(x). Observe that φ̃ is well-de�ned andontinuous so extends to K whih means there is a vetor η = ⊕ηi ∈ K with
φ(x) = φ̃(x⊗ 1)(η) = 〈(x⊗ 1)(ξ), η〉.Exerise 5.1.2. Replae weak and strong by ultraweak and ultrastrong, andthe �nite sequenes of vetors by ℓ2-onvergent ones in the previous theorem.31



Corollary 5.1.3. If C is a onvex subset of B(H), its weak and strong lo-sures oinide.Proof. Two loally onvex vetor spaes with the same ontinuous linearfuntionals have the same losed onvex sets. This is a onsequene of theHahn-Banah theorem to be found in any text on funtional analysis.Corollary 5.1.4. If dimH = ∞ the strong and ultrastrong topologies di�eron B(H).Proof. Let (ξi) be an orthonormal basis of H and let ω(x) =
∑

i
1
n2 〈xξi, ξi〉.Then ω is ultraweakly ontinuous but not strongly ontinuous. For if it wereweakly ontinuous it would be of the form∑n

i=1〈xνi, ηi〉 and ω(p) = 0 where pis the projetion onto the orthogonal omplement of the vetor spae spannedby the νi. But by positivity ω(p) = 0 fores p(ξi) = 0 for all i.5.2 The theoremIn our disussion of vN(Γ) we already met the desirability of having a norm-bounded sequene of operators onverging to an element in the weak losureof a *-algebra of operators. This is not guaranteed by the von Neumanndensity theorem. The Kaplansky density theorem �lls this gap.Theorem 5.2.1. Let A be a *-subalgebra of B(H). Then the unit ball of Ais strongly dense in the unit ball of the weak losure M of A, and the self-adjoint part of the unit ball of A is strongly dense in the self-adjoint part ofthe unit ball of M .Proof. By EP6) we may assume 1 ∈ M and the worried reader may hekthat we never in fat suppose 1 ∈ A. We may further suppose that A isnorm-losed, i.e. a C∗-algebra. Consider the losure of Asa, the self-adjointpart of A. The * operation is weakly ontinuous so if xα is a net onvergingto the self-adjoint element x ∈M , xα+x∗α
2

onverges to x so the weak losureof Asa is equal to Msa. Sine Asa is onvex, the strong losure is also equalto Msa by 5.1.3.Let us now prove the seond assertion of the theorem. Let x = x∗ ∈ M ,
||x|| < 1, and ξ1, ..., ξn, ǫ > 0 de�ne a strong neighbourhood of x. We mustome up with a y ∈ Asa, ||y|| < 1, with ||(x−y)ξi|| < ǫ. The funtion t→ 2t

1+t2is a homeomorphism of [−1, 1] onto itself. So by the spetral theorem we mayhoose an X ∈Msa with ||X|| ≤ 1, so that 2X
1+X2 = x. Now by strong densityhoose Y ∈ Asa with

||Y xξi −Xxξi|| < ǫ, and || Y

1 +X2
ξi −

X

1 +X2
ξi|| < ǫ/4.32



Put y = 2Y
1+Y 2 and note that ||y|| ≤ 1.Now onsider the following equalities:

y − x =
2Y

1 + Y 2
− 2X

1 +X2

= 2(
1

1 + Y 2
(Y (1 +X2) − (1 + Y 2)X)

1

1 +X2
)

= 2(
1

1 + Y 2
(Y −X)

1

1 +X2
+

Y

1 + Y 2
(X − Y )

X

1 +X2
)

=
2

1 + Y 2
(Y −X)

1

1 +X2
+

1

2
y(X − Y )x.By the hoie of Y , we see that ||(y − x)ξi|| < ǫ. This proves density forthe self-adjoint part of the unit ball.Now onsider a general x ∈ M with ||x|| ≤ 1. The trik is to form ( 0 x

x∗ 0 ) ∈
M ⊗M2(C). Strong onvergene of a net ( aα bα

cα dα

) to ( a bc d ) is equivalent tostrong onvergene of the matrix entries so A⊗M2(C) is strongly dense inM⊗
M2(C). Moreover if ( aα bα

cα dα

)

→ ( 0 x
x∗ 0 ) strongly then bα tends strongly to x.And ||bα|| ≤ 1 follows from ||( aα bα

cα dα

)

|| ≤ 1 and 〈bαξ, η〉 = 〈
(

aα bα
cα dα

) (

0
ξ

)

, ( η0 )〉.Corollary 5.2.2. If M is a *-subalgebra of B(H) ontaining 1 then M is avon Neumann algebra i� the unit ball of M is weakly ompat.Proof. The unit ball of B(H) is weakly ompat, and M is weakly losed.Conversely, if the unit ball of M is weakly ompat, then it is weaklylosed. Let x be in the weak losure of M . We may suppose ||x|| = 1. ByKaplansky density there is a net xα weakly onverging to x with ||xα|| ≤ 1.Hene x ∈M .
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Chapter 6Comparison of Projetions andType II1 Fators.6.1 Order on projetionsDe�nition 6.1.1. If p and q are projetions in a von Neumann algebra Mwe say that p � q if there is a partial isometry u ∈ M with uu∗ = p and
u∗u ≤ q. We say that p and q are equivalent, p ≈ q if there is a partialisometry u ∈M with uu∗ = p and u∗u = q.Observe that ≈ is an equivalene relation.Theorem 6.1.2. The relation � is a partial order on the equivalene lassesof projetions in a von Neumann algebra.Proof. Transitivity follows by omposing partial isometries. The issue is toshow that e � f and f � e imply e ≈ f . Compare this situation with setsand their ardinalities.Let u and v satisfy uu∗ = e, u∗u ≤ f and vv∗ = f, v∗v ≤ e. Note thepiture:We de�ne the two dereasing sequenes of projetions e0 = e, en+1 =
v∗fnv and f0 = f, fn+1 = u∗enu. The dereasing property follows by indu-tion sine p→ v∗pv gives an order preserving map from projetions inM lessthan f to projetions inM less than e and similarly interhanging the roles of
e and f , v and u. Let e∞ =

∞
∧

i=0

ei and f∞ =

∞
∧

i=0

fi. Note that v∗f∞v = e∞ and
f∞vv

∗f∞ = f∞ so that e∞ ≈ f∞. Also e = (e− e1)+ (e1− e2)+ · · ·+ e∞ and
f = (f−f0)+(f1−f2)+· · ·+f∞ are sums of mutually orthogonal projetions.But for eah even i, u∗(ei−ei+1)u = fi+1−fi+2 so ei−ei+1 ≈ fi+1−fi+2, and35



v∗(fi − fi+1)v = ei+1 − ei+2 so one may add up, in the strong topology, allthe relevant partial isometries to obtain an equivalene between e and f .Note that if we had been dealing with vN(Γ) this argument would havebeen unneessary as we ould have used the trae:
tr(v∗v) ≤ tr(e) = tr(uu∗) = tr(u∗u) ≤ tr(f) = tr(vv∗) = tr(v∗v)so that tr(e − v∗v) = 0 whih implies e = v∗v. However in general it isertainly possible to get a projetion equivalent to a proper subprojetion ofitself. Just take the unilateral shift on B(ℓ2(N)) whih exhibits an equivalenebetween 1 and the projetion onto the orthogonal omplement of the �rstbasis vetor. This is analogous to the notion of an in�nite set�one whih isin bijetion with a proper subset of itself.De�nition 6.1.3. A projetion p in a von Neumann algebra M is alledin�nite if p ≈ q for some q < p, p 6= q. Otherwise p is alled �nite. A vonNeumann algebra is alled �nite if its identity is �nite, and it is alled purelyin�nite if it has no �nite projetions other than 0. A fator is alled in�niteif its identity is in�nite.We will show that purely in�nite von Neumann algebras exist though itwill not be easy.Remark 6.1.4. If dimH = ∞ then B(H) is in�nite.Remark 6.1.5. A fator with a trae like vN(Γ) is �nite.Remark 6.1.6. Every projetion in a �nite von Neumann algebra is �nite.Or, more strongly, if p ≤ q and q is �nite then p is �nite.For if p ≈ p′, p′ < p, p 6= p′ then p + (q − p) ≈ p′ + (q − p) 6= q.Remark 6.1.7. IfM is any von Neumann algebra, 1 is an in�nite projetionin M ⊗ B(H) if dimH = ∞.Theorem 6.1.8. IfM is a fator and p, q are projetions in M , either p � qor q � p.Proof. Consider the family of partial isometries u with uu∗ ≤ p, u∗u ≤ q.This set is partially ordered by u ≤ v if u∗u ≤ v∗v and v = u on the initialdomain u∗uH of u. This partially ordered set satis�es the requirements forZorn's lemma so let u be a maximal element in it. If u∗u = q or uu∗ = p weare done so suppose q − u∗u and p − uu∗ are both non-zero. Then by 4.1.1there is a v 6= 0 with v∗v ≤ q − u∗u and vv∗ ≤ p − uu∗. But then u + v islarger than u whih was supposed maximal.36



Exerise 6.1.9. Show that two equivalent projetions p and q in a �nitefator M are unitarily equivalent, i.e. there is a unitary u ∈M with upu∗ =
q. We see that the equivalene lasses of projetions in a fator form a totallyordered set. It is known that, on a separable Hilbert spae, the possibleisomorphism types for this set are:1) {0, 1, 2, ..., n} where n = ∞ is allowed. �type In�2) [0, 1] �type II1�3) [0,∞] �type II∞�4) {0,∞} �type III�Stritly speaking this is nonsense as type III is the same as type I1 andII1 is the same as II∞. We mean not only the order type but whether 1 isin�nite or not.Observe that the type II1 ase ertainly exists. We saw that vN(F2) hasprojetions of any trae between 0 and 1. By the previous theorem it is learthat the trae gives an isomorphism between the ordered set of equivalenelasses of projetions and the unit interval. We will proeed to prove astatement generalising this onsiderably.De�nition 6.1.10. A type II1 fator is an in�nite dimensional fator M on
H admitting a non-zero linear funtion tr : M → C satisfying(i) tr(ab) = tr(ba)(ii) tr(a∗a) ≥ 0(iii) tr is ultraweakly ontinuous.The trae is said to be normalised if tr(1) = 1.De�nition 6.1.11. In general a linear funtional φ on a *-algebra A is alledpositive if φ(a∗a) ≥ 0 (and φ(a∗) = φ(a) though this is redundant if A is a
C∗-algebra), and faithful if φ(a∗a) = 0 ⇒ a = 0. A positive φ is alled astate if 1 ∈ A and φ(1) = 1. A linear funtional φ is alled traial (or atrae) if φ(ab) = φ(ba).It is our job now to show that a II1 fator has a unique ultraweaklyontinuous traial state, whih is faithful. First a preliminary result on ideals.Theorem 6.1.12. Let M be an ultraweakly losed left ideal in a von Neu-mann algebra M . Then there is a unique projetion e ∈ M suh that
M = Me. If M is 2-sided, e is in Z(M).Proof. M ∩ M∗ is an ultraweakly losed *-subalgebra so it has a largestprojetion e. Sine e ∈ M, Me ⊆ M. On the other hand if x ∈ M let37



x = u|x| be its polar deomposition. Sine u∗x = |x|, |x| ∈ M∩M∗. Hene
|x|e = |x| and x = u|x| = u|x|e ∈Me. So M = Me.Uniqueness follows easily sine f = xe⇒ f ≤ e.Moreover if M is 2-sided, for any unitary u ∈ M , uM = M = uMu∗ =
Me = Mueu∗ so ueu∗ = e by uniqueness. Hene e ∈ Z(M).Corollary 6.1.13. An ultraweakly ontinuous positive non-zero trae Tr ona II1 fator is faithful.Proof. Let M = {x ∈M : Tr(x∗x) = 0}. Then sine x∗a∗ax ≤ ||a||2x∗x, Mis a left ideal and sine Tr(ab) = Tr(ba), M is a 2-sided ideal. Moreover bythe Cauhy Shwarz inequality Tr(x∗x) = 0 i� Tr(xy) = 0 ∀y ∈ M . Thus
M is ultraweakly losed, being the intersetion of the kernels of ultraweaklyontinuous funtionals. Thus M = Me for some entral projetion. And emust be zero sine M is a fator.Corollary 6.1.14. If M is a type II1 fator on H and p ∈M is a non-zeroprojetion, pMp is a type II1 fator on pH.Proof. This is lear�a trae on M restrits to a trae on pMp whih isnon-zero by faithfulness and all the other properties are immediate. Sine aminimal projetion in pMp would be minimal in M , pMp is in�nite dimen-sional.The uniqueness of tr will follow easily one we have gathered some fatsabout projetions in a II1 fator.Theorem 6.1.15. There are non-zero projetions in a type II1 fator ofarbitrarily small trae.Proof. Let d = inf{tr(p) : p ∈ M, p2 = p∗ = p 6= 0}. Suppose d > 0. Let
p be a projetion with tr(p) − d < d. Then p is not minimal sine we haveseen that M is not isomorphi to B(H). So there is a non-zero projetion
q < p. But then we have tr(p− q) = tr(p) − tr(q) ≤ tr(p) − d < d. This is aontradition. So d = 0.Theorem 6.1.16. Let M be a type II1 fator with an ultraweakly ontinuouspositive non-zero trae tr. Then {tr(p) : p ∈M, p2 = p∗ = p} = [0, tr(1)].Proof. For r ∈ [0, tr(1)] onsider S = {p : p a projetion in M and tr(p) ≤
r}. Then S is a partially ordered set and if pα is a hain in S, p =

∨

α pα ∈Mand p is in the strong losure of the pα so p is in S. So by Zorn, S has amaximal element, say q. If tr(q) were less than r, then by 6.1.8, q ≺ p. Sohoose q′ ∼= q, q′ < p. Applying 6.1.14 to p−q′ we �nd a projetion stritlybetween q′ and p. 38



Corollary 6.1.17. The map tr gives an isomorphism between the totallyordered set of equivalene lasses of projetions on a type II1 fator and theinterval [0, tr(1)].Proof. By 6.1.16 it su�es to show that the equivalene lass of a projetionis determined by its trae. This is immediate from 6.1.8.Exerise 6.1.18. Let M be a type II1 fator. Then for eah n ∈ N there isa subfator N ⊆M with N ∼= Mn(C).Corollary 6.1.19. Any two non-zero ultraweakly ontinuous normalised traeson a type II1 fator are equal.Proof. By the elementary fats it su�es to prove that two suh traes Trand tr agree on projetions. We may assume one of them, say tr, is positive.By the previous exerise, 6.1.17, and the uniqueness of the trae on a matrixalgebra, tr and Tr are equal on projetions for whih tr is rational. Givena projetion for whih tr(p) is irrational build an inreasing sequene ei ofsubprojetions as follows:Suppose we have already onstruted ei with tr(ei) = Tr(ei) and tr(p)−
tr(ei) < 1/i. Then (p− ei)M(p− ei) is a type II1 fator so tr and Tr agreeon projetions in it whose tr is arbitrarily lose to tr(p − ei). So hoose init a projetion ei+1 between ei and p, on whih tr and Tr agree and with
tr(p)− tr(ei+1) <

1
i+1

. Then tr and Tr agree on ∨i ei whih is equal to p bythe faithfulness of tr.We shall see that a positive trae on a type II1 fator is norm-ontinuousand a self-adjoint operator is atually a norm-limit of linear ombinationsof its spetral projetions so in fat an apparently weaker property thanultraweak ontinuity is all we used in the previous orollary�namely thatthe trae of the supremumof an inreasing net of projetions is the supremumof the traes.Corollary 6.1.20. Let M be a von Neumann algebra with a positive ultra-weakly ontinuous faithful normalised trae tr. Then M is a type II1 fatori� Tr = tr for all ultraweakly ontinuous normalised traes Tr.Proof. We just have to show that Z(M) is trivial. But if it were not, hooseby faithfulness a projetion p ∈ Z(M) with 0 < tr(p) < 1. De�ne Tr(x) =
( 1
tr(p)

)tr(xp). Then Tr is an ultraweakly ontinuous normalized trae di�erentfrom tr on 1 − p.Exerise 6.1.21. Let a be a non-zero positive self adjoint operator. Showthat there is a bounded pieewise smooth funtion f : R+ → R+ suh that
af(a) is a non-zero projetion. 39



Exerise 6.1.22. A type II1 fator is algebraially simple. (Hint�use theprevious exerise to show that a 2-sided ideal ontains a projetion, then addprojetions to obtain the identity.)6.2 The GNS onstrutionThus uniqueness of the trae implies fatoriality. This suggests another in-teresting way to onstrut a type II1 fator. If A = M2(C), A is embeddedin A⊗A as diagonal matries: a →֒ a⊗ 1. Iterate this proedure to form aninreasing sequene An of *-algebras with A1 = A and An+1 = An ⊗ A, andonsider the *-algebra A∞ = ∪nAn whih ould also be alled ⊗∞
alg,n=1An. Ifwe normalise the matrix trae on all matrix algebras so that tr(1) = 1 then

tr(a ⊗ 1) = tr(a) so that tr de�nes a positive faithful normalised trae on
A∞. Elements of A∞ an be thought of as linear ombinations of tensorsof the form a1 ⊗ a2 ⊗ a3 ⊗ · · · ⊗ 1 ⊗ 1 ⊗ 1 ⊗ · · · , on whih the trae is justthe produt of the traes of the ai's. We now turn A∞ into a von Neumannalgebra.De�ne an inner produt on A∞ by 〈x, y〉 = tr(y∗x). Then A∞ is a pre-Hilbert spae and let H be its ompletion. Note that Mn(C) is a von Neu-mann algebra so tr(y∗x∗xy) ≤ ||x||2tr(y∗y). This means that the operator
Lx on A∞, Lx(y) = xy, satis�es ||Lx(ξ)|| ≤ ||x|| · ||ξ|| (where ||x|| is theoperator norm of the matrix x and ||ξ|| is the Hilbert spae norm of ξ) andso extends uniquely to a bounded operator also written Lx on H. One heksthat (Lx)

∗ = Lx∗ so x → Lx de�nes a faithful (=injetive) representation ofthe *-algebra A∞ on H . LetM be the von Neumann algebra on H generatedby the Lx and identify A∞ with a subalgebra of M .The trae on A∞ is de�ned by tr(a) = 〈aξ, ξ〉 where ξ is the element
1 ∈ A∞ onsidered as a vetor in H. So tr extends to a trae on M whih isultraweakly ontinuous, positive and normalised. It is also unique with theseproperties by the uniqueness of the trae on the ultraweakly dense subalgebra
A∞ of M . If we an show that tr is faithful on M then it follows that M is atype II1 fator. It is important to note that this does not follow simply fromthe faithfulness of tr on A. In fat it is true but we need to do something toprove it.When we showed that Lx was bounded, the same alulation, with tr(ab) =
tr(ba), would have shown that Rx, right multipliation by x, is also bounded.Assoiativity shows that Lx and Ry ommute on A∞, hene on H. Thus Mommutes with Ry for eah y ∈ A∞. Now we an show faithfulness: if40



tr(x∗x) = 0 for x ∈M then for eah a ∈ A∞ we have
||x(a)||2 = ||xRa(ξ)||2 = ||Rax(ξ)||2 ≤ ||Ra||2||xξ||2 = ||Ra||2tr(x∗x) = 0.Sine A∞ is dense, this means x = 0. So tr is faithful on M whih is thus atype II1 fator.Exerise 6.2.1. Let Fn be the Fibonai numbers. Show that there is aunique (up to you to �gure out in what sense) unital embedding of MFn(C)⊕

MFn+1
(C) inside MFn+1

(C) ⊕MFn+2
(C) for n ≥ 3. Thus one may form the*-algebra

F∞ = ∪∞
n=1MFn(C) ⊕MFn+1

(C).Show that there is a unique C∗-norm and unique positive trae on F∞ so wemay repeat the proedure above to obtain another type II1 fator.Many points are raised by this example. The easiest to deal with arethe properties of the vetor ξ whih played a prominent role. We used both
Mξ = H and M ′ξ = H.De�nition 6.2.2. LetM be a von Neumann algebra on H. A vetor ξ ∈ H isalled yli forM ifMξ = H and separating forM if (xξ = 0) ⇒ (x = 0)for all x ∈M .Proposition 6.2.3. With notation as above, ξ is yli for M i� ξ is sepa-rating for M ′.Proof. (⇒) Exerise�in fat done in the disussion of A∞ above.(⇐) Let p be the projetion onto the losure of Mξ. Then p ∈ M ′. But
(1 − p)ξ = 0 so p = 1.The onstrution of M from A∞ is a speial ase of what is knownas the GNS onstrution (Gelfand-Naimark-Segal). Given a positive lin-ear funtional φ satisfying φ(a∗) = φ(a) on a *-algebra A we let Nφ be
{x ∈ A : φ(x∗x) = 0}. We also de�ne a sesquilinear form 〈, 〉φ on A by
〈x, y〉φ = φ(y∗x). This form is positive semide�nite but this is enough for theCauhy-Shwartz inequality to hold so that N is the same as {x : 〈x, y〉φ =
0 ∀y ∈ A} so that N is a subspae and 〈, 〉φ de�nes a pre-Hilbert spaestruture on the quotient A/N . Under favourable irumstanes, left mul-tipliation by x, Lx de�nes a bounded linear operator on it. Favourableirumstanes are provided by C∗-algebras.Exerise 6.2.4. If φ is a linear funtional on a C∗-algebra satisfying φ(a∗a) ≥
0 show that φ(a∗) = φ(a). Moreover if A is unital show that φ is norm-ontinuous and in fat ||φ|| = φ(1). 41



Remark 6.2.5. It is a standard elementary fat in C∗-algebras that one mayalways adjoin an identity to a C∗-algebra.Proposition 6.2.6. If A is a unital C∗-algebra and φ : A→ C is a positivelinear funtional then
φ(y∗x∗xy) ≤ ||x||2φ(y∗y)Proof. Let φ̃(a) = φ(y∗ay). Then φ̃ is positive so by the exerise φ̃(x∗x) ≤

||x||2φ̃(1).It follows immediately that, given a positive linear funtional φ on a unital
C∗-algebra, eah x ∈ A determines a bounded linear operator πφ(x) on theHilbert spae Hφ of the GNS onstrution via left multipliation: πφ(x)(y) =
xy. Moreover ||πφ(x)|| ≤ ||x|| and πφ(x

∗) = πφ(x)
∗ sine 〈πφ(x)y, z〉 =

φ(z∗xy) = 〈y, πφ(x∗)z〉. Note that φ(x) = 〈πφ(x)1, 1〉.To sum up we have the following:De�nition 6.2.7. If A is a C∗-algebra and φ is a positive linear funtionalon A, the Hilbert spae of the GNS onstrution is written Hφ and the rep-resentation πφ by left multipliation is alled the GNS representation.Proposition 6.2.8. If A is a C∗-algebra on H and ξ ∈ H, de�ne ωξ(a) =
〈aξ, ξ〉. Then ωξ is a positive linear funtional and a 7→ aξ de�nes a unitary
u : Hωξ → Aξ suh that uπωξ(a)u∗ = a.Proof. Obvious.If A is atually a von Neumann algebra, πφ(A) will not in general be oneon Hφ. This di�ulty will be resolved in the next setion.
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Chapter 7Normality, omplete additivity.7.1 Normal states.In quantum mehanis if ξ is a unit vetor in a Hilbert spae it de�nes a"state" φ. In partiular this means that if an observable is given by theself-adjoint operator a then the average value of repeated observations of thesystem in the state φ is 〈aξ, ξ〉. For this reason one alls a positive linearfuntional φ a �state" on a unital C∗-algebra provided φ(1) = 1.De�nition 7.1.1. If A is a C∗-algebra on H and φ is a state on A we say φ isa vetor state if there is a unit vetor ξ ∈ H with φ = ωξ, i.e. φ(a) = 〈aξ, ξ〉for all a ∈ A.Not all states are vetor states but our goal in this hapter is to showthat on von Neumann algebras there is a natural lass of states whih areautomatially vetor states provided one ampli�es the Hilbert spae.De�nition 7.1.2. (i) If M is a von Neumann algebra a positive linear fun-tional φ is alled ompletely additive if
φ(
∨

α

pα) =
∑

α

φ(pα)whenever pα is a family of mutally orthogonal projetions.(ii) A positive linear map Φ : A → B between von Neumann algebras isalled normal if
Φ(
∨

α

aα) =
∨

α

Φ(aα)for any inreasing net (aα) of self-adjoint operators in A.Our goal in this hapter is to show the following:43



Theorem 7.1.3. If φ is state on a von Neumann algebra M on H the fol-lowing are equivalent:(1) φ is normal.(2) φ is ompletely additive(3) φ is a vetor state on H⊗ ℓ2(N)(4) φ is ultraweakly ontinuous.The only impliation that is not obvious from what we have done is
(2) =⇒ (3). To prove it we will put together some results. The �rst oupleatually establish (4) =⇒ (3) by 5.1.2.Lemma 7.1.4. Let A be a C∗-algebra on H ontaining 1. If ψ is a positivelinear funtional on A and ξ ∈ H is a vetor with ψ ≤ ωξ (i.e. ωξ − ψ ispositive), then there is a s ∈ A′ with ψ = ωsξ .Proof. De�ne a sesquilinear form (, ) on Aξ by (aξ, bξ) = ψ(b∗a). Cauhy-Shwarz and ψ ≤ φξ give that |(aξ, bξ)| ≤ ||aξ||||bξ|| so (, ) is well-de�nedand there is a bounded positive operator t on Aξ with 〈aξ, tbξ〉 = ψ(b∗a).But 〈aξ, tbcξ〉 = ψ(c∗b∗a) = 〈b∗aξ, tcξ〉 = 〈aξ, btcξ〉 so that t ∈ A′ on Aξ. If
p = pAξ, tp is a positive operator in A′ and if s =

√
t, ψ(a) = 〈aξ, tξ〉 =

〈asξ, sξ〉 = ωξ(a)..Corollary 7.1.5. If ξ and η are vetors suh that ω(a) = 〈aξ, η〉 is positive(on a C∗-algebra A on H) then there is a vetor ν with ω = ων .Proof. For a ≥ 0,
〈aξ, η〉 = 1/4(〈a(ξ + η), ξ + η〉 − 〈a(ξ − η), ξ − η〉)

≤ 1/4ωξ+η(a).Now we begin to show that omplete additivity means that two statesannot disagree too erratially.Lemma 7.1.6. Let φ1 and φ2 be ompletely additive. Suppose p ∈ M is aprojetion and φ1(p) < φ2(p) . Then there is a projetion q ≤ p, for whih
φ1(x) < φ2(x) ∀x ≥ 0 with qxq = x.Proof. Choose a maximal family of mutually orthogonal �bad" projetions
eα ≤ p for whih φ1(eα) ≥ φ2(eα). By omplete additivity ∨α eα is bad so let
q = p −∨α eα. By maximality φ1(f) < φ2(f) for all projetions f ≤ q andsine α is norm ontinuous, by the spetral theorem φ1(x) < φ2(x) ∀x ≥ 0with qxq = x. 44



Next we get vetor state behaviour for φ on some small projetion.Lemma 7.1.7. There exists p > 0 and ξ ∈ H for whih
φ(x) = 〈xξ, ξ〉 ∀x ∈ pMpProof. Choose ξ ∈ H with φ(1) = 1 < 〈ξ, ξ〉. Then by the previous lemmathere is a p > 0 for whih φ(x) ≤ 〈xξ, ξ〉 ∀x ∈ pMp. By 7.1.4 we aredone.Now we put together all the little parts and prove that (3) =⇒ (4) in7.1.3. So let φ be a ompletely additive state on a von Neumann algebra Mating on H. Let pα be a maximal family of pairwise orthogonal projetionsadmitting a vetor ξα ∈ pαH with φ(x) = 〈xξα, ξα〉 on pαMpα. Then bythe previous lemma ∨α pα = 1. And obviously ||ξα||2 = φ(pα). Sine φ(pα)an only be non-zero for ountably many α we an assume the set of α's isountable.By Cauhy-Shwarz, for any x ∈M ,

|φ(xpα)| ≤ φ(pαx
∗xpα)

1/2φ(pα)
1/2 = ||xξα||φ(pα)

1/2.So the linear funtional xξα 7→ φ(xpα) is well-de�ned and bounded on
Mξα whih means there is a vetor ηα, ||ηα||2 = φ(pα), with

φ(xpα) = 〈xξα, ηα〉.Moreover, also by Cauhy-Shwarz, |φ(x) −∑α∈F φ(xpα)| an be madearbitrarily small by hoosing the �nite set F su�iently large sine φ isompletely additive. We onlude that there exist ξα, ηα, eah of norm ≤
φ(α)1/2 with

φ(x) =
∑

α

〈xξα, ηα〉whih is the same as saying that φ(x) = 〈(x⊗1)ξ, η〉 for some ξ, η ∈ ℓ2(N,H).By orollary 7.1.5 we have proved theorem 7.1.3.Corollary 7.1.8. If φ is a normal state on the von Neumann algebraM thenthe GNS representation πφ is ultraweakly ontinuous onto a von Neumannalgebra on Hφ.Proof. We saw in the last theorem that φ(x) = 〈x ⊗ 1(ν), ν〉 on H⊗ ℓ2(N).The map x 7→ x ⊗ 1 is ultraweakly ontinuous. By 6.2.8 we have that πφis ultraweakly ontinuous sine the redution to M ⊗ 1(ν) is ultraweaklyontinuous. So the kernel of πφ is an ultraweakly losed 2-sided ideal, hene45



of the formMe for some e in the entre ofM . It follows that πφ is injetive on
M(1− e) and sine the norm of an operator x is determined by the spetrumof x∗x, the unit ball of the image of M is the image of the unit ball whih isweakly ompat so by 5.2.2 we are done.We reord a orollary that is used often without expliit mention:Corollary 7.1.9. Let M be a von Neumann algebra and let A be a weaklydense *-subalgebra of M generated by some self-adjoint set X. Suppose φis a faithful normal state on M and N is another von Neumann algebrawith faithful normal state ψ. If θ : X → N is a funtion, multipliativelyextend θ to words w(x1, x2, · · ·xn). Then if ψ(w(θ(x1), θ(x2), · · · θ(xn)) =
φ(w(1, x2, · · ·xn)), θ extends uniquely to a von Neumann algebra isomorphismfrom M to θ(X)′′.Proof. Faithfulness of the states φ and ψ means that the extension of θ tolinear ombinations of words is a well-de�ned *-isomorphism from A to the*-subalgebra θ(A) of N whih sends φ to ψ. This further extends to a unitarybetween the GNS onstrutions for φ and ψ|θ(A) whih intertwines the ationsof A and θ(A). We are done by 7.1.8.7.2 Isomorphisms are spatial.Reall that an isomorphism Φ : M → N between von Neumann algebrason Hilbert spaes H and K respetively is alled spatial if there is a unitary
u : H → K suh that Φ(x) = uxu∗ for all x ∈ M . Though the title of thissetion is not literally true, it beomes true on ampli�ation as a result oftheorem 7.1.3:Theorem 7.2.1. Given an isomorphism Φ : M → N between von Neumannalgebras on Hilbert spaes H and K respetively, there is a Hilbert spae Wand a unitary u : H⊗W → K⊗W with Φ(x)⊗1 = u(x⊗1)u∗ for all x ∈M .Proof. If ξ ∈ H de�nes the vetor state φ on M ,then sine normality (oromplete additivity) is de�ned by algebra, the state φ ◦ Φ−1 is also a vetorstate on K⊗ ℓ2(N) given by the vetor η. This means that there is a unitaryfrom the losure of Mξ to the losure of Nη intertwining the ations of
x and Φ(x) ⊗ 1. One may exhaust H in this way to obtain an isometry
u : H → ⊕αK ⊗ ℓ2(N) intertwining the ations of M . For a big enough W,
⊕αK ⊗ ℓ2(N) is K ⊗ W and tensoring again by W we get an intertwiningisometry u : H⊗W → K⊗W. Now onsider the ation of M on
(H⊗W)⊕(K⊗W) de�ned in terms of matries by ( x⊗1 0

0 Φ(x)⊗1

). To say that46



u intertwines the ations is preisely the same as saying that ( 0 0
u 0 ) is in M ′.So ( 1 0

0 0 ) � ( 0 0
0 1 ) inM ′. Applying this to Φ−1 as well we see by theorem 6.1.2that these two projetions are equivalent in M ′. But any partial isometrywitnessing their equivalene has the form ( 0 0

w 0 ) with w a unitary between Hand K intertwining the ations. (Note that we never assumed that M wasmore than a unital *-algebra on (H⊗W) ⊕ (K ⊗W)).7.3 Exerises on two projetions.Let p and q be projetions onto losed subspaes H and K of the Hilbertspae U respetively. Let M = {p, q}′′.Exerise 7.3.1. Show that U = (H∩K)⊕(H⊥∩K⊥)⊕(H∩K⊥)⊕(H⊥∩K)⊕Wfor some W and this deomposition is invariant under p and q.Exerise 7.3.2. Show that, on W, p and q are in �general position�, i.e.
p ∧ q = 0, p ∨ q = 1, (1 − p) ∧ q = 0 and (1 − p) ∨ q = 1.Exerise 7.3.3. Show that if a ∈ B(H), 0 ≤ a ≤ 1, ( a

√
a(1−a)√

a(1−a) 1−a

) is aprojetion on H⊕H. When is it in general position with ( 1 0
0 0 )?Exerise 7.3.4. Let a = (p− q)2 and A = {a}′′. Show that a ∈ Z(M) andthat {a0+a1p+a2q+a3pq+a4qp : ai ∈ A} is a *-algebra (whih is neessarilyweakly dense in M).Exerise 7.3.5. Show that pMp is abelian, generated by pqp.>From now on suppose p and q are in general position.Exerise 7.3.6. Show that p ∼= q in M . (Hint: onsider the polar deompo-sition of pq.)Exerise 7.3.7. Show there is a 2×2 system of matrix units (eij) ∈M with

p = e11.Exerise 7.3.8. Show that M is spatially isomorphi to B ⊗ M2(C) forsome abelian von Neumann algebra B generated by b, 0 ≤ b ≤ 1, with porresponding to ( 1 0
0 0 ) and q orresponding to ( b

√
b(1−b)√

b(1−b) 1−b

)Now drop the hypothesis that p and q are in general position.Exerise 7.3.9. Show that p ∨ q − p ∼= q − p ∧ q in M47



Exerise 7.3.10. Show that if p and q are �nite projetions in a fator Mthen p ∨ q is also �nite. (In fat it's true for a non-fator as well.)Alternative approah using group representations.Exerise 7.3.11. Show that (Z/2Z)∗(Z/2Z) ∼= Z⋊(Z/2Z) (in�nite dihedralgroup).Exerise 7.3.12. Classify all unitary representations of Z⋊(Z/2Z). (Hint�use the spetral theorem for unitaries.)Exerise 7.3.13. Observe that 2p− 1 and 2q − 1 are self-adjoint unitaries.Exerise 7.3.14. Obtain the struture of 7.3.8 using the last 3 exerises.
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Chapter 8The PredualAn ultraweakly ontinuous linear funtional φ on a von Neumann algebra Mis norm ontinuous so de�nes an element of M∗. Our goal in this hapter isto show that the set of all suh φ is a losed subspae M∗ of M∗ and thatthe duality between M∗ and M makesM equal to the Banah spae dual of
M∗. We will �rst establish this in the speial ase M = B(H).8.1 Trae lass and Hilbert Shmidt operators.The material in this setion is standard so we will only prove results as itsuits us, otherwise referring any unproved assertions to Reed and Simon.Lemma 8.1.1. If a ∈ B(H) is positive and (ξi) and (ηi) are two orthonormalbases of H, then

∑

i

〈aξi, ξi〉 =
∑

i

〈aηi, ηi〉(where ∞ is a possible value for the sum).Proof. We have
∑

i

〈aξi, ξi〉 =
∑

i

||
√
aξi||2

=
∑

i

(
∑

j

|〈√aξi, ηj〉|2)

=
∑

j

(
∑

i

|〈√aηj, ξi〉|2)

=
∑

j

||√aηj||249



=
∑

j

〈aηj, ηj〉where every number is positive so the order of the sum is immaterial.The number ∑i〈aξi, ξi〉 of the previous theorem is alled the trae of a,written Trace(a).De�nition 8.1.2. An element a ∈ B(H) is said to be of trae lass if
Trace(|a|) is �nite.If a is trae lass and (ξi) is an orthonormal basis, the sum

∑

i

〈aξi, ξi〉onverges absolutely and is alled the trae, Trace(a), of a.Theorem 8.1.3. The trae lass operators on H form a self-adjoint idealof ompat operators, I1, in B(H). The funtion |a|1 de�ned by |a|1 =
Trace(|a|) de�nes a norm on I1 for whih it is omplete. Moreover ||a|| ≤
|a|1.Proof. The only thing not proved in Reed and Simon is ompleteness. Forthis observe that if an is a Cauhy sequene in | − |1, it is Cauhy in || − || sowhat we have to do is show that the norm limit of a | − |1-Cauhy sequene
(an) is trae lass and that the sequene tends to that limit in | − |1. Sosuppose ǫ > 0 is given. Then for m and n large enough

∞
∑

i=1

〈|an − am|ξi, ξi〉 < ǫ.So for any N ,
N
∑

i=1

〈|an − am|ξi, ξi〉 < ǫ.Now if bn tends in norm to b, then |bn| tends in norm to |b| (obviously
b∗nbn → b∗b, and approximate the square root funtion by polynomials on aninterval) so for eah �xed i,

lim
n→∞

|an − am|ξi = |a− am|ξi.So ∑N
i=1〈|a− am|ξi, ξi〉 < ǫ and letting N tend to ∞ we see that a ∈ I1 sine

I1 is a vetor spae, and also that an → a in | − |1.50



The trae is independent of the orthonormal basis and if a is trae lassand b ∈ B(H), Tr(ab) = Tr(ba).We see that eah h ∈ I1 determines a linear funtional φh on B(H) by
φh(x) = Trace(xh).De�nition 8.1.4. The trae-lass matrix as above is alled the density matrixfor the state φh.Proposition 8.1.5. Eah φh is ultraweakly ontinuous and its norm as anelement of B(H)∗ is |h|1.Proof. Sine h is ompat, hoose an orthonormal basis (ξi) of eigenvetorsof |h| with eigenvalues λi and let h = u|h| be the polar deomposition. Then

φh(x) =
∞
∑

i=1

〈xu|h|ξi, ξi〉so ultraweak ontinuity is apparent, and
φh(x) ≤

∞
∑

i=1

||x|| || |h|ξi||

= ||x||
∞
∑

i=1

λi

= ||x|| |h|1.Moreover evaluating φh on u∗ gives ||φh|| = |h|1.If H and K are Hilbert spaes, a bounded operator x : H → K is alledHilbert-Shmidt if x∗x is trae lass, i.e. ∑∞
i=1 ||xξi||2 < ∞ for some (heneany) orthonormal basis (ξi) of H. The set of all Hilbert-Shmidt operatorsfrom H to K is written ℓ2(H,K) and if x is Hilbert-Shmidt, so is x∗, and xis ompat.Theorem 8.1.6. If a ∈ B(H), b ∈ B(K) and x ∈ ℓ2(H,K) then bxa ∈

ℓ2(H,K). If x ∈ ℓ2(H,K) and y ∈ ℓ2(K,H) then yx is trae lass. With theinner produt 〈x, y〉 = Trace(y∗x), ℓ2(H,K) is a Hilbert spae in whih the�nite rank operators are dense.Proof. See Reed and Simon. 51



Exerise 8.1.7. Prove all the assertions made above about trae-lass andHilbert-Shmidt operators.Exerise 8.1.8. If H and K are Hilbert spaes onstrut a natural map from
K ⊗H∗ to ℓ2(H,K) and show that it is unitary.Let |x|2 be the Hilbert spae norm on Hilbert-Shmidt operators.Lemma 8.1.9. If x ∈ ℓ2(H,K) and y ∈ ℓ2(K,H) then Trace(xy) = Trace(yx).Proof. First note that the result is true if we suppose that |x| is trae lass.For then let x = u|x| be the polar deomposition, hoose an orthonormalbasis (ξi) of the �nal domain of u and extend it to an orthonormal basis of
K. Also extend (u∗ξi) to an orthonormal basis of H by vetors in ker(|x|).Then

Trace(xy) =
∑

i

〈u|x|yξi, ξi〉

=
∑

i

〈|x|yuu∗ξi, u∗ξi〉

= Trace(|x|(yu))
= Trace((yu)|x|)

= Trace(yx.)Now suppose only that x is Hilbert-Shmidt. Let ǫ > 0 be given and hoose
x′ of �nite rank with |x− x′|2 < ǫ. Then

|Trace(xy)− Trace(yx)| = |Trace((x− x′)y)− Trace(y(x− x′))|whih by Cauhy-Shwartz is ≤ 2ǫ|y|2.Corollary 8.1.10. If ω is an ultraweakly ontinuous linear funtional on
B(H), there is a trae lass h so that ω = φh.Proof. By 5.1.2 there are (ξi) and (ηi) in ℓ2(N,H) so that ω(x) =

∑

i〈xξi, ηi〉.Then if we de�ne a and b from ℓ2(N) to H by a(f) =
∑

i f(i)ξi and b(f) =
∑

i f(i)ηi, a and b are Hilbert Shmidt and ω(x) = Trace(b∗xa) whih is
Trace(xab∗) by the previous result.Putting everything together so far, we have identi�ed the image of theBanah spae I1 under the map h 7→ φh with the losed subspae of B(H)∗onsisting of ultraweakly ontinuous linear funtionals. To lose the loop weonly need to show that the Banah spae dual of I1 is B(H).52



Theorem 8.1.11. If α : I1 → C is linear and bounded for | − |1, there is an
x ∈ B(H) so that α(a) = φa(x), and ||α|| = ||x||.Proof. This is rather routine. Two vetors ξ and η de�ne an element x of I1by x(v) = 〈v, ξ〉η so one may de�ne a sesquilinear form on H by (ξ, η) = α(x).Boundedness of x follows from that of α so there is an appropriate x ∈ B(H).To show that the norm of x as an element of the dual of I1 is atually ||x||,suppose ||x|| = 1 and hoose a unit vetor ξ with ||xξ|| almost equal to 1.Then Tr(hx) is almost 1 if h is the partial isometry whih sends v ∈ H to
〈v, xξ〉 ξ

||xξ|| .Exerise 8.1.12. Fill in the missing details in the previous proof.Now we pass to von Neumann algebras though in fat these results workfor any ultraweakly losed subspae of B(H).Theorem 8.1.13. If V is an ultraweakly losed subspae of B(H) then V =
V ⊥⊥ in the sense that if φ(x) = 0 for every ultraweakly ontinuous φ forwhih φ(V ) = 0 then x ∈ V .Proof. This is a simple appliation of the Hahn-Banah theorem�if x /∈ Vonstrut an ultraweakly ontinuous funtional whih is zero on V and non-zero on x.`Exerise 8.1.14. Exhibit a non-zero trae lass operator on ℓ2(Γ) whih isorthogonal to vN(Γ).Theorem 8.1.15. If V is an ultraweakly losed subspae of B(H) then itis anonially the dual Banah spae of V∗ whih is de�ned as the spaeof ultraweakly ontinuous linear funtionals on V . Moreover the ultraweaktopology on V is the weak-* topology on V as the dual of V∗.Proof. If B is a Banah spae with dual B∗ and V is a weak-* losed subspaeof B∗ then V is the dual of B/V ⊥ (surjetivity of the natural map from V tothe dual of V/B⊥ is a result of the previous theorem), so V is a dual spae.So we just have to identify the Banah spae B/V ⊥ with the spae of weak-*ontinuous (as elements of B∗∗) linear funtionals on V . This is a simpleexerise. Putting B = I1 we are done.Exerise 8.1.16. If V is an ultraweakly losed subspae of B(H), show that
V∗ is a separable Banah spae if H is a separable Hilbert spae.53



8.2 A tehnial lemma.Let us prove a lemma whih shows what the tehniques developed so far anbe good for. It will be ruial in our treatment of Tomita-Takesaki theory.It is a �Radon-Nikodym� type theorem inspired by one due to Sakai([℄).�nd referene Lemma 8.2.1. Let λ ∈ R+ be given and let φ be a faithful ultraweaklyontinuous state on a von Neumann algebra M . Let ψ ∈ M∗ be suh that
|ψ(y∗x)| ≤

√

φ(x∗x)
√

φ(y∗y). Then there is an a ∈M1/2 (elements of norm
≤ 1/2) so that

ψ(x) = λφ(ax) + λ−1φ(xa).Proof. For a ∈M let θa(x) = φ(λax+ λ−1xa). Then the map α : M → M∗,
α(a) = θa, is ontinuous for the topologies of duality between M and M∗.But we know that this topology on M is the ultraweak topology so that
α(M1) is a ompat onvex set. By ontradition suppose that ψ is not in
α(M).Then by Hahn-Banah there is an h ∈ M with ℜ(ψ(h)) > D where
D = supa∈M1/2

ℜ(θa(h)). But if h = u|h| = |h∗|u is the polar deompositionof h, we have
θu∗/2(h) = 1/2(λφ(|h|) + λ−1φ(|h∗|))so that

2D ≥ λφ(|h|) +
1

λ
φ(|h∗|) ≥ 2

√

φ(|h|)
√

φ(|h∗|).But also D < |ψ(h)| = |ψ(u|h|1/2|h|1/2)| ≤
√

φ(|h|)
√

φ(u|h|u∗), a ontradi-tion.
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Chapter 9Standard form of a II1 fator andII∞ fators.9.1 Standard form.In this setion M will be a von Neumann algebra with an ultraweakly on-tinuous faithful normalized trae tr and L2(M, tr) will be abbreviated to
L2(M).In setion 6.2 we learned how to onstrut a von Neumann algebra from a
C∗-algebra and a positive linear funtional on it. If we apply this onstrutionto L∞(X,µ) (when µ(X) <∞) with trae given by ∫ fdµ, the Hilbert spaewould be L2(X, dµ). For this reason, if M is a type II1 fator we write
L2(M, tr) for the GNS Hilbert spae obtained from the trae. In fat onean de�ne Lp spaes for 1 ≤ p ≤ ∞ using the Lp norm ||x||p = tr(|x|p)1/p.A nonommutative version of the Holder inequality shows that || − ||p is anorm and Lp(M) is the ompletion. We set L∞(M) = M and we shall seethat L1(M) is the predual M∗.Let us �x on the notation Ω for the vetor in L2(M) whih is the identityof M .Proposition 9.1.1. If M is as above the || − ||-unit ball of M is a ompletemetri spae for || − ||2 and the topology de�ned by || − ||2 on the unit ball isthe same as the strong (and ultrastrong and *-strong) topology.Proof. If xn is Cauhy in || − ||2 then for eah a ∈ M , xna is also sine
||xna||2 ≤ ||a|| ||xn||2. So we an de�ne x on the dense subspae MΩ of
L2(M) by x(aΩ) = limn→∞xnaΩ. Sine ||x|| ≤ 1, we have ||xξ|| ≤ ||ξ|| for
ξ ∈MΩ so x extends to a bounded operator on L2(M) whih is obviously in
M , and xΩ = x = limn→∞ xn in || − ||2.55



The strong topology is obviously no stronger than || − ||2 sine the sin-gle seminorm a 7→ ||aΩ|| de�nes the || − ||2 topology. Moreover ||xaΩ|| ≤
||x||2||a|| shows that || − ||2 ontrols the strong topology on the unit ball.Finally note that in the statement of the theorem it does not matter whatrepresentation of M is used to de�ne the strong topology on the unit ball asthe ultrastrong topology does not hange under the manipulations that weused to get the GNS onstrution from a II1 fator on an arbitrary Hilbertspae.The ation of M on L2(M, tr) is alled the standard form of M . Notethat vN(Γ) on ℓ2(Γ) is already in standard form. (We see that we ould haveobtained our �rst example of a II1 fator by applying the GNS onstrutionto the group algebra CΓ with the trae tr(∑γ cγuγ) = cid.)We now want to determine the ommutant M ′ when M is in standardform. It will be more onvenient to adopt the learly equivalent situationwhere M is ating on a Hilbert spae H and Ω is a yli and separatingvetor in H with 〈xΩ,Ω〉 = tr(x) for x ∈M .De�nition 9.1.2. Let J : H → H be the antilinear unitary involution whihis the extension to H of the antiunitary isometry

J(xΩ) = x∗Ω.Lemma 9.1.3. For x, a in M , and ξ, η in H(i) 〈Jξ, Jη〉 = 〈η, ξ〉(ii) JxJ(aΩ) = ax∗ΩProof. (i) If ξ = aΩ and η = bΩ, 〈Jξ, Jη〉 = tr(ba∗) = 〈η, ξ〉.(ii) JxJ(aΩ) = J(xa∗Ω) = ax∗Ω.Corollary 9.1.4. For M on H, JMJ ⊆M ′.Proof. Left and right multipliation ommute.Lemma 9.1.5. For M on H, if x ∈M ′, JxΩ = x∗Ω.Proof. Take a ∈M , then
〈JxΩ, aΩ〉 = 〈JaΩ, xΩ〉

= 〈a∗Ω, xΩ〉56



= 〈Ω, xaΩ〉
= 〈x∗Ω, aΩ〉.Theorem 9.1.6. For M on H, JMJ = M ′.Proof. We begin by showing that x 7→ 〈xΩ,Ω〉 is a trae on M ′:For x, y ∈M ′,

〈xyΩ,Ω〉 = 〈yΩ, x∗Ω〉
= 〈yΩ, JxΩ〉
= 〈xΩ, JyΩ〉
= 〈xΩ, y∗Ω〉
= 〈yxΩ,Ω〉.let us all Tr this trae on M ′. Then learly the (M ′, T r,Ω) satisfy thehypotheses we have been using so if K(xΩ) = x∗Ω is extended to H itsatis�es KM ′K ⊆ M ′′ = M . But by the previous lemma K oinides with

J on the dense subspae M ′Ω. Hene JM ′J ⊆ M and we are done.We see that the ommutant of the left regular representation of Γ on
ℓ2(Γ) is the von Neumann algebra generated by the right regular representa-tion sine JuγJεγ′ = εγ′γ−1 . And more generally the ommutant of the leftation of M on L2(M) is the ∗-algebra of right multipliation operators. Inpartiular the ommutant of a type II1 fator M on L2(M) is also a typeII1 fator. This is not the ase for M on an arbitrary Hilbert spae. For in-stane we ould onsider M ⊗ 1 on L2(M)⊗H for some in�nite dimensional
H. Then the ommutant of M ⊗1 would be JMJ ⊗B(H)�in�nite matriesover JMJ .De�nition 9.1.7. A II∞ fator is a fator of the form M ⊗B(H) with M atype II1 fator and dimH = ∞.Proposition 9.1.8. Let M be an in�nite fator with a projetion p ∈M sothat pMp is a type II1 fator. Then M is a II∞ fator.Proof. Choose a maximal family {pα} of mutually orthogonal projetionsin M with pα ∼= p ∀α. If it were the ase that 1 −∑α pα � p then weould ontradit the maximality of the family {pα}. So write 1 = q +

∑

α pαwith q � p. By 7.3.10 the set of indies {α} is in�nite so we may hoose abijetion with itself minus α0 and write 1 = q +
∑

α pα � pα0
+
∑

α 6=α0
pα �57



1. We onlude that ∑α pα is equivalent to 1 so we may suppose it equalto 1. We may then onstrut a system of matrix units by using partialisometries implementing the equivalenes between the pα to obtain the resultfrom exerise 4.3.3.It ould oneivably happen that, given a II∞ fatorM , the type II1 fatorof the form pMp depends on p (obviously only up to equivalene). We nowintrodue the trae on a II∞ fator whih will make this issue more lear.If M is a type II1 fator, de�ne the map tr from (M ⊗ B(H))+ (the setof positive elements of M ⊗ B(H)), to [0,∞] by
tr((xij)) =

∞
∑

i=1

tr(xii)where we have hosen a basis of the in�nite dimensional Hilbert spae H toidentifyM ⊗ B(H) with ertain matries over M .Theorem 9.1.9. Let M be as above.(i) tr(λx) = λtr(x) for λ ≥ 0.(ii) tr(x+ y) = tr(x) + tr(y).(iii) If (aα) is an inreasing net of positive operators with ∨α aα = a then
tr(
∨

α aα) = limα tr(aα).(iv) tr(x∗x) = tr(xx∗) ∀x ∈M ⊗ B(H).(v) tr(uxu∗) = tr(x) for any unitary u ∈ M ⊗ B(H) and any x ≥ 0 in
M ⊗ B(H).(vi) If p is a projetion in M ⊗ B(H) then p is �nite i� tr(p) <∞.(vii) If p and q are projetions with p �nite then p � q i� tr(p) ≤ tr(q).(viii) p(M ⊗ B(H))p is a type II1 fator for any �nite projetion p.Proof. The �rst two assertions are immediate. For (iii), note that the diago-nal entries of positive matries are ordered as the matries, and all numbersare positive in the sums. (iv) Is obvious using matrix multipliation. (v)follows from (iv) via uxu∗ = (u

√
x)(

√
xu∗). For (vi), if tr(p) < ∞ but p isin�nite, there is a proper subprojetion of p having the same trae as p. Thedi�erene would be a projetion of trae zero whih is learly impossible. If

tr(p) = ∞ then if q is a projetion of �nite trae, q � p and if q ≤ p then
tr(p − q) = ∞ so one may onstrut an in�nite sequene of mutually or-thogonal equivalent projetions less than p. Using a bijetion with a propersubsequene, p dominates an in�nite projetion so is in�nite itself. (vii) fol-lows easily as in the ase of a type II1 fator. For (viii) simply observe that58



tr(p) < ∞ means that p � q for some q whose matrix is zero exept for�nitely many 1's on the diagonal. And obviously qMq is a type II1 fator forsuh a q.Corollary 9.1.10. Let M be a II∞ fator on a separable Hilbert spae and
tr be the trae supplied by a deomposition II1 ⊗ B(H). Then tr de�nes anisomorphism of the totally ordered set of equivalene lasses of projetions in
M to the interval [0,∞].Proof. Given the previous theorem, we only have to prove that any in�niteprojetion is equivalent to the identity. But if p is in�nite hoose u with
uu∗ = p and u∗u stritly less than p. Then (u∗)nun are a stritly dereasingsequene of equivalent projetions so we may write p as an orthogonal sum
p = p∞+

∑∞
i=1 pi with all the pi equivalent for i ≥ 1. Now write the identity asa ountable orthogonal sum of projetions all � p1 (using the deompositionII1 ⊗ B(H) if neessary). We see that 1 � p.Unlike the II1 ase, or for that matter the B(H) ase, the trae annot benormalised (by tr(1) = 1 in the type II1 fator ase or the trae of a minimalprojetion being 1 in the B(H) ase). This allows for the possibility of anautomorphism α of M with tr(α(x)) = λtr(x) for x ≥ 0 and λ > 0, λ 6= 1.Exerise 9.1.11. Show that the trae on a II∞ fator is unique with prop-erties (i) to (vi), up to a salar.Exerise 9.1.12. If α : M → N is a *-homomorphism from a type II1 fatoronto another, then α is an isomorphism, strongly ontinuous on the unit ball.
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Chapter 10The Coupling ConstantWe want to ompare ations of a given II1 fator on (separable) Hilbertspaes. We will show that they are parameterized by a single number in
[0,∞].De�nition 10.0.13. If M is a type II1 fator, by M-module we will mean aHilbert spaeH together with an ultraweakly ontinuous unital *-homomorphismfrom M to a type II1 fator ating on H. Thus M ats on H and we willwrite that ation simply as xξ for x ∈M and ξ in H.In fat the ultraweak ontinuity ondition is super�uous. The identitymap makes the Hilbert spae on whih M is de�ned into an M -module.Given M on H and another Hilbert spae K, x 7→ x⊗ id makes H⊗K intoan M -module. The GNS representation makes L2(M) into an M -module.(The notion ofM−M bimodule is de�ned similarly as two ommuting ationsof M on some Hilbert spae, L2(M) being the �rst example.) There is anobvious notion of diret sum of M -modules. We will ompare a given M -moduleH with L2(M) by forming the diret sum of it H and in�nitely manyopies of L2(M).10.1 De�nition of dimM HTheorem 10.1.1. Let M be a type II1 fator and H a separable M-module.Then there is an isometry u : H → L2(M) ⊗ ℓ2(N) suh that ux = (x⊗ 1)u(i.e. u is M-linear).Proof. Form theM -module K = H⊕L2(M)⊗ ℓ2(N). Let p = id⊕ 0 ∈ B(K)be the projetion ontoH and q = 0⊕id be the projetion onto L2(M)⊗ℓ2(N).Both p and q are inM ′ (on K) whih is a II∞ fator sine q is learly in�nite in61



M ′ and if e is a rank one projetion in B(ℓ2(N)) then (0⊕(1⊗e))M(0⊕(1⊗e))is a type II1 fator, being the ommutant of M on L2(M).Sine q is an in�nite projetion inM ′, by 9.1.10 there is a partial isometryin M ′ with u∗u = p and uu∗ ≤ q. Using the obvious matrix notation foroperators on K, let u be represented by
( a bc d ) .Then alulating u∗u = p and uu∗ ≤ q gives b∗b+d∗d = 0 and aa∗+bb∗ = 0so that

u = ( 0 0
w 0 )for some isometry w : H → L2(M) ⊗ ℓ2(N).Moreover the fat that u ommutes with M̃ is equivalent to wx = (x⊗ 1)w

∀x ∈M .Corollary 10.1.2. The ommutant of a type II1 fator is either a type II1fator or a type II∞ fator.Proof. We leave the proof as an exerise.Proposition 10.1.3. If u : H → L2(M) ⊗ ℓ2(N) is an M-linear isometrythen uu∗ ∈M ′ on L2(M) ⊗ ℓ2(N) and tr(uu∗) is independent of u.Proof. If v were another M -linear isometry then uu∗ = uv∗vu∗ so by 9.1.9
tr(uu∗) = tr((vu∗)(uv∗)) = tr(vv∗).Observe that if M were replaed by C in the above onstrution thenumber tr(uu∗) would be the dimension of H.De�nition 10.1.4. For a type II1 fator (or the n×n matries) and an M-module H, the number tr(u∗u) de�ned by the two previous results is alled
dimM H, or the oupling onstant or the M -dimension of H.Put another way, any ation ofM onH is unitarily equivalent to p(L2(M)⊗
ℓ2(N)) for some p ∈ (M ⊗ 1)′. dimM(H) is then the trae in (M ⊗ 1)′ wherethe trae is normalised so that tr(1 ⊗ q) = 1 for a rank one projetion in
B(ℓ2(N)).Simply by reduing by projetions in (M ⊗ 1)′ one obtains Hilbert spaeswhose M -dimension is any number in [0,∞].Trivial examples(i) dimM L2(M) = 1.(ii) dimM (L2(M) ⊗ ℓ2(N)) = ∞ 62



10.2 Elementary properties of dimM HTheorem 10.2.1. With notation as above,(i) dimM (H) <∞ i� M ′ is a type II1 fator.(ii) dimM (H) = dimM (K) i� M on H and M on K are unitarily equivalent(= spatially isomorphi).(iii) If Hi are (ountably many) M-modules,
dimM (⊕iHi) =

∑

i

dimM Hi.(iv) dimM (L2(M)q) = tr(q) for any projetion q ∈M .(v) If p is a projetion in M , dimpMp(pH) = trM(p)−1 dimM(H).For the next two properties we supposeM ′ is �nite, hene a type II1 fatorwith trae trM ′.(vi) If p is a projetion in M ′, dimMp(pH) = trM ′(p) dimM H.(vii) (dimM H)(dimM ′ H) = 1.Proof. Using an M -linear isometry u we see that M on H is unitarily equiv-alent to M on uu∗L2(M) ⊗ ℓ2(N). This makes (i) and (ii) obvious.To see (iii), hoose M -linear isometries ui from Hi to L2(M)⊗ ℓ2(N) andompose them with isometries so that their ranges are all orthogonal. Addingwe get an M -linear isometry u with uu∗ =
∑

uiu
∗
i . Taking the trae we aredone.For (iv), hoose a unit vetor ξ ∈ ℓ2(N) and de�ne u(v) = v ⊗ ξ. Then

uu∗ is JqJ ⊗ e where e is a rank one projetion.(v) Let us �rst prove the relation in the ase H = L2(M)q where q is aprojetion in M with q ≤ p.Then pxpΩ 7→ p(xΩ)p is a unitary from L2(pMp) to pL2(M)p whih inter-twines the left an right ations of pMp. Hene pMp on pL2(M)q is unitarilyequivalent to pMp on L2(pMp)q. So by (iv), dimpMp(pH) = trpMp(q) =
trM(p)−1trM(q) = trM(p)−1 dimM H.Now if H is arbitrary, it is of the form e(L2(M)⊗ ℓ2(N)) for e ∈ (M ⊗1)′.But e is the orthogonal sum of projetions all equivalent to ones as in (iv)with q ≤ p.(vi) We may suppose H = e(L2(M)⊗ℓ2(N)) soM ′ = e(JMJ⊗B(ℓ2(N))eand p de�nes the isometry in the de�nition of dimM(pH). But p is a proje-tion less than e in a II∞ fator so by uniqueness of the trae, dimM (pH) =
tr(M⊗1)′(p) = tr(M⊗1)′(p)/tr(M⊗1)′(e) dimM(H) = trM ′(p) dimM(H).63



(vii) Observe that, on L2(M), dimM (H) dimM ′(H) = 1 so by (v) and(vi) the result is true for M -modules of the form L2(M)p. Also if one forms
K = ⊕k

i=1H then dimM⊗1(K) = k dimH and dim(M⊗1)′ K = k−1 dimM ′ by(v). But any H an be obtained from L2(M) as ⊕k
i=1L

2(M)p for suitable kand p.Example 10.2.2. If Γ0 < Γ are i groups, vN(Γ0) ats on ℓ2(Γ). And if γ ∈
Γ the unitary ρ(γ) of the right regular representation gives a vN(Γ0)-linearunitary between ℓ2(Γ0) and ℓ2(Γ0γ

−1). Hene by the oset deomposition,
dimvN(Γ0)(ℓ

2(Γ)) = [Γ : Γ0].Example 10.2.3. (Due to Atiyah and Shmidt.)Disrete series representations of loally ompat groups.Redution by a �nite projetion in the ommutant of a type II1 fatorours in the representation theory of loally ompat groups. If a disreteseries representation is restrited to an i lattie it generates a type II1fator. The oupling onstant is given by the ratio of the �formal dimension�and the ovolume of the lattie.We illustrate in the ase of PSL(2,R) whih is the group of transforma-tions of the upper half plane H = {z ∈ C : Im(z) > 0}, z 7→ az + b

cz + d
de�nedby invertible real 2×2 matries ( a bc d ). It is well known that there is a funda-mental domain D for the ation of the subgroup Γ = PSL(2,Z) illustratedbelow:DO FIGUREThe set D and all its translates under PSL(2,Z) over H and are disjointapart from boundaries whih are of Lebesgue measure 0. Thus if µ is aninvariant measure equivalent to Lebesgue measure, L2(H, dµ) gives a unitaryrepresentation of Γ whih is unitarily equivalent to the left regular repre-sentation tensored with the identity on L2(D, dµ), making L2(H, dµ) into a

vN(Γ)-module whose vN(Γ) dimension is in�nite.The measure dxdy

y2
is Γ-invariant but we want to vary this proedureslightly. For eah n ∈ N onsider dxdy

y2−n . This measure is not invariant butwe an make the ation of PSL(2,R) unitary on L2(H,
dxdy

y2−n ) by the formula
( a bc d ) f(z) =

1

(cz + d)n
f(
az + b

cz + d
)(with perhaps an inversematrix...�exerise as usual). This hanges noth-ing as far as how the representation looks to PSL(2,Z) so we obtain (unitarily64



equivalent) vN(Γ)-modules Hn = L2(H,
dxdy

y2−n ) for eah n.The ommutant of vN(Γ) on Hn is a II∞ fator. But as is well known,holomorphi funtions form a losed subspae of L2 funtions whih is mani-festly invariant under PSL2(R). The ensuing unitary representation is knownto be irreduible and in the disrete series of PSL2(R). It an be shown to bea �nite projetion in Γ′. Thus we have a onrete example of a vN(Γ)-modulewith �nite vN(Γ)-dimension or oupling onstant.In general, if G is a loally ompat group with Haar measure dg, thedisrete series representations are preisely those irreduible unitary repre-sentations π that are diret summands of the left regular representation on
L2(G, dg). So if Γ is a disrete subgroup with a fundamental domain D sothat G is overed by the γ(D) whih are disjoint up to measure zero sets,we may apply the same analysis as above to obtain a vN(Γ) module. Theobvious question is to alulate its oupling onstant. This turns out to bequite simple beause of a key property of disrete series representations.See [ref robert℄ for the proof that ifH is a Hilbert spae a�ording a disreteseries representation π of G, then the funtions g 7→ 〈πgξ, η〉, the so-alledoe�ients of π are in L2(G, dg). We may then imitate the usual proedurefor �nite or ompat groups embeddingH in L2(G, dg). And the usual Shurorthogonality of the oe�ients of a representation yields a number dπ suhthat

dπ

∫

G

〈πgξ, η〉〈η′, πgξ′〉dg = 〈ξ, ξ′〉〈η′, η〉.If G is ompat and Haar measure is normalized so that G has measure 1, dπis the dimension of the vetor spae H. In general dπ depends on the hoieof Haar measure but obviously the produt of dπ with the ovolume ∫
D
dgdoes not. The oe�ients give an expliit embedding of H in L2(G, dg) anda straightforward alulation of the trae of the projetion onto the image of

H in vN(Γ)′ yields immediately the formula
dimvN(Γ)(H) = dπ covolume(Γ).The detailed alulation from this point of view an be found in [1℄ pp. 142-148.Proposition 10.2.4. If M is a type II1 fator on H then(a) M has a separating vetor if dimM(H) ≥ 1.(b) M has a yli vetor if dimM(H) ≤ 1.Proof. Both assertions follow immediately by omparing H to L2(M)p or adiret sum of opies of it. 65



In fat both onditions in the last proposition are i�. For that one needsto ontrol arbitrary vetors in L2(M). In fat the original de�nition of theoupling onstant by Murray and von Neumann was as follows. LetM on Hbe a type II1 fator whose ommutant is a type II1 fator. Choose any nonzerovetor ξ ∈ H and let p and q be projetions onto the losures of Mξ and
M ′ξ respetively. Then p ∈ M ′ and q ∈ M and using the normalised traesthe oupling onstant was de�ned as the ratio trM(q)

tr′M(p)
, the hard part beingto show that this ratio is independent of ξ. Assuming this last statementit is trivial to identify the Murray-von Neumann oupling onstant with our

dimM (H) but at this stage we have nothing to o�er in the way of a simpli�edproof of why this number does not depend on ξ.Example 10.2.5. (due to M. Rie�el) If (X,µ) is a measure spae and Γ isa ountable group ating by measure preserving transformations on (X,µ)so that Γ ats by unitaries uγ on L2(X,µ) in the obvious way. We say thata measurable subset D ⊆ X is a fundamental domain for Γ if X = ∪γγ(D)and µ(Dγ(D)) = 0 for all γ ∈ Γ, γ 6= id. (One may learly suppose the
γ(D) are disjoint by removing a set of measure zero.) In this situation theabelian von Neumann algebra L∞(X)Γ of Γ-invariant L∞ funtions may beidenti�ed with the spae L∞(D).Now suppose Γ and Λ are two groups ating on X as above with funda-mental domains D and E respetively. We may onsider the von Neumannalgebra MΓ,Λ on L2(X,µ) de�ned as {{uγ : γ ∈ Γ} ∪ L∞(X)Λ}′′.
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Chapter 11The Crossed Produtonstrution.Perhaps the most useful way of produing von Neumann algebras from othersis the rossed produt. In pure algebra, if G is a group ating by automor-phisms on an algebra A we form the vetor spae of �nite formal sums
∑

g∈G
agugwith the ag ∈ A. We multiply the sums with the rules uguh = ugh (and

u1 = 1) and ugau−1
g = g(a) reminisent of the semidiret produt of groups-we use the notation A⋊G for this algebra, alled the "rossed produt". Itis obviously universal for "ovariant representations", i.e. whenever A atson a vetor spae V and g → vg is a representation of G on V with vgavg−1then the ation of A extends to one of A⋊G with ug ating via vg.From our experiene with group algebras we expet the von Neumannalgebra version to be neither so simple nor universal (for an i group, almostno group representations extend to the von Neumann algebra).We begin by de�ning a very general notion of von Neumann algebrairossed produt about whih there is not a lot to say, but then examine itarefully in speial ases.11.1 Group ations.Let M be a von Neumann algebra and G a group. An ation of G on Mis a homomorphism g 7→ αg from G to the automorphism group AutM of

M (where automorphisms may be assumed ultraweakly ontinuous if nees-sary). The algebra of �xed points for the ation is denoted MG and is a von67



Neumann algebra. A speial ase of some importane is when the ation is aunitary group representation g 7→ ug with ugMu∗g = M ∀g ∈ G. In that asesetting αg(x) = ugxu
∗
g de�nes an ation of G on M (and M ′). We say thatthe ation α is implemented by the unitary representation ug. If the ug areatually in M , we say that the ation is inner as an inner automorphism of

M is by de�nition one of the form Adu(x) = uxu∗ for u a unitary in M . Anautomorphism is alled outer if it is not inner.Ations are not always implementable though the notion depends on theHilbert spae on whih M ats.Exerise 11.1.1. If (X,µ) is a measure spae and T is a bijetion of Xwhih preserves the measure lass of µ (i.e. µ(A) = 0 ⇔ µ(T−1(A)) = 0.)show how T de�nes an automorphism αT of L∞(X,µ). Show further thatthis automorphism is implemented by a unitary u on L2(X,µ).A bijetion T as above is alled ergodi if T (A) = A for a measurablesubset A ⊆ X implies either µ(A) = 0 or µ(X \ A) = 0.Proposition 11.1.2. With notation as above T is ergodi i� the only �xedpoints for αT are onstant funtions.Proof. (⇒) Let f ∈ L∞ and αT (f) = f . After throwing away a null set wemay assume that f(x) = f(T (x)) for all x ∈ X. Then for every ǫ > 0, bythe de�nition of the essential supremum, µ({x : ||f || − |f(x)| < ǫ} 6= 0. Butthis set is invariant under T so it is equal to X up to a set of measure 0.Letting ǫ tend to 0 we see that µ({x : |f(x)| 6= ||f ||}) = 0. So we may assume
f(x) = eig(x) for some measurable g taking values in [0, 2π). Repeating theargument for g gives f onstant almost everywhere.(⇐) If A is a measurable invariant set then its harateristi funtion is�xed by α in L∞ i� A is invariant.Exerise 11.1.3. Let σx = ( 0 1

1 0 ), σy = ( 0 −i
i 0 ) and σz = ( 1 0

0 −1 ) be the Paulispin matries. Show that Adux, Aduy and Aduz de�ne an ation of thegroup Z/2Z ⊕ Z/2Z on the two by two matries whih is not implementablefor M2(C) on C2.Exerise 11.1.4. Show that any group ation is implementable for a typeII1 fator in standard form and more generally any automorphism group pre-serving a faithful normal state is implementable in the GNS representation.Exerise 11.1.5. Show that every automorphism of B(H) is inner.Exerise 11.1.6. Show that the automorphism of vN(F2) oming from thegroup automorphism whih exhanges the 2 generators is outer.68



If G is a topologial group there are many possible notions of ontinuity.The most useful is that of pointwise *-strong onvergene, i.e. we assume thatthe map g 7→ α(g)(x) is *-strong ontinuous for any x ∈M . Typially manyother notions of ontinuity will be equivalent to that and even a measurabilityassumption an be enough to ensure this ontinuity.We will always assume pointwise *-strong ontinuity when referring to anation of a topologial group.Exerise 11.1.7. Is the ation by translation of R on L∞(R) pointwise normontinuous? pointwise strongly ontinuous? pointwise *-strong ontinuous?Ations of a given group on von Neumann algebras are easy to onstrutbut ations of a group on a given von Neumann algebra may be hard to omeby.De�nition 11.1.8. An ation of G on M is said to be ergodi if MG = Cid.Exerise 11.1.9. Show that if G ats preserving µ on (X,µ) then the re-sulting ation of G on L∞(X,µ) is ergodi i� the only measurable subsets
A ⊆ X whih satisfy µ(g(A)∆A) = 0 ∀g ∈ G satisfy either µ(A) = 0 or
µ(X \ A) = 0.(Here A∆B means A \B ∪ B \ A.)The following question is an intriguing open problem:Does SU(3) have any ergodi ation on a type II1 fator?It is shown in [℄ that SU(2) has no suh ation and it is shown in [℄ thatif a ompat group ats ergodially on a von Neumann algebra then that vonNeumann algebra has a faithful normal trae.11.2 The rossed produtSuppose α is an ation of the loally ompat group G with Haar measure
dg on the von Neumann algebra M with Hilbert spae H. Form the Hilbertspae K = L2(G,H) = L2(G) ⊗ H and let G at on K by ug = λg ⊗ 1, λbeing the left regular representation. Further, let M at on K by

(x̃f)(g) = αg−1(f(g)).Exerise 11.2.1. Show that x 7→ x̃ is an ultraweakly ontinuous *-isomorphismof M onto a von Neumann subalgebra of B(K).69



Exerise 11.2.2. Show that ugx̃u∗g = α̃g(x).Note that this gives another way of making a group ation implementable,at least when it is loally ompat.De�nition 11.2.3. If M , H, G and α are as above, the rossed produt
M ⋊α G is the von Neumann algebra on K generated by {ug : g ∈ G} and
{x̃ : x ∈M}.>From now on we will drop the ˜ and identify M with M̃ . Note that�nite linear ombinations ∑g xgug form a dense *-subalgebra of M ⋊α G.Moreover the ug are linearly independent overM in the sense that∑g xgug =
0 ⇒ xg = 0 for eah g in the sum. This dense subalgebra ould be alled thealgebrai rossed produt.There is a well-developed theory ofM⋊αG when G is ompat or abelian,but we shall be mostly interested in the ase where G is disrete as then wemay replay the matrix element game that we played for vN(Γ) to gain ontrolof weak limits of elements in the algebrai rossed produt. (In fat of ourse
vN(Γ) is the speial ase of the rossed produt whenM = C and the ationis trivial.) Indeed we see immediately as in 3.3.4 that if G is disrete, anyelement ofM⋊αG de�nes a funtion g 7→ xg so that the sum∑g xgug standsfor a ertain matrix of operators on K = H⊗ ℓ2(G). Moreover any matrix ofthis form whih de�nes a bounded operator onK is inM⋊αG. This is beausethe sum onverges pointwise at least on the dense set of funtions of �nitesupport from G to H. In the ase where the rossed produt is a II1 fatorwe know that the ommutant onsists of right multipliation by elements of
M ⋊α G so a weakly dense subalgebra of (M ⋊α G)′ preserves this densesubspae of vetors and on that subspae ∑g xgug and right multipliationby ug and x ∈M ommute. We will return to the general ase later on.Moreover the formulae

(
∑

xgug)
∗ =

∑

αg(xg−1)ugand
(
∑

xgug)(
∑

ygug) =
∑

g

{
∑

h

xhαh(yh−1g)}ugare justi�ed by matrix multipliation.We shall now provide some su�ient onditions for M ⋊α G to be afator�always assuming G is disrete.De�nition 11.2.4. An ation α of G on M is alled outer if the only g in
G for whih αg is inner is the identity.70



Proposition 11.2.5. If G is a disrete group and α is an outer ation of Gon the fator M then M ⋊α G is a fator with M ′ ∩M ⋊α G = C1.Proof. If x =
∑

xgug ∈ Z(M) then equating oe�ients in the expressionthat x ommutes with M gives us yxg = xgαg(y) ∀y ∈ M ,g ∈ G. By thenext lemma this implies xg = 0 for any g 6= 1. Thus x ∈ M . Sine M is afator we are done.Lemma 11.2.6. Let α ∈ AutM for a fator M . Suppose there is an x ∈M ,
x 6= 0, with

yx = xα(y) ∀ y ∈M.Then α is inner.Proof. If x were unitary this would be obvious. So take the adjoint of therelation to obtain x∗y = α(y)x∗ ∀y ∈ M . Thus yxx∗ = xα(y)x∗ = xx∗yand xx∗ ∈ Z(M). Similarly x∗x ∈ Z(M). But xx∗ and x∗x always havethe same spetrum so sine M is a fator both xx∗ and x∗x are equal to thesame positive number λ. Dividing by √
λ onverts x into a unitary and weare done.These two results prompt the following de�nition.De�nition 11.2.7. An automorphism α of a von Neumann algebra M isalled free if

yx = xα(y) ∀ y ∈M ⇒ x = 0.An ation α is alled free if αg is free for every g 6= id.The argument of proposition 11.2.5 shows in fat that if α is a free ationon a von Neumann algebra M then Z(M⋊αG) ⊆M , in fat that M ′∩M ⋊α

G ⊆M .Theorem 11.2.8. If α is a free ergodi ation of G on a von Neumannalgebra M , then M ⋊α G is a fator.Proof. This follows immediately from the preeding remark.To understand the meaning of freeness for automorphisms of the form
αT we need to make a hypothesis on (X,µ) as otherwise one ould envisagea T whih is non-trivial on X but for whih αT is the identity. So we willsuppose from now on that (X,µ) is ountably separated. This means thereis a sequene Bn of measurable sets with µ(Bn) > 0 for whih, if x 6= y, thereis an n with x ∈ Bn but y /∈ Bn. Obviously Rn is ountably separated.Exerise 11.2.9. Show that αT = id means that Tx = x almost everywhere.71



Hint-look at the proof of the next result.Proposition 11.2.10. If T is a transformation of (X,µ) then αT is free i�
µ({x : T (x) = x}) = 0.Proof. (⇒)If A is any measurable set on whih T = id then χAf = αT (f)χAfor all f ∈ L∞.(⇐) First throw away any �xed points of T . Then suppose f1αT (f2) =
f2f1 ∀ f2 ∈ L∞. Let A be the support of f1. Then sine T has no �xedpoints, A = ∪n(A ∩ Bn \ T−1(Bn)). If f1 were non-zero in L∞, we ouldthus hoose an n for whih µ(A ∩ Bn \ T−1(Bn)) > 0. Set f2 = χBn. Thenfor any x ∈ A ∩ Bn \ T−1(Bn) we have f1(x)f2(x) 6= 0 but f1(x)f2(Tx) =
f1(x)χBn(Tx) = 0 sine x /∈ T−1(Bn). Thus f1αT (f2) 6= f2f1 in L∞. So themeasure of A must be zero.We onlude that if Γ is a ountable group ating freely and ergodiallyon a measure spae (X,µ), preserving the lass of µ, then the rossed produt
L∞(X,µ) ⋊ Γ is a fator.Note that if Γ is abelian, ergodi implies free.Exerise 11.2.11. Show that freeness of the ation atually proves that
L∞(X,µ) is maximal abelian in the rossed produt.The rossed produt M ⋊ Γ when M is abelian and Γ is disrete is alledthe group measure spae onstrution. Here are several examples.Example 11.2.12. X = Z, Γ = Z ating by translation, µ = ountingmeasure.The ation is free and ergodi and L∞(X,µ) ⋊ Γ = B(ℓ2(Z)).Example 11.2.13. The irrational rotation algebra-von Neumann algebraversion.

(X,µ) = (T1, dθ), Γ = Z generated by the transformation T where T (z) =
eiαz and α/2π is irrational.Exerise 11.2.14. Use Fourier series to show that this T is ergodi.Example 11.2.15. Let H be a �nite abelian group and Γ =

⊕

n∈N
H bethe ountable group of sequenes (hn) with hn eventually the identity. Put

X = G =
∏

n∈N
H (the set of all sequenes) with the produt topology.Then G is a ompat group so has a Haar measure µ. Γ ats on X by lefttranslation. The ation is learly free and ergodi as we shall now argue.There is a partiularly von Neumann algebrai way to view this examplewithout even onstruting the spae (X,µ) !72



Let A = L∞(H) = CĤ be the group algebra of the dual group Ĥ, with itsusual trae. As in setion 6.2, form the algebrai tensor produt ⊗alg,n∈NAwith produt trae tr. Then perform the GNS onstrution with respet to
tr to obtain an abelian von Neumann algebra. It may be identi�ed with
L∞(G, µ) so the Hilbert spae H of the GNS onstrution is L2(X,µ). But itis lear that an orthornormal basis of H is given by �nite sequenes (χn) ofelements of Ĥ whih de�ne elements χ1⊗χ2⊗· · ·⊗1⊗1⊗1 · · · in ⊗alg,n∈NA.The point is that these basis vetors are eigenvetors for the ation of Γ on
L2(X,µ):

(hn)(χ1 ⊗ χ2 ⊗ · · · ⊗ 1 · · · ) = (
∏

n

χn(hn)) χ1 ⊗ χ2 ⊗ · · · ⊗ 1 · · · .Ergodiity follows easily sine the only basis element whih is �xed by all the
(hn) is the one with all χn equal to 1.Exerise 11.2.16. Show that if H = Z/2Z in this example then the sub-algebra of the rossed produt generated by ⊗alg,n∈NA and Γ is the algebraiin�nite tensor produt of M2(C).Both of the last two examples are speial ases of a more general one:
X is a ompat group with its Haar measure and Γ is a ountable densesubgroup ating (freely) by left translation. The Peter Weyl theorem showsthat this ation is ergodi.Example 11.2.17. Bernoulli shift.If Γ is any in�nite group and A = Z/2Z we may form the tensor produtindexed by Γ of a opy of A for eah γ ∈ Γ. The von Neumann algebra thusobtained is one again the L∞ spae of the in�nite produt measure spae,this time with the set indexing the produt being Γ. As in the previousexample we an obtain a basis of L2 indexed by funtions from Γ to the set
{0, 1} whih are almost always 0. These funtions are the same as �nitesubsets of Γ and the ation of Γ on the Hilbert spae is by permuting thebasis in the obvious way. Ergodiity follows from the fat that the orbit ofany non-empty subset is in�nite.One ould also hose another trae than the usual one and modify theorthonormal basis of A aordingly. The measures are the obvious ones unlessspei�ed.We give a few more examples of free ergodi ations without supplyingproofs of ergodiity.Example 11.2.18. SL(2,Z) ats on T2 = R2/Z2 via the linear ation on
R2. 73



Example 11.2.19. PSL(2,Z) ats on R ∪ {∞} by linear frational trans-formations.Example 11.2.20. SL(2,Z) ats on R2 by linear transformations.Example 11.2.21. Q ats on R by translation.There are two fairly easy ways to see that this ation is ergodi. The �rstis to redue it to a dense subgroup of a ompat group by observing that an
L∞ funtion on R whih is invariant under translation by Z de�nes an L∞funtion on the quotient T. Then use Fourier series.The seond way is a diret attak whih should generalise to show thatbullshit translation by any ountable dense subgroup of a loally ompat group isergodi. If f ∈ L∞(R) is invariant under Q, set things up so that there aresets A and B both of nonzero measure, so that g(A) ∩ g(B) = ∅. Cover Aand B with intervals of the same width with rational endpoints. Some ofthese must interset A and B in non-nul sets. But all these intervals are alltranslates of eah other so g annot be invariant up to sets of measure zero.Example 11.2.22. The �ax+ b� group Q ⋊ Q∗ ats on RExample 11.2.23. Same as example 11.2.13 with H = Z/2Z but using anormalised trae on CH whih is di�erent from the usual one. Suh a trae isspei�ed by its values on the minimal projetions of CH whih we ould all
p and 1 − p for 0 < p < 1. The produt measure is not absolutely ontinouswith respet to Haar measure, and it is not preserved by group translationso this example is perhaps most easily approahed by the von Neumannalgebra onstrution where one an implement the ation of ⊕n∈N

Z/2Z byunitaries. These unitaries ome from ones on L2(H) whih exhange twopoints of unequal weight so they must be orretly saled.Exerise 11.2.24. Work out the details of example 11.2.23In the examples we see four di�erent kinds of free ergodi ations:Type I : Γ ats transitively.11.2.12Type II1 : Γ preserves a �nite measure. 11.2.13,11.2.15,11.2.17,11.2.18Type II∞ : Γ preserves an in�nite measure.11.2.20,11.2.21Type III : Γ preserves no measure equivalent to µ.11.2.19,11.2.22,11.2.2311.3 The type of the rossed produt.We adopt the notations and onventions of the previous setion. The map
Em : M ⋊αΓ →M whih assigns aid to the element∑γ∈Γ is destined to play74



a big role in the theory. It is alled the onditional expetation onto M andobviously satis�es the following ontitions:(i) E2
M = EM .(ii) EM (x)∗ = EM(x∗), EM (1) = 1, EM (x∗x) = 0iffx = 0.(iii) EM (x∗x) ≥ EM(x∗)EM(x), ||E(x)|| ≤ ||x||.(iv) EM (axb) = aEM (x)b for a, b ∈M .(v) EM is ultraweakly ontinuous.So EM is a projetion of norm one in the Banah spae sense. Theondition (iv) says that EM is an M −M -bimodule map.Theorem 11.3.1. If Γ ats non-transitively, freely and ergodially, preserv-ing the �nite measure µ then L∞(X,µ) ⋊ Γ is a II1 fator. If Γ preserves thein�nite σ-�nite measure µ then L∞(X,µ) ⋊ Γ is a II∞ fator unless Γ atstransitively in whih ase L∞(X,µ) ⋊ Γ is type I.Proof. (i) It is learer to prove a more general statement (in the ase where

Γ preserves µ and µ(X) = 1). So suppose Γ preserves the faithful positiveultraweakly ontinuous trae tr on the von Neumann algebra A and that itsation is free and ergodi. Then we laim M = A ⋊ Γ is a type II1 fator(or a �nite dimensional fator). By previous results we need only show thatit has an ultraweakly ontinous positive trae. So de�ne Tr = tr ◦ EA on
M . Ultraweak ontinuity and positivity are obvious so by ontinuity andlinearity it su�es to prove Tr(auγbuη) = Tr(buηauγ). For either side ofthe equation to be non-zero means η = γ−1 amd then the left hand side is
tr(aαγ(b)) = tr(α−1

γ (aαγ(b))) = tr(bα−1(a)) whih is equal to Tr(buηauγ).(ii) If µ is in�nite and Γ does not at transitively then there are noatoms hene there are subsets Y of X of arbitrary positive measure. Let
Y have �nite non-zero measure and let ξ be the funtion ξ(γ) = δγ,id χY .Then 〈auγξ, ξ〉 = ωξ(auγ) = δid,γ

∫

Y
a(x)dµ(x). One easily heks that

ωξ((pauγp)(pbuηp)) = ωξ((pbuηp)(pauγp)) so by 3.4.6 ωξ de�nes a positiveultraweakly ontinuous trae on p(A ⋊ Γ)p whih is a type II1 fator. But
A ⋊ Γ is not itself a type II1 fator sine A ontains an in�nite family ofequivalent mutually orthogonal projetions. By 9.1.8 we are done.(iii) If Γ ats transitively then (X,µ) = (Γ, ounting measure) and theharateristi funtion of a set with one element is a minimal projetion in
L∞(X,µ) ⋊ Γ.Exerise 11.3.2. If Γ ats ergodially on (X,µ) preserving the σ-�nite mea-sure µ then any other invariant equivalent measure is proportional to µ.We now want to show that there are fators that are neither of type I nortype II . Suppose thatM = L∞(X,µ)⋊Γ is a type I or II fator. Then it has75



a trae tr : M+ → [0,∞]. We would like to de�ne an invariant measure on X,absolutely ontinous with respet to µ, by reversing the proedure of theorem11.3.1 and de�ning the measure σ(A) to be tr(ξA) (ξA ∈ L∞(X,µ) ⊆ M).Invariane of the measure σ is no problem. The snag is that tr(χA) ould bein�nite for every non-null set A. We will show that this is not the ase. Tothis end the onept of lower semiontinuity will be useful.De�nition 11.3.3. If X is a topologial spae we say that f : X → R islower semiontinous if for every x ∈ X and ǫ > 0 there is an open set U ⊆ Xsuh that f(u) > f(x) − ǫ for all u ∈ U .Exerise 11.3.4. Prove that if f is lower semiontinous then(a)f−1((−∞, K])) is losed for every K ∈ R.(b)f attains its minimum on any ompat subset of X.Exerise 11.3.5. If H is a Hilbert spae and ξ ∈ H, the funtion a 7→ ||aξ||from B(H) to R is weakly lower semiontinuous.Exerise 11.3.6. If fα are lower semiontinous then ∨αfα is lower semi-ontinous if it exists.Lemma 11.3.7. Let M be a type I or II fator and tr : M+ → [0,∞] be
Trace in type I, as in 9.1.9 in type II∞ and the trae in type II1. Then foreah K ≥ 0, M1,K = {x : tr(x∗x) ≤ K} is weakly ompat.Proof. Clear in the II1 ase. In a deomposition M ∼= N ⊗ B(ℓ2(N)) on Hwith N a type II1 fator or C we may assume by 10.2.4 that there is a vetor
ξ ∈ e11H with ωξ a trae on e11Me11. So if ξi = ei1ξ we have, up to a salar,that

tr(x) =

∞
∑

i=1

〈xξi, ξi〉.By the previous exerises and weak ompatness of the unit ball, we aredone.Proposition 11.3.8. With notation as above, for x ∈M1,K let W (x) be theweak losure of the onvex set of �nite sums {∑i λiuixu
∗
i :
∑

i λi = 1, λi >
0, ui unitary in L∞(X,µ)}. Then W (x) ⊆ M1,K and if φ(y) = tr(y∗y) for
y ∈W (x) then φ attains its minimum at a unique point E(x) of W (x).Proof. Note �rst that {z ∈ M : tr(z∗z) < ∞} is a vetor spae on whih
||z|| = tr(z∗z) de�nes a prehilbert spae struture. (Sine (a + b)∗(a + b) ≤
2(a∗a+b∗b) as operators, and the parallelogram identity passes to the poten-tially in�nite sum de�ning tr.) Moreover W (x) is a weakly ompat subsetof M so by lower semiontinuity φ attains its minimum at a point whih isunique by two dimensional Eulidean geometry as in 2.1.2.76



Proposition 11.3.9. Suppose thatM = L∞(X,µ)⋊Γ is a type I or II fatorfor a free ergodi ation of Γ on L∞(X,µ). Let tr be as above and p be aprojetion in M with tr(p) <∞. Then
E(p) = EL∞(X,µ)(p)and 0 < tr(E(p)2) ≤ tr(p).Proof. Let E = EL∞(X,µ). By the uniqueness of E(p) it ommutes with everyunitary in L∞ so it is in L∞ by 11.2.11. On the other hand E(y) = E(p)for all y ∈ W (p) by the bimodule linearity of the onditional expetationand its ultraweak ontinuity. So E(E(p)) = E(p) = E(p). But φ(E(p) ≤

φ(p) = tr(p)∞. Finally E(p) = E(p2) whih is a positive non-zero self-adjoint operator and hene has non-zero trae.Theorem 11.3.10. Let Γ at freely and ergodially on the ountably sepa-rated σ-�nite measure spae (X,µ) so that there is no σ-�nite Γ-invariantmeasure on X absolutely ontinuous with respet to µ. Then L∞(X,µ) ⋊ Γis a fator not of type I or II.Proof. If the rossed produt were of type I or II, de�ne the measure ρ on
X by ρ(A) = tr(χA). By the previous result ρ(A) would have to be �niteand non-zero for some A sine the L∞ funtionf = E(p)2 must dominate amultiple of χA for some A (e.g. let A be those x with f(x) su�iently loseto ||f ||). But then by ergodiity X = ∪γ∈Γγ(A) (up to null sets) so that ρis σ-�nite. It is automatially absolutely ontinuous wrt µ. Invariane of ρunder Γ follows from tr(uγxu

−1
γ ) = tr(x) for x ≥ 0.De�nition 11.3.11. A fator not of type I or II is alled a type III fator.Example 11.2.22 provides a type III fator sine the subgroup Q atsergodially so the only possible invariant measure is a multiple of dx byexerise 11.3.2 and this is not invariant under multipliation!Note that the above tehnique works in somewhat greater generality thanations of groups on measure spaes.Exerise 11.3.12. Adapt the proofs of the results just obtained to show that

M ⋊α Z is a type III fator if the ation α is generated by a single automor-phism of the II∞ fator saling the trae by a fator λ 6= 1.11.4 A wrinkle: 2-ohomology.In a purely algebrai setting it is possible to "twist" the rossed produtonstrution with a 2-oyle. So suppose G (with identity 1) ats on the77



unital algebra A. Call C the abelian group of entral invertible elements of
A and let µ : G×G→ Cbe a funtion satisifying11.4.1.

µ(g, h)µ(gh, k) = αg(µ(h, k))µ(g, hk)Then one may de�ne the algebra A⋊α,µ of formal (�nite) sums as for therossed produt but with multipliation de�ned by (aug)(buh) = aαg(b)µ(g, h)ugh.Then the oyle ondition ensures that this multipliation is assoiative.(The same twisiting is possible for the semidiret produt of groups.) Inorder for u1 to be the identity for this algebra we need the normalisationondition µ(1, g) = 1 = µ(g, 1) ∀g ∈ G. It also helps things along if weassume further that µ(g, g−1) = 1.Note immediately that suh a oyle an dramatially alter the rossedprodut. The simplest ase of this is for a �nite abelian group G with thealgebra M just being C. Then if µ : G × G → T1 is antisymmetri andbilinear (thinking additviely), it satis�es the oyle ondition 11.4.1 withtrivial ation.Exerise 11.4.2. Find a bilinear µ as above on G = Z/nZ×Z/nZ for whih
C ⋊µ G is isomorphi to Mn(C).This makes the µ-twisted rossed produt quite di�erent from the un-twisted one, whih is abelian.A trivial way to obtain 2-oyles is to de�ne µ(g, h) = ν(g)αg(ν(h)) forsome funtion ν : G → C. Suh a oyle is alled a oboundary and thetwisted rossed produt by a oboundary an be untwisted by multiplying the
ug's by ν(g)−1 to obtain an isomorphism with the untwisted rossed produt.The 2-oyles form a group under pointwise multipliation and the obound-aries are a subgroup. The quotient is alled the seond ohomology group
H2(G,C).To make sense of this in the von Neumann algebra setting one begins withthe data for the usual rossed produt, namely a von Neumann algebra M on
H with an ation α of the disrete group G onM . The 2-oyle will then bea funtion µ from G×G to the unitary group of Z(M) satisfying 11.4.1 andnormalisation onditions. One then lets M at on ℓ2(G,H) as for the usualrossed produt but one de�nes unitaries (ugf)(h) = µ(g, h)f(g−1h) insteadof the left regular representation.Exerise 11.4.3. Find out the orret version of this formula so that theoyle ondition implies uguh = µ(g, h)ugh.De�nition 11.4.4. The twisted rossed produt M⋊α,µ is the von Neumannalgebra on ℓ2(G,H) generated by M and the ug de�ned above.78



One may also onsider twistings by non-entral elements but then one isled into ations modulo inner automorphisms and the oyles do not forma group.11.5 More on the group-measure spae onstru-tion A⋊G, A = L∞(X, µ).If G is a ountable disrete group ating freely on the probability spae
(X,µ) preserving µ we may identify the Hilbert spae of the rossed produt,
ℓ2(G,L2(X,µ)) in the obvious way with H = L2(X ×G) (with the produtof ounting measure and µ).The operators a ∈ L∞(X,µ) and ug de�ning the rossed produt thenat on L2(X ×G) as follows:

(af)(x, h) = a(hx)f(x, h), and (ugf)(x, h) = f(x, g−1h)The funtion 1(h, x) = δh,e is a yli and separating trae vetor for
A⋊G whih is thus embedded in H as follows:If a =

∑

g

agug then (a1)(x, h) = ah(hx).So if b =
∑

g bgug we have, using this embedding,11.5.1.
(ab)(x, h) =

∑

g

ag(hx)bg−1h(g
−1hx)Moreover sine the ation is free we may identify G × X with a subset,neessarily measurable, of X×X via (x, g) 7→ (x, gx). This subset is nothingbut the graph Γ(∼) of the equivalene relation on X de�ned by the orbitsof G : x ∼ y i� y = gx for some (unique) g ∈ G.. Thus eah element

a =
∑

g agug ∈ A ⋊ g de�nes a funtion on Γ(∼) by a(x, y) = ah(hx) for
y = hx. This all sounds like abstrat nonsense until one observes that themultipliation 11.5.1 beomes11.5.2.

(ab)(x, y) =
∑

z∼x
a(x, z)b(z, y)from whih the group ation has disappeared and been replaed entirelyby the orbits it de�nes! In partiular if G1 and G2 are ountable disrete79



groups ating freely on (X1, µ1) and (X2, µ2) respetively then any measur-able isomorphism fromX1 toX2 whih sends the orbits forG1 to the orbits for
G2 will de�ne an isomorphism between L∞(X1, µ1)⋊G1 and L∞(X2, µ2)⋊G2.The graphs of these equivalene relations an be interesting subsets of
X×X. Here is a piture giving �ve points in the equivalene lass [x] for all
x in the ase of the irrational rotation by τ on the irle (whih is identi�edwith the interval [0, 2π]:

τ

{

{

τ

τ

τ

{{ {

τHere the horizontal dotted lines just denote the identi�ation of one pointwith another mod 2π. Clearly if one ontinued one would see that the graphof ∼ is dense in X ×X.This led to the development of the now obvious notion of orbit equiva-lene of ations of groups whih is outside von Neumann algebras. The �rstmajor result was that of Dye [℄ whih states that two ergodi measure pre-serving ations of Z are orbit equivalent. This was extended to ations ofamenable groups in [℄ and to non measure-preserving ations in [℄. Perhapsnot surprisingly, the IIIλ lassi�ation of Connes is reprodued.Another development whose motivation is lear from the above is thatof the study of measurable equivalene relations with ountable orbits. The80



de�nitive treatment is that of Feldman and Moore ([℄,[℄). They onstrut avon Neumann algebra from a suitably measurable equivalene relation ∼ on
(X,µ) with the property that the equivalene lasses are all ountable. Theygive Γ(∼) the measure oming from ounting measure vertially and µ hori-zontally and onsider the Hilbert spae L2(Γ(∼)). Funtions on Γ(∼) whihhave �nite vertial support for eah x ∈ X form a *-algebra under the mul-tipliation 11.5.2. This algebra ats on L2(Γ(∼)) and the "rossed produt"is the von Neumann algebra generated by this algebra. Everything is donein great generality so the type III ase is also overed. There are notions ofmeasure-lass preserving, measure-preserving and ergodi for equivalene re-lations, and even a notion of 2-ohomology whih allows one to do a twistedversion.Tehnially, everything depends on being able to show that the graphof the equivalene relation admits measurable loal setions so that it lookssomewhat like our piture for the irrational rotation. In partiular Feldmanand Moore show that any of their equivalene relations is in fat the orbitspae for a group. It was open for a long time as to whether that group ouldbe assumed to at freely but a ounterexample was found in [℄. (Note thatequivalene relations behave well with respet to restriting to subsets whihgives them an advantage over group ations.)In [℄, Connes vastly extended the equivalene relation onstrution sothat it works in the ontext of "measured groupoids" where the equivalenelasses are not neessarily disrete and the ordered pair (x, y) is generalisedto a morphism from the objet x to the objet y. As his main new example,Connes used smooth foliations where the morphisms are holonomy lasses ofsmooth paths joining two points in a leaf. The leaves in a foliation (suhas the �ow lines of a vetor �eld) an exhibit ergodi properties whih makeConnes' von Neumann algebra into a fator.11.6 The normaliser-the full group.How muh of G and its ation on M an be reovered fromM inside M ⋊Gfor a free ation? One thing that is anonially de�ned is the normaliser
N (M) = {u unitary in M ⋊ G|uMu∗ = M} This group obviously ontainsthe unitary group U(M) as a normal subgroup. There are two extremeases.(i) If M is a fator. Suppose u =

∑

g agug is in N (M), then there is anautomorphism β of M so that ux = β(x)u ∀x ∈M . That is
∑

g

agαg(x)ug =
∑

g

β(x)agug ∀x ∈M81



. So for eah g ∈ G we have agαgβ−1(x) = xag. By 11.2.6 there an be onlyone g for whih ag is di�erent from 0 and for that g, ag is unitary. We seethat the quotient N (M)/U(M) is in fat G itself. So we reover G and itsation (up to inner automorphisms) on M .(ii) If M = L∞(X,µ) the situation is di�erent and somewhat riher. Asbefore, if∑g agαg(x)ug ∈ N (M) there is a β suh that
∑

g

agαg(x)ug =
∑

g

β(x)agug ∀x ∈M.But now freeness is less strong. For a given g we have agαg(x) = β(x)ag forall x as before. Thus on the support of ag αg(x) = β(x) for all L∞ funtions
x. So if the support of ag and ah interset in a set of non-zero measurethen, arguing as in 11.2.10 the transformations de�ned by g and h wouldagree on that set whih is not allowed by freeness. After throwing awaysets of measure zero we may thus onlude that the supports of the ag's aredisjoint ! Moreover sine ∑g agαg(x)ug is unitary, ∑g aga

∗
g = 1 so that the

ag are all harateristi funtions of subsets Sg whih form a partition of X.And on Sg, the transformation determined by β agrees with αg.We thus have the remarkable struture of the transformations of X de-termined by N (L∞(X)):there is a partition of X into measurable subsets, on eah of whih thetransformation agrees with some element of G. It is just as lear from theabove alulation that suh a transformation is implemented by a unitary in
N (L∞(X)). Playing freely and easily with sets of measure zero we de�ne:De�nition 11.6.1. If G is a disrete group of automorphisms of L∞(X,µ),the full group of G is the group of all automorphisms T for whih there is apartition X =

⋃

g∈G Cg into disjoint sets with T = g on Cg.It is perhaps not immediately obvious that the full group ontains anyelements besides G itself. But ifG ats ergodially then every subset is spreadall over the plae so a maximality argument shows that one an extend anypartially de�ned element to an isomorphism. Note that the elements of thefull group preserve orbits under G. It an be shown that any orbit-preservingisomorphism of G is in the full group.82



Chapter 12Unbounded Operators andSpetral TheoryThere are many naturally arising examples of unbounded operators, someof the most fundamental being multipliation by x and di�erentiation, theposition and momentum operators of quantum mehanis. Our immediatemotivation for studying unbounded operators here is to failitate the studyof arbitrary von Neumann algebras ating on GNS Hilbert spaes. Here weestablish the neessary preliminaries on unbounded operators. The materiallosely follows Reed and Simon [2℄.12.1 Unbounded OperatorsDe�nition 12.1.1. An operator T on a Hilbert spae H onsists of a linearsubspae D(T ), the domain of T , and a linear map from D(T ) to H.Example 12.1.2.(i) Mx, multipliation by x on L2(R).
D(Mx) =

{

f ∈ L2(R) :

∫

R

x2|f(x)|2dx <∞
}

.(ii) T = d
dx

on L2([0, 1]). D(T ) = C1[0, 1].In order to do some analysis we want to restrit our attention a little soas not to onsider ompletely arbitrary linear maps.De�nition 12.1.3. Let T be an operator on H. The graph of T is
Γ(T ) = {(ξ, T ξ) : ξ ∈ D(T )} ⊂ H⊕H.

T is losed if Γ(T ) is losed in H⊕H.83



Remark 12.1.4. Note that if T is losed and D(T ) = H then T is boundedby the Closed Graph Theorem.Lemma 12.1.5. A linear subspae Γ ⊂ H ⊕ H is the graph of an operatori� (0, η) ∈ Γ implies η = 0.Proof. Straightforward.Many operators are not losed, but an be extended to a losed operator.De�nition 12.1.6. Let S, T be operators on H. T is an extension of S,denoted S ⊂ T , if Γ(S) ⊂ Γ(T ). Equivalently D(S) ⊂ D(T ) and T |D(S) = S.De�nition 12.1.7. An operator T is prelosed (or losable) if it has a losedextension.Lemma 12.1.8. Suppose T is prelosed. Then T has a smallest losed ex-tension T . Γ(T ) = Γ(T ).Proof. Take a losed extension A of T . Γ(A) is losed and ontains Γ(T ) so
Γ(T ) ⊂ Γ(A). Γ(T ) is the graph of an operator (all it T ) beause:

(0, η) ∈ Γ(T ) ⊂ Γ(A) ⇒ η = A(0) = 0.

T is the smallest losed extension beause for all losed extensions A, Γ(T ) =
Γ(T ) ⊂ Γ(A).De�nition 12.1.9. T is alled the losure of T .Remark 12.1.10. We thus obtain two equivalent de�nitions of a prelosedoperator:(i) (0, η) ∈ Γ(T ) ⇒ η = 0.(ii) (ξn ∈ D(T ), ξn → 0 and Tξn onverges) ⇒ Tξn → 0.Exerise 12.1.11.(i) De�ne S on L2(R) by D(S) = C∞

0 (R) (in�nitely di�erentiable funtionswith ompat support), Sf = f ′. Show that S is prelosed.(ii) De�ne T from L2(R) to C by D(T ) = L1(R) ∩ L2(R), T (f) =
∫

R
f .Show that T is not prelosed.De�nition 12.1.12. Suppose T is a losed operator. A ore for T is a linearsubspae D0 ⊂ D(T ) suh that T |D0

= T .84



We an perform basi arithmeti operations with (unbounded) operatorsas follows: S+T is the operator with domain D(S +T ) = D(S)∩D(T ) and
(S + T )ξ = Sξ + Tξ. ST is the operator with domain D(ST ) = {ξ ∈ D(T ) :
Tξ ∈ D(S)} and (ST )ξ = S(Tξ). Of partiular importane is the adjoint.De�nition 12.1.13. Let T be a densely de�ned operator on H. Let

D(T ∗) = {η ∈ H : ∃σ ∈ H suh that 〈Tξ, η〉 = 〈ξ, σ〉∀ξ ∈ D(T )}
= {η ∈ H : ∃C > 0 suh that |〈Tξ, η〉| ≤ C||ξ|| ∀ξ ∈ D(T )}.For ξ ∈ D(T ∗) note that the element σ is unique (by the density of D(T ))and de�ne T ∗ξ = η.Remark 12.1.14. Note that if S ⊂ T then T ∗ ⊂ S∗.Exerise 12.1.15. Give an example to show that the domain of the adjointneed not be dense. [In fat it an be {0}℄.Proposition 12.1.16. Let T be a densely de�ned operator. Then1. T ∗ is losed.2. D(T ∗) is dense i� T is prelosed. In that ase T = T ∗∗.3. If T is prelosed then (T )∗ = T ∗.Proof. Note that (η, σ) ∈ Γ(T ∗) i� < Tξ, η >=< ξ, σ > for all ξ ∈ D(T )i� < (−Tξ, ξ), (η, σ) >= 0. Hene

Γ(T ∗) = {(−Tξ, ξ) : ξ ∈ D(T )}⊥ = (uΓ(T ))⊥ = uΓ(T )⊥,where u : H⊕H → H⊕H is the unitary operator u(ξ, η) = (−η, ξ). Now:1. Orthogonal omplements are losed, hene Γ(T ∗) is losed.2. Γ(T ) = (Γ(T )⊥)⊥ = u∗Γ(T ∗)⊥, so
(0, ξ) ∈ Γ(T ) ⇔ (−ξ, 0) ∈ Γ(T ∗)⊥

⇔ 0 =< (−ξ, 0), (η, T ∗η) >= − < ξ, η > for all η ∈ D(T ∗)

⇔ ξ ∈ D(T ∗)⊥.Hene T is prelosed i� D(T ∗)⊥ = {0} i� D(T ∗) is dense.In that ase Γ(T ∗∗) = uΓ(T ∗)⊥ = u2Γ(T )⊥⊥ = −Γ(T ) = Γ(T ), so
T ∗∗ = T .3. T ∗ = T ∗ = T ∗∗∗ = (T )∗.De�nition 12.1.17. An operator T is symmetri if T ⊂ T ∗. Equivalently

< Tξ, η >=< ξ, T η > for all ξ, η ∈ D(T ). T is self-adjoint if T = T ∗. Aself-adjoint operator T is positive if < Tξ, ξ >≥ 0 for all ξ ∈ D(T ).85



12.2 Spetral Theory for Unbounded Opera-torsDe�nition 12.2.1. Let T be a losed operator on H. The resolvent of T is
ρ(T ) = {λ|λ1 − T : D(T ) → H is a bijetion}.The spetrum of T is σ(T ) = C\ρ(T ).Remark 12.2.2. Note that if λ1 − T : D(T ) → H is a bijetion then

(λ1 − T )−1 is bounded by the Closed Graph Theorem.Exerise 12.2.3. The spetrum is highly dependent on the domain. Let
AC [0, 1] denote the set of absolutely ontinuous funtions on [0, 1]. Let T1 =
d
dx
, T2 = d

dx
, with
D(T1) = {f ∈ AC [0, 1] : f ′ ∈ L2([0, 1])}
D(T2) = {f ∈ AC [0, 1] : f ′ ∈ L2([0, 1]), f(0) = 0}.Show that T1 and T2 are losed. Show that σ(T1) = C while σ(T2) = ∅.Proposition 12.2.4. Let (X,µ) be a �nite measure spae and F a measure-able, real-valued, a.e. �nite funtion on X. Let D(Mf ) = {g ∈ L2(X,µ) :

fg ∈ L2(X,µ)} and let Mfg = fg. Then Mf is self-adjoint and σ(Mf) =
ess.range(f) = {λ ∈ C : µ({x : |λ− f(x)| < ǫ}) > 0 ∀ǫ > 0}.Exerise 12.2.5. Prove Prop 12.2.4.Theorem 12.2.6 (Spetral Theorem - Multiplier Form). Let A be a self-adfoint operator on H with dense domain. Then there exists a �nite measurespae (X,µ), a real-valued a.e. �nite funtion f on X and a unitary operator
u : H → L2(X,µ) suh that uAu∗ = MfProof. See [2℄.Remark 12.2.7 (Borel Funtional Calulus). Note that the Spetral Theo-rem allows us to de�ne a Borel funtional alulus for self adjoint operators.Given a Borel funtion h on the spetrum of A, de�ne h(A) = u∗Mh◦fu.12.3 Polar DeompositionTheorem 12.3.1. Let A : H → K be a losed, densely de�ned operator.Then: 86



(i) A∗A and AA∗ are positive self-adjoint operators (hene (A∗A)1/2 and
(AA∗)1/2 exist).(ii) There exists a partial isometry with initial spae Range(A∗A)1/2 and�nal spae Range(A) and

A = v(A∗A)1/2.(iii) If A = uB for some positive B and partial isometry v with initial spae
Range(B) then u = v and B = (A∗A)1/2.(iv) In addition A = (AA∗)1/2v.Proof. (i) Sine Γ(A) is losed, it is a Hilbert spae. Let P : Γ(A) → H beprojetion onto the �rst omponent. Sine A is an operator Ker(P ) =
{0} and hene Range(P ∗) is dense in Γ(A) (so PP ∗H is a ore for A).Let ξ ∈ H, P ∗ξ = (η, Aη). Then, for all σ ∈ D(A),

< ξ, σ >=< P ∗ξ, (σ,Aσ) >=< η, σ > + < Aη,Aσ >

⇒ < ξ − η, σ >=< Aη,Aσ >

⇒ Aη ∈ D(A∗) and A∗Aη = ξ − η.Thus D(A∗A) ⊃ PP ∗H whih is a ore for A. In addition Range(A∗A+
1) = H.It is easy to see that A∗A is symmetri, so A∗A + 1 ⊂ (A∗A + 1)∗.Let ξ ∈ D((A∗A + 1)∗). Sine Range(A∗A + 1) = H there exists
ξ̃ ∈ D(A∗A + 1) with (A∗A + 1)∗ξ = (A∗A + 1)ξ̃(= (A∗A + 1)∗ξ̃).
Ker((A∗A + 1)∗) = {0} beause Range(A∗A + 1) = H, and hene
ξ = ξ̃ ∈ D(A∗A+1). Thus (A∗A+1)∗ = A∗A+1 and so (A∗A)∗ = A∗A.Finally, for ξ ∈ D(A∗A), < A∗Aξ, ξ >=< Aξ,Aξ >≥ 0 so A∗A ispositive, i.e. σ(A∗A) ⊂ [0,∞) (just use the Spetral Theorem).(ii) As we noted above, D(A∗A) is a ore for A. D(A∗A) is also a ore for
|A| = (A∗A)1/2 (use spetral theory). Thus AD(A∗A) = RangeA and
|A|D(A∗A) = Range|A|. Note that for ξ ∈ D(A∗A),

|||A|ξ||2 =< A∗Aξ, ξ >=< Aξ,Aξ >= ||Aξ||2,so that the map v : |A|ξ 7→ Aξ, ξ ∈ D(A∗A), extends to a partialisometry with initial spae |A|D(A∗A) = Range|A| and �nal spae
AD(A∗A) = RangeA. 87



For ξ ∈ D(|A|) take ξn ∈ D(A∗A) with (ξn, |A|ξn) → (ξ, |A|ξ). Then
Aξn = v|A|ξn → v|A|ξ and, as A is losed, ξ ∈ D(A) and Aξ = v|A|ξ.For ξ ∈ D(A) take ξn ∈ D(A∗A) with (ξn, Aξn) → (ξ, Aξ). Then

|A|ξn = v∗v|A|ξn = v∗Aξn → v∗Aξ.Sine |A| is losed, ξ ∈ D(|A|).Hene D(A) = D(|A|) and A = v|A|.(iii) If A = uB then A∗ = B∗u∗ = Bu∗. A∗A = Bu∗uB = B2 sine u∗u isprojetion onto Range(B). By uniqueness of the positive square rootof a positive operator (Exerise 12.3.3), (A∗A)1/2 = B. Thus the initialspae of u is Range(|A|) and u|A| = A = v|A| so u = v.(iv)A = v(A∗A)1/2 so A∗ = (A∗A)1/2v∗ and heneAA∗ = v(A∗A)1/2(A∗A)1/2v∗ =
v(A∗A)v∗ (Exerise 12.3.3). Thus v implements the unitary equivaleneof AA∗|Range(A) and A∗A|Range(A∗). Hene (AA∗)1/2 = v(A∗A)1/2v∗ andthen A = v(A∗A)1/2 = (AA∗)1/2v.Remark 12.3.2. Note that it was very important in (i) to establish that

D(A∗A) ontained a ore for A and hene was dense. It was not lear apriori that D(A∗A) ontained any elements other than 0.Exerise 12.3.3. (i) Let T be a positive operator. Show that T 1/2T 1/2 = T .(ii) Show that a positive operator has a unique positive square-root.12.4 Unbounded operators a�liated with a vonNeumann algebra.If M is a von Neumann algebra on H, an element a ∈ B(H) is in M i�
au = ua for every unitary in M ′. This inspires the following.De�nition 12.4.1. If T : D(T ) → H is a linear operator on the Hilbertspae H and M is a von Neumann algebra on H we say that T is a�liatedwith M , written TηM if, for any unitary u ∈M ′,

uD(T ) = D(T ) and
uTξ = Tuξ ∀ξ ∈ D(T ).88



Lemma 12.4.2. If T is prelosed with losure T then TηM if TηM .Proof. It is lear that TηM i� uΓ(T ) = Γ(T ) for all unitaries in M ′. Butthis property passes to the losure of the graph.Lemma 12.4.3. If T is a losed operator a�liated with M then1. The projetion onto Γ(T ) is a 2 × 2 matrix of operators in M .2. If T = u|T | is the polar deomposition of T then u ∈M and f(|T |) ∈Mfor any bounded Borel funtion of |T |.Proof. 1. is obvious from the haraterisation of a�liation given in theproof of the previous lemma.2. follows from uniqueness of the polar deomposition and the biommutanttheorem.
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Chapter 13Tomita-Takesaki theory.In hapter 9 we showed that the GNS onstrution on M using a faithfulnormal trae produes a perfetly symmetri Hilbert spae Htr with respetto M and its ommutant. This is beause the map J , whih is the extensionto Htr of the * operation on M , is an isometry. So x 7→ JxJ is the extensionto Htr of right multipliation by x∗. Unfortunately if we use a (normal)non-traial state φ the * operation is no longer an isometry and there isno reason to expet either it or right multipliation by elements of M tohave bounded extensions to Hφ. But as we shall see, the * operation isatually prelosed in the sense of unbounded operators and if S = J∆1/2is the polar deomposition of its losure S, we will show that JMJ = M ′.Quite remarkably, the operator ∆1/2 will satisfy ∆itM∆−it = M so thata state atually gives rise to a dynamis � a one parameter automorphismgroup of M (and M ′).We will prove these results using a method of van Daele for whih wehave followed some notes of Haagerup ([℄,[℄). But before getting started onthis di�ult theory it is essential to do some elementary alulations to seehow it all works out in the 2 × 2 matries.Exerise 13.0.4. Let M be M2(C). Show that any state φ on M is of theform φ(x) = Trace(hx) for some positive h of trae 1. And that φ is faithfuli� h is invertible. Thus with respet to the right basis,
φ(x) = Trace(x

(

1
1+λ

0

0 λ
1+λ

)

)for some λ, 0 ≤ λ ≤ 1.Exerise 13.0.5. With notation as in the previous exerise, suppose φ isfaithful and let S be the * operation on the GNS Hilbert spae Hφ. Calulate91



the polar deomposition S = J∆1/2 and show that SMS = JMJ = M ′.Show that ∆zM∆−z = M for z ∈ C so that σφz (x) = ∆zx∆−z = M de�nes arepresentation of C as automorphisms of M whih are ∗-automorphisms i�
z ∈ iR.Exerise 13.0.6. Generalize the above to the n×n matries and in fat any�nite dimensional von Neumann algebra.13.1 S,F and their graphs.Throughout this setionM will be a von Neumann algebra on H and Ω ∈ Ha yli and separating vetor for M and hene M ′. (The same data as afaithful normal state.) Let S0 and F0 be the onjugate linear operators withdomains MΩ and M ′Ω de�ned by S0(xΩ) = x∗Ω and F0(xΩ) = x∗Ω for
x ∈M and M ′ respetively.Lemma 13.1.1. In the sense of unbounded operators F0 ⊆ S∗

0 and S0 ⊆ F ∗
0so that S0 and F0 have densely de�ned adjoints and hene are prelosed.Proof. To show S∗

0(a
′Ω) is de�ned if 〈S0(aΩ), a′Ω〉 extends to a boundedonjugate linear map on all of H. But 〈S0(aΩ), a′Ω〉 = 〈(a′)∗Ω, aΩ〉 whihis bounded as a funtion of aΩ by Cauhy-Shwartz. Hene a′Ω is in thedomain of S∗

0 and S∗
0(a

′Ω) = (a′)∗Ω = F0(a
′Ω). Interhanging S0 and F0 weget the other inlusion.De�nition 13.1.2. Let S and F be the losures of S0 and F0 respetively.Let S = J∆1/2 be the polar deomposition of S.Observe that S0 = S−1

0 so S is injetive and S2 = 1 in the sense ofunbounded operators. Thus ∆1/2 has zero kernel, J2 = 1 and J∆1/2J =
∆−1/2. The same goes for F and its polar deomposition, but we shall nowsee that F = S∗.Theorem 13.1.3. (Takesaki,[℄.) S∗ = F , F ∗ = S and the graph of S is theset of all (cΩ, c∗Ω) where c is a losed densely de�ned operator a�liated with
M and Ω ∈ D(c) ∩D(c∗).Proof. Let (ξ, F ∗ξ) be in the graph of F ∗. By the de�nition of F we knowthat 〈ξ, (a′)∗Ω〉 = 〈a′Ω, F ∗ξ〉. Now de�ne operators a and b with domain
M ′Ω by ax′Ω = x′ξ and bx′Ω = x′F ∗ξ. Then a and b are losable for if x′and y′ are in M ′ we have

〈a(x′Ω), y′Ω〉 = 〈x′ξ, y′Ω〉 = 〈ξ, (x′)∗y′Ω〉92



= 〈(y′)∗x′Ω, F ∗ξ〉 = 〈x′Ω, y′F ∗ξ〉 = 〈x′Ω, b(y′Ω)〉so that as before a ⊆ b∗ and b ⊆ a∗.Let c be the losure of a. Then cΩ = aΩ = ξ and c∗ = a∗ ⊇ b so
c∗Ω = F ∗ξ. Now by onstrution the domain of a is invariant under theunitary group of M ′ and on it a ommutes with the unitaries in M ′. Thismeans that c is a�liated withM . At this stage we have shown that the graphof F ∗ onsists of all (cΩ, c∗Ω) where c is a losed densely de�ned operatora�liated with M and Ω ∈ D(c) ∩D(c∗).We now want to show that the graph of F ∗ is ontained in the graph of S.This is not hard. Let c be as above and c =

√
c∗c be its polar deomposition.Then if fn(t) = t for 0 ≤ t ≤ n and fn(t) = 0 for t > n we have that

fn(
√
c∗c) →

√
c∗c on any vetor in the domain of c, and sine c is a�liatedwith M , fn(√c∗c) ∈M so that ufn(√c∗c)Ω is in the domain of S and tendsto ξ. Moreover fn(√c∗c)u∗Ω tends to c∗Ω = F ∗ξ so (ξ, F ∗ξ) is in the graphof S.Thus F ∗ ⊆ S and we have already observed that S ⊆ F ∗. Hene S = F ∗and S∗ = F .Corollary 13.1.4. The polar deomposition of F is J∆−1/2.We now prove a ruial result onneting M and M ′.Lemma 13.1.5. Let λ ∈ R+ be given. Then for a′ ∈ M ′ there is an a ∈ Mwith aΩ in the domain of F and a′Ω = (λS + λ−1F )aΩ.Proof. Assuming ||a′|| ≤ 1 we may apply theorem 8.2.1 to the ψ de�ned by

ψ(x) = 〈xΩ, a′Ω〉 and φ(x) = 〈xΩ,Ω〉 to obtain the existene of an a ∈ Mwith
〈xΩ, a′Ω〉 = λ〈axΩ,Ω〉 + λ−1〈xaΩ,Ω〉

= λ〈xΩ, a∗Ω〉 + λ−1〈aΩ, x∗Ω〉.Provided aΩ is in the domain of F this equation reads a′Ω = (λS+λ−1F )aΩ.On the other hand rearranging the equation gives
〈aΩ, x∗Ω〉 = λ〈xΩ, a′Ω − λa∗Ω〉so by Cauhy Shwartz aΩ is in the domain of F = S∗.Corollary 13.1.6. For eah ξ ∈ D(∆1/2) ∩ D(∆−1/2) there is a sequene

an ∈M with anΩ → ξ, ∆1/2anΩ → ∆1/2ξ and ∆−1/2anΩ → ∆−1/2ξ.93



Proof. Set η = (S + F )ξ and hoose a sequene a′n ∈ M ′ with a′n → η. Bythe previous lemma there are an ∈ M with (S + F )anΩ = a′nΩ. But S +
F = J(∆1/2 + ∆−1/2) has bounded inverse (in the usual sense of unboundedoperators) so put ξn = (S + F )−1(a′nΩ). So anΩ = (S + F )−1a′nΩ → ξ.Moreover

∆1/2anΩ = ∆1/2(∆1/2 + ∆−1/2)−1Ja′nΩand ∆1/2(∆1/2 + ∆−1/2)−1 is bounded by spetral theory. So ∆1/2anΩ →
∆1/2(S + F )−1(S + F )ξ = ∆1/2ξ. In the same way ∆−1/2anΩ → ∆−1/2ξ.We put everything together with a lemma linking M and M ′ on a densesubspae to whih many funtions of ∆ an be applied.Lemma 13.1.7. If ξ and η are in D(S) ∩D(F ), a′, λ and a as in 13.1.5,then

λ〈SaSξ, η〉 + λ−1〈FaFξ, η〉 = 〈a′ξ, η〉.Proof. By moving one S and F to the other side of the inner produts, wesee by the previous lemma that we may assume ξ and η are xΩ and yΩrespetively, both in D(F ), for x and y inM . But onMΩ, SaS ats by rightmultipliation by a∗ so 〈SaSξ, η〉 = 〈xa∗Ω, yΩ〉 = 〈SaΩ, x∗yΩ〉. On the otherhand, systematially using F ∗ = S we obtain 〈FaFxΩ, yΩ〉 = 〈y∗xΩ, aΩ〉 =
〈Sx∗yΩ, aΩ〉 = 〈FaΩ, x∗yΩ〉. Combining these two we see

λ〈SaSξ, η〉 + λ−1〈FaFξ, η〉 = 〈(λSa + λ−1Fa)Ω, x∗yΩ〉.But by 13.1.5 this is 〈a′Ω, x∗yΩ〉 = 〈a′ξ, η〉.13.2 Proof of the main theorem.We begin with an easy exerise in ontour integration.Exerise 13.2.1. Let S be the strip {z ∈ C : −1/2 ≤ ℜ(z) ≤ 1/2}. Suppose
f is ontinuous and bounded on S and analyti on the interior of S. Then

f(0) =

∫ ∞

−∞

f(1/2 + it) + f(−1/2 + it)

2 cosh πt
dtHint: Integrate f(z)

sinπz
around retangular ontours in S tending to theboundary of S. 94



Proposition 13.2.2. With notation as in the previous setion
a =

∫ ∞

−∞
λ2it ∆itJa′J∆−it

2 cosh πt
dtProof. Sine J∆1/2J = ∆−1/2 we have J(D(S) ∩ D(T )) = D(S) ∩D(T ) soafter a little rearrangement the formula of 13.1.7 reads

〈Ja′Jξ, η〉 = λ〈a∆−1/2ξ,∆1/2η〉 + λ−1〈a∆1/2ξ,∆−1/2η〉.Now let H0 be the dense subspae of all vetors in H whih is the union ofall ξ[a,b](∆ for 0 < a < b <∞. Certainly H0 ⊆ D(S) ∩D(F ), H0 is invariantunder J and ∆z for z ∈ C, and moreover for ξ ∈ H0, z 7→ ∆zξ is an entirefuntion of z.For ξ, η ∈ H0 de�ne the analyti funtion
f(z) = λ2z〈a∆−zξ,∆zη〉.Then f is bounded in the strip S of the previous lemma and f(0) = 〈aξ, η〉.Also f(1/2 + it) = 〈∆it∆1/2ξ, η〉 so that

f(1/2 + it) + f(−1/2 + it) = λ2it〈∆itJa′J∆−itξ, η〉.So by the previous lemma we are done.Theorem 13.2.3. Let M be a von Neumann algebra on H and Ω a yliand separating vetor for M . Suppose S is the losure of xΩ 7→ x∗Ω on MΩ.Let ∆ = S∗S, and J be the antiunitary of the polar deomposition S = J∆1/2.Then(i) JMJ = M ′(ii) ∆itM∆−it = M ∀t ∈ RProof. If a′ ∈M ′ we know that
∫ ∞

−∞
λ2it ∆itJa′J∆−it

2 cosh πt
dt ∈M.Conjugating by a unitary u ∈ M ′ and writing λ = e

iθ
2 we see that theFourier transforms of the strongly ontinuous rapidly dereasing funtions

∆itJa′J∆−it

2 cosh πt
and u

∆itJa′J∆−it

2 cosh πt
u∗ are equal. Hene ∆itJa′J∆−it ∈ M forall real t sine it ommutes with every unitary u ∈M ′. (Take inner produtswith vetors if you are not happy with Fourier transforms of operator valuedfuntions.)Putting t = 0 we see JM ′J ⊆ M and by symmetry JMJ ⊆ M ′. Hene

JMJ = M ′ and we are done. 95



De�nition 13.2.4. The operator J of the previous result is alled the mod-ular onjugation and the strongly ontinuous one-parameter group of auto-morphisms of M de�ned by σφt (x) = ∆itx∆−it is alled the modular auto-morphism group de�ned by φ.13.3 Examples.Example 13.3.1. ITPFIThe aronym ITPFI stands for �in�nite tensor produt of �nite type I�.These von Neumann algebras are formed by taking the *-algebra A∞ as theunion A∞ of tensor produts Am =
m
⊗

k=1

Mnk(C), the inlusion of Am in Am+1being diagonal. The state φ on A∞ is then the tensor produt of states oneah Mnk . One may then perform the GNS onstrution with yli andseparating vetor Ω given by 1 ∈ A∞, to obtain the von Neumann algebra
M =

∞
⊗

k=1

Mnk(C) as the weak losure of A∞ ating on Hφ. The ase whereall the nk are equal to 2 and all the states are the same is alled the �Powersfator� and the produt state the �Powers state� as it was R.Powers who �rstshowed that they give a ontinuum of non-isomorphi type III fators.A slight snag here is that we do not know that Ω de�nes a faithful stateon M . But if we proeed anyway to onstrut what have to be J and ∆ wewill soon see that the state is indeed faithful, i.e. Ω is yli for M ′Ω.Reall from exerise 13.0.6 that, forMn(C), and φh(x) = trace(xh) where
h is the diagonal matrix (density matrix) with hii = µi,

∑

µi = 1, µi > 0,then Jn(eij) =
√

µj
µi
eji and ∆n(eij) = µi

µj
eij (where dependene on h has beensuppressed).To diagonalise the modular operators on Hφ ompletely it is most on-vining to hoose an orthonormal basis di of the diagonal matries, with

d1 = 1. Then a basis for the Hilbert spae Hφ is formed by tensors ⊗∞
k=1vkΩwhere vk = 1 for large k, and is otherwise a di or an eij with i 6= j.We an guess that J is, on eah basis vetor, the tensor produt of the J 'soming from the matrix algebras. De�ning it as suh it is learly an isometryon A∞Ω and thus extends to all of Hφ. But then, for any x ∈ A∞, JxJ is in

M ′ by the �nite dimensional alulation! But the linear span of these JxJΩis dense so Ω is yli for M ′ and hene separating for M . We are hene ina position to apply Tomita-Takesaki theory. Eah of the basis elements is in
MΩ so S(⊗∞

k=1vkΩ) = ⊗∞
k=1wkΩ where wk is vk if vk is diagonal, and eji if96



vk = eij. So JS is diagonal and hene essentially self-adjoint. We onludethat
J(xΩ) = Jm(x)Ω and ∆(xΩ) = ∆m(x)Ω for x ∈ Am,and

σφt =
∞
⊗

k=1

σφhk .Example 13.3.2. Group-measure-spae onstrution.Let Γ be a disrete group ating on the �nite measure spae (X,µ) pre-serving the lass of the �nite measure µ. The Hilbert spae of the rossedprodut L∞(X,µ) is L2(X,µ)⊗ ℓ2(Γ) and as we saw in hapter 11 the vetor
1 ⊗ εid is a yli and separating vetor Ω for M = L∞(X,µ) ⋊ Γ.Sine the lass of µ is preserved by the γ ∈ Γ the Radon Nikodym theoremguarantees positive L1 funtions hγ so that φ(hγαγ(y)) = φ(x) where φ(y) =
∫

X
ydµ. We know that, if x ∈ L∞(X,µ) then S(uγx) = x∗uγ−1 . In generalwe will not be able to ompletely diagonalise ∆ but the same argument asin the previous example gives that the domain of ∆ is

{f : Γ → L2(X,µ) :
∑

γ

∫

X

|hγ(x)f(x)|2dµ(x) <∞}on whih
(∆f)(γ) = hγf(γ),and

(Jf)(γ) = h−1/2
γ f(γ).We an now �nally answer the question as to whih sums∑γ xγuγ de�neelements of M = L∞(X,µ) ⋊ Γ.Theorem 13.3.3. With notation as above, if the funtion γ 7→ xγ ∈ L∞(X,µ)is suh that ∑γ xγuγ, interpreted as a matrix of operators as in setion 11.2,de�nes a bounded operator, then that operator is in M = L∞(X,µ) ⋊ Γ.Proof. By 13.2.3 it su�es to show that ∑γ xγuγ ommutes with JxuγJ forall x ∈ L∞(X,µ) and γ ∈ Γ. And for this it su�es to hek that theommutation holds on funtions of the form f ⊗ εγ for f ∈ L2. This is justa routine omputation.Exerise 13.3.4. Show that example 13.3.1 is in fat a speial ase of thisgroup-measure-spae example in whih L∞(X,µ) is provided by the tensorproduts of the diagonal elements and the group Γ is a restrited in�niteCartesian produt of yli groups, onstruted from the non-diagonal eij's.Conlude by the method of 11.2.15 that ITPFI algbras are fators.97



This example brings to light a signi�ant inadequay of our treatment ofTomita-Takesaki theory. We would like to treat the ase where the measureof the spae is in�nite. Although of ourse we ould hoose an equivalent�nite measure, this hoie may not be natural. To do this we would haveto onsider the theory of �weights� whih are to states as the trae on a II∞fator is to the trae on a type II1 fator. We need the same notion in orderto understand the origin of the term �modular� used above as oming fromthe modular funtion on a non-unimodular loally ompat group. But aserious treatment of weights would take many pages so we simply refer thereader to Takesaki's book [3℄.Example 13.3.5. Heke algebras à la Bost-Connes.If G is a �nite group let ug and vg be the unitaries of the left and rightregular representations respetively. If H is a subgroup, the projetion pH =
1

|H |
∑

h∈H vh projets from ℓ2(G) onto funtions that are right translationinvariant under H, i.e. funtions on the quotient spae G/H. Thus the so-alled �quasi-regular� representation of G on G/H is a diret summand ofthe left regular representation and we have from EP7 of hapter 3.4 that theommutant of the ation of G on ℓ2(G/H) is pHρ(G)pH where ρ(G) is thealgebra generated by the right regular representation (of ourse isomorphito C). This ommutant is spanned by the pHvgpH whih, thought of asfuntions on G, are multiples of the harateristi funtions of the doubleosets HgH whih form the double oset spae H\G/H. The subalgebraof ρ(G) spanned by these double osets is the spae of H − H bi-invariantfuntions and we see it is the ommutant of G on ℓ2(G/H). It is known asthe Heke algebra for the pair (G,H) and has a onsiderable role to playin the representation theory of �nite groups. A famous example is the asewhere G is the general linear group over a �nite �eld and H is the group ofupper triangular matries. The oset spae is then the so-alled ��ag variety�and the Heke algebra in this ase leads to a lot of beautiful mathemtatis.See Bourbaki [℄.Nothing ould better indiate how di�erently things work for in�nite dis-rete groups than how the Heke algebra works. Far from being diret sum-mands, the quasiregular representations an be totally di�erent from the leftregular representations and an even generate type III fators! These Hekealgebras give nie examples where the modular operators an be alulatedexpliitly.De�nition 13.3.6. A subgroup H of the disrete group G is alled almostnormal if either of the two equivalent onditions below is satis�ed.(a) gHg−1 ∩H is of �nite index in H for all g ∈ G.98



(b) Eah double oset of H is a �nite union of left osets of H (i.e. theorbits of H on G/H are all �nite).IfH is almost normal in G one may onstrut operators in the ommutantof the quasiregular representation of G on ℓ2(G/H) as follows:Given an element x of G/H let εx be the harateristi funtion of x.These funtions form an orthonormal basis of ℓ2(G/H). Moreover eah vetor
εx is yli for the ation of G hene separating for the ommutant. If D isa double oset of H de�ne TD by the matrix

(TD)x,y =

{

1 if y−1x = D;
0 otherwise. hek this typesettingClearly TD is bounded sine H is almost normal and it obviously om-mutes with the ation of G. From the de�nition we have

T ∗
D = TD−1.It is also easy to hek that

TDTE =
∑

F

nFD,ETFwhere the struture onstants are de�ned by
nFD,E =

{

#(E/H) if F ⊆ ED;
0 otherwise. x hek typesetting hereWe will all the von Neumann algebra generated by the TD's the Heke-von Neumann algebra of the pair H ⊆ G and write it HvN(G,H). Thevetor state φ de�ned on HvN(G,H) by εH is faithful and normal, and

〈TDεH , TD′εH〉 = 0 unless D = D′ so that the TD's are orthogonal. It is thuseasy to alulate the operators for the modular theory on Hφ (note that thisis not ℓ2(G/H)). We guess as usual that J(TDΩ) = (constant)TD−1Ω andby ounting osets in double osets (or sizes of orbits of H on G/H) we �ndthat the onstant has to be (#(D/H))1/2(#(H\D))−1/2. Thus as before JSis diagonal on the basis TDΩ of Hφ so essentially self-adjoint and
∆(TDΩ) =

#(H\D)

#(D/H)
TDΩwith the obvious domain. Thus

σφt (TD) =

(

#(H\D)

#(D/H)

)it

TD.99



Examples of almost normal subgroups are not hard to �nd. The lassialexample of Heke himself is the ase where G = SL(2,Q) and H = SL(2,Z).In this ase the Heke algebra is abelian. Bost and Connes in [4℄ examinedthe ase of the ax+b group over the rationals with the subgroup being integertranslations. They showed that HvN(G,H) in this ase is a type III fatorand made a onnetion with prime numbers.13.4 The KMS ondition.In the examples of the previous setion the operators of the modular groupwere easy to alulate expliitly, inluding the domain of ∆. One an imaginethat this is not always so. If we are partiularly interested in the modulargroup σφt it would be useful to be able to guess it and show that the guess isright without bothering about the domain of ∆. The KMS (Kubo-Martin-Shwinger) ondition from quantum statistial mehanis allows us to do justthat. The modular group ame from the non-trae-like property of a stateand the KMS ondition allows us to orret for that. Let us do a formalalulation assuming that the modular group an be extended to omplexnumbers (remember that Ω is �xed by S, J and ∆):
φ(xy) = 〈yΩ, x∗Ω〉

= 〈yΩ, J∆−1/2∆x∆−1Ω〉
= 〈∆x∆−1Ω, SyΩ〉
= 〈y∆x∆−1Ω,Ω〉.We onlude that
φ(xy) = φ(yσφi (x)).Thus the trae is ommutative provide we operate by the modular group.Exerise 13.4.1. If M is �nite dimensional and φ is a faithful state, showthat φ ◦ σφt = φ and that for eah x and y in M there is an entire funtion

F (z) with, for t ∈ R,
F (t) = φ(σφt (x)y) and

F (t+ i) = φ(yαt(x)).IfM is in�nite dimensional we would not expet the funtion F (z) of theprevious exerise to be entire. 100



De�nition 13.4.2. Let αt be a strongly ontinuous one parameter automor-phism group of a von Neumann algebra M , and φ be a faithful normal stateon M . We say that α satis�es the KMS ondition for φ if φ ◦ αt = φ and ,for eah x and y in M , there is a funtion F , ontinuous and bounded onthe strip {z : 0 ≤ ℑm(z) ≤ 1}, analyti on the interior of the strip and suhthat for t ∈ R,
F (t) = φ(σφt (x)y) and

F (t+ i) = φ(yαt(x)).Theorem 13.4.3. If φ is a faithful normal state on a von Neumann algebra
M then σφt is the unique one parameter automorphism group satisfying theKMS ondition for φ.This hapter has been heavily tehnial so we defer the proof, whih is byapproximation on dense subspaes of the domain of ∆ to whih the previousalulations an be applied, to an appendix. We ontent ourselves here withan interesting orollary, identifying a part or M on whih φ behaves as atrae.Corollary 13.4.4. For a ∈M the following are equivalent:1. φ(ax) = φ(xa) for all x ∈M .2. σφt (a) = a for all t ∈ R.Proof. (1 ⇒ 2) Observe that for x ∈ M , 〈x∗Ω, aΩ〉 = 〈Ω, xaΩ〉 = 〈Ω, axΩ〉(by 1). So 〈SxΩ, aΩ〉 = 〈a∗Ω, xΩ〉 so that aΩ ∈ D(S∗) and S∗(aΩ) = Ω∗. So
∆(aΩ) = aΩ, ∆itaΩ = aΩ and �nally σφt (a) = a for all t ∈ R.(2 ⇒ 1) φ(σφt (x)a) = φ(σφt (xa)) = φ(xa) so that F (t) is onstant. Use theShwarz re�etion priniple to reate a holomorphi funtion, onstant on R,in the union of the strip with its omplex onjugate. Thus F is onstant onthe strip and φ(xa) = φ(ax).De�nition 13.4.5. The von Neumann subalgebra of M de�ned by either ofthe onditions of the previous orollary is alled the entraliser of the state
φ. 101
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Chapter 14Connes' theory of type III fators.14.1 The Connes unitary oyle Radon-Nikodymtheorem.This result will allow us to extrat information from the modular group of astate whih is independent of the state.Theorem 14.1.1. Let φ and ψ be faithful normal states on a von Neumannalgebra M . Then there is a strongly ontinous map t → ut from R to theunitary group of M so that
σφt = Adutσψt ∀ t ∈ R.Morevoer ut satis�es the oyle ondition utσψt (us) = ut+s.Proof. We de�ne the faithful normal state Φ on M ⊗M2(C) by Φ((x)ij) =

1
2
(φ(x11) +ψ(x22)). The projetion p = ( 1 0

0 0 ) is �xed by σΦ by 13.4.4. So σΦde�nes a one parameter automorphism group of pM⊗M2(C)p whih satis�esthe KMS ondition for φ. Hene σΦ
t (x ⊗ e11) = σφt (x) ⊗ e11. Similarly

σΦ
t (x ⊗ e22) = σψt (x) ⊗ e22. Let Vt = σΦ

t (1 ⊗ e21). Then VtV
∗
t = ( 0 0

0 1 )and V ∗
t Vt = ( 1 0

0 0 ). Hene Vt = ( 0 0
vt 0 ) for some unitary vt ∈ M . Routineomputations give the rest.Corollary 14.1.2. If M is a fator and σφt is outer for any φ and t then Mis of type III.Proof. By the previous result it su�es to exhibit a single faithful normalstate on a type II fator with inner modular group. In the II1 ase use thetrae and in the II∞ ase hoose a faithful normal state φ on B(H) and use

tr⊗φ, using the KMS ondition (if neessary) to very that the modular groupfor the tensor produt is the tensor produt of the modular groups.103



Corollary 14.1.3. The subgroup of all t ∈ R for whih σφt is inner is inde-pendent of the faithful normal state φ.De�nition 14.1.4. The subgroup of the previous orollary, whih is an in-variant of M , is alled T (M).We shall now alulate T (M) for the Powers fator Rλ where this refersto the ITPFI fator with all nk = 2 and all states having the same densitymatrix h =

(

1
1+λ

0

0 λ
1+λ

).Theorem 14.1.5.
T (Rλ) =

2π

log λ
Z.Proof. By the formula for the modular group σφ2π

log λ

= id so 2π
logλ

Z ⊆ T (Rλ).For the other diretion it su�es to show that an automorphism α of theform
α = ⊗∞

k=1Aduis outer whenever the unitary u is not a salar.For this �rst de�ne uk = ⊗k
1u and observe that if α = Adv then (uk ⊗

1)−1v = id on the matrix algebra Ak = ⊗k
1M2(C). By exerise 4.3.3 thismeans that v = uk ⊗ w. Now it is lear from our basis that we an hoose

⊗p
j=1xi ⊗ 1Ω with non-zero inner prout with vΩ. But then �xing p andletting k tend to in�nity we see that

〈(⊗p
j=1xi ⊗ 1)Ω, vΩ〉 =

p
∏

j=1

〈xi, u〉〈1, u〉k−p〈1, w〉.The left hand side does not depend on k and |〈1, w〉| ≤ 1 so we must have
|〈1, u〉| = 1 whih means that u is a salar multiple of 1 by the Cauhy-Shwarz inequality.We onlude that the Powers fators Rλ are type III fators, mutuallynon-isomorphi for di�erent values of λ.14.2 Type IIIλ.The spetrum of the modular operator ∆ is easy to alulate for an ITPFIfator. It is simply the losure of the set of all ratios µi

µj
as µ varies overall the density matries de�ning the produt state. Apart from being losed104



under the inverse operation this set of non-negative real numbers has nopartiular struture and an be altered easily by making hanges in �nitelymany density matries whih of ourse do not hange the fator.De�nition 14.2.1. If M is a von Neumann algebra the invariant S(M)is the intersetion over all faithful normal states φ of the spetra of theirorresponding modular operators ∆φ.Theorem 14.2.2. A fator M is of type III i� 0 ∈ S(M).Theorem 14.2.3. (Connes-van Daele) S(M) \ {0} is a losed subgroup ofthe positive real numbers.There are only three kinds of losed subgroups of R+.De�nition 14.2.4. A fator M is alled type IIIλ for 0 ≤ λ ≤ 1 if
λ = 0 : S(M) = {0} ∪ {1}

0 < λ < 1 : S(M) = {0} ∪ {λn : n ∈ Z}
λ = 1 : S(M) = {0} ∪ R+Theorem 14.2.5. The Powers fator Rλ is of type IIIλ.In his thesis, Connes showed that every type IIIλ fator for 0 < λ < 1 is Connes thesisanonially isomorphi to the rossed produt of a type II∞ fator with anation of Z whose generator sales the trae by λ.IfA is a loally ompat abelian group with an ation α on a von Neumannalgebra M , there is an ation α̂ of the Pontryagin dual Â on the rossedprodut M ⋊α A satisfying

α̂a(x) = x for x ∈M

α̂â(ua) = â(a)ua if ua are the unitaries de�ning the rossed produt.The existene of the so-alled �dual ation� α̂ is trivial proved sine it isimplemented by the obvious unitary representation of Â on L2(A).Exerise 14.2.6. If A is �nite onsider the projetion p =
∑

a ua ∈M ⋊A.Show that pM ⋊Ap = MAp and thus show that (M ⋊αA)⋊α̂ Â is isomorphito M ⊗M|A|(C). 105



Observe that the rossed produt of a von Neumann algebra M on H bythe modular group σφ does not depend, up to isomorphism, on the faithfulnormal state φ. This follows from theorem 14.1.1 by de�ning the unitary Von L2(R,H) by
V f(t) = utf(t)where ψ is another faithful normal state with unitary one-oyle ut. Conju-gating the operators that generate M⋊σφR by V one obtains the generatorsof M ⋊σψ R.Theorem 14.2.7. The rossed produt of M by the modular group admits atrae satisfying the properties of 9.1.9De�nition 14.2.8. The ation of R̂ on Z(M ⋊σφ R) is alled the ��ow ofweights� of M .Theorem 14.2.9. (Takesaki duality) The rossed produt

(M ⋊σφ R) ⋊cσφ R̂is isomorphi to the tensor produt M ⊗ B(H) for H = L2(R).Thus if M is a fator the �ow of weights is ergodi.Theorem 14.2.10. If M is a fator of type IIIλ the �ow of weights isIII1: The trivial �ow on a one point set if M is III1.IIIλ: The transitive �ow on the irle with period 2π
λ
if M is of type IIIλ,

0 < λ < 1.III0: Ergodi non-transitive if M is of type III0.Moreover any ergodi non-transitive �ow arises as the �ow of weights forsome type III0 fator.
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Chapter 15Hyper�nitenessDe�nition 15.0.11. A von Neumann algebraM on a separable Hilbert spaeis alled hyper�nite if there is an inreasing sequene An of �nite dimensional*-subalgebras of M whih generates M as a von Neumann algebra.15.1 The hyper�nite type II1 fator RThe �rst main result about hyper�niteness was proved by Murray and vonNeumann in [℄. We will use R to denote the hyper�nite II1 fator whoseuniqueness they proved.Theorem 15.1.1. Up to abstrat isomorphism there is a unique hyper�niteII1 fator.Sketh of proof. One works with the norm ||x||2 = tr(x∗x)1/2 on M . It isnot hard to show that a von Neumann subalgebra N of M is strongly denseinM i� it is dense in ||−||2. Given a subalgebra A ofM and a subset S ⊆ Mone says
S ⊆ A

εif for eah x ∈ S there is a y ∈ A with ||x− y||2 < ε.The hyper�niteness ondition then implies:For every �nite subset S ⊆ M and every ε > 0 there is a �nite dimen-sional *-subalgebra A of M with
S ⊆ A.
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The next step is to show that the A in the preeeding ondition an behosen to be the 2n× 2n matries for some (possibly very large) n. This partuses what might be desribed as �II1 fator tehnique�. One begins with Aand approximates all its minimal projetions {ei} by ones whose traes arenumbers of the form k/2n. The matrix units of A an be hanged a little bitin || − ||2 so that, together with matrix units oneting projetions of trae
1/2n less than the ei, they generate a 2n×2n matrix algebra ontaining, up to
ε, the matix units of A. Perturbation of the matrix units will involve resultsof the form:If u ∈ M satis�es ||(uu∗)2 − uu∗||2 < ǫ then there is a partial isometry
v ∈M with ||v − u||2 < F (ǫ)(for some nie funtion f with f(0) = 0).or:If p and q are projetions with ||pq||2 < ǫ then there is a projetion q′ with
pq′ = 0 and ||q − q′|| < F (ǫ).or:If fij are �almost n× n matrix units�, i.e.(a) ||fij − fji||2 < ǫ(b) ||fijfkl − δj,kfil||2 < ǫ() ||1 −∑n

i=1 fii||2 < ǫthen there are n×n matrix units eij with ||eij−fij|| < F (ǫ) where F dependsonly on n and F (0) = 0.Suh results are proved by a skilful use of the polar deomposition andspetral theorem.Thus one shows that in a hyper�nite type II1 fator one has:Property * : For every �nite subset S ⊆ M and every ε > 0 there is a
2n × 2n matrix subalgebra of M with

S ⊆ A.

εOne may now proeed to prove the theorem by hoosing a || − ||2-densesequene xk in M and indutively onstruting an inreasing sequene of
2nk × 2nk matrix algebras Ak with the property thatFor eah k = 1, 2, 3, ..., {x1, x2, ..., xk} ⊆ Ak .
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The union of the Ak's is learly dense in || − ||2. This is enough to provethe theorem sine the Ak's an be used to give an isomorphism of M withthe type II1 fator ⊗∞M2(C) onstruted in setion 6.2.To onstrut Ak+1 from Ak one needs to arrange for the new algebrato ontain the one already onstruted. So to the elements x1, x2, ..., xk+1,add matrix units eij for Ak+1. Now use property * to obtain a B almostontaining the xi and the matrix units, with ǫ small enough to ontrol sumsover the matrix units eij. In B we know there are approximate matrix unitslose to the eij so by a tehnial lemma, exat matrix units fij lose to the
eij. Now hoose a unitary lose to the identity whih onjugates the fij tothe eij and use this unitary to onjugate B to a superalgebra of Ak. Thissuperalgebra is Ak+1 and it ontains the xi up to epsilon sine u is lose tothe identity.This ompletes the sketh of the proof. The tehnique involved is on-sidered standard in von Neumann algebras and the details an be found in. dixmierCorollary 15.1.2. If S∞ is the group of �nitely supported permutations ofa ountably in�nite set then vN(S∞) ∼= ⊗∞M2(C).Proof. The subgroups of S∞ permuting an inreasing sequene of �nite setsshow that vN(S∞) is hyper�nite.It is surprising at �rst sight that the type II1 fator L∞(X,µ)⋊Z obtainedfrom an ergodi measure-preserving transformation T is hyper�nite. This anbe shown by Rokhlin's tower theorem whih asserts that, for eah n ∈ N andeah ǫ > 0 there is a measurable subset A ⊆ X with(1) T i(A) ∩ T j(A) = ∅ for 1 ≤ i < j ≤ n, and(2) µ(X \ ∪ni=0T

i(A)) < ǫ.The unitary u1 of the rossed produt and the harateristi funtion of Aan be ombined, with a little perturbation to get the identity, to get a n×nmatrix algebra. Careful appliation of the tower theorem will allow one toget any element of L∞(X,µ), and u1, in this matrix algebra up to some ǫ.This was �rst proved by Henry Dye in who went on to prove that in fat all Dyegroups of polynomial growth give hyper�nite II1 fators in this way.The ultimate result in this diretion is the elebrated �Injetive fators�theorem of Connes who showed that hyper�niteness for a von Neumann al-gebraM on H is equivalent to �injetivity� whih means there is a projetionin the Banah spae sense of norm one from B(H) onto M . This theorem,whose proof is a great, great tour de fore, has a raft of orollaries, many of109



whih were open questions. Let us just mention the fat that it follows easilythat any subfator of R whih is in�nite dimensional is in fat isomorphi to
R. It also implies that vN(Γ), as well as L∞(X,µ) ⋊ Γ is hyper�nite as soonas Γ is amenable.15.2 The type III ase.The omplete lassi�ation of injetive(=hyper�nite) fators is a triumphof 20th. entury mathematis. Connes showed in that there is only oneConnes ations trae-saling automorphism of R ⊗B(H) for eah saling fator λ 6= 1 up toonjugay. Together with this shows that for eah λ with 0 < λ < 1 there isConnes Injetive fators a unique injetive fator of type IIIλ.Using results of Krieger in , his thesis and , Connes showed that hyper�-kriegerinjetive nite type III0 fators are lassi�ed by their �ow of weights (up to onjugay of�ows, not orbit equivalene). This means that there is a rather large numberof III0 fators but their lassi�ation is in the realm of ergodi theory ratherthan von Neumann algebras.The remaining ase of injetive type III1 fators was solved by Haagerupin . There is just one suh fator and a hyper�nite fator is �generially� ofu�eIIIone type III1.
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Chapter 16Central Sequenes.16.1 Generalities.De�nition 16.1.1. If M is a type II1 fator, a entral sequene in M is anorm bounded sequene (xn) with limn→∞ ||[xn, a]||2 = 0. A entral sequeneis said to be trivial if limn→∞ ||xn − tr(xn)id||2 = 0. M is said to haveproperty Γ if there is a entralThe olletion of all entral sequenes is learly a C∗-subalgebra of ℓ∞(N,M).If ω is a free ultra�lter on N, the subalgebra Iω of ℓ∞(N,M) onsisting ofsequenes with limn→ω ||xn||2 = 0 is a 2-sided ideal of ℓ∞(N,M). Note alsothat M is embedded in ℓ∞(N,M) as onstant sequenes.De�nition 16.1.2. With notation as above, the ultraprodut ofM along ω isthe quotient of ℓ∞(N,M) by Iω. It is written Mω. The algebra of (ω-)entralsequenes is the entraliser Mω = M ′ ∩Mω of M in ℓ∞(N,M).By ompatness, the trae on M de�nes a trae on Mω by
tr((xn)) = lim

n→ω
tr(xn)and by de�nition it is faithful on Mω.Exerise 16.1.3. Show that the unit ball (in the C∗ norm) ofMω is ompletein || − ||2 so that Mω and Mω are von Neumann algebras.16.2 Central sequenes in RAll models for R exhibit entral sequenes in abundane. The most obvioussituation is that of ⊗∞M2(C). Fixing x ∈M2(C) we an de�ne the sequene111



xn = 1⊗ 1⊗ 1...x⊗ 1⊗ 1... with the x in the nth slot in the tensor produt.For large enough n, xn will ommute with any element in the algebrai tensorprodut so by the obvious (in the II1 ase!) inequality ||[xn, a]|| ≤ 2||xn|| ||a||2we see that (xn) is entral and learly non-trivial if x is not a salar. Just aslearly the entral sequene algebra is non-ommutative as we only need tohoose x and y that do not ommute and onstrut the sequenes (xn) and
(yn) as above. In fat it is not hard to show that Rω is a fator.Theorem 16.2.1. The entral sequene algebra Rω is a type II1 fator.Proof. If (xn) represents an element X ∈ Rω,�nish proof! 16.3 Type II1 fators without property Γ.Theorem 16.3.1. Let Γ be an i group possessing a subset ∆ not ontainingthe identity and three elements α, β and γ suh that(a)Γ = {1} ∪ ∆ ∪ α∆α−1(b)∆, β∆β−1 and γ∆γ−1 are mutually disjoint.then for x ∈ vN(Γ),

||x− tr(x)id||2 ≤ 14max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.Proof. Write x as ∑ν∈Γ xνuν . We will frequently use the formula
||[x, uρ]||22 = ||uρ−1xuρ − x||2 =

∑

ν∈Γ

|xν − xρνρ−1 |2.By replaing x by x − tr(x)id it su�es to prove the result if tr(x) = 0and we may suppose ||x||2 = 1 so that for suh an x we must show 1 ≤
14max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.We �rst make a simple estimate. If Λ is any subset of Γ and ρ ∈ Γ then

|
∑

ν∈Λ

|xν|2 −
∑

ν∈Λ

|xρνρ−1|2| =
∑

ν∈Λ

(|xν| + |xρνρ−1|)||xν| − |xρνρ−1||

≤
∑

ν∈Λ

(|xν| + |xρνρ−1|)(|xν − xρνρ−1 |)

≤ 2||x||2(
∑

ν∈Λ

|xν − xρνρ−1 |2)1/2112



so that if ρ ∈ {α, β, γ} we have
|
∑

ν∈Λ

|xν|2 −
∑

ν∈Λ

|xρνρ−1|2| ≤ 2ǫwhere ǫ = max{||[x, uα]||2, ||[x, uβ]||2, ||[x, uγ]||2}.Let us now �rst overestimate ||x||2 = 1:
1 ≤

∑

ν∈∆

|xν|2 +
∑

ν∈∆

|xανα−1|2

≤ 2
∑

ν∈∆

|xν|2 + 2ǫ.Now underestimate it:
1 ≥

∑

ν∈∆

|xν|2 +
∑

ν∈∆

|xβνβ−1|2 +
∑

ν∈∆

|xγνγ−1 |2

≥ 3
∑

ν∈∆

|xν|2 − 4ǫ.Let y =
∑

ν∈∆ |xν|2 and eliminate y from the inequalities 1 ≤ 2y+2ǫ and
1 ≥ 3y − 4ǫ to obtain

ǫ ≥ 1/14as desired.It is easy to ome up with groups having subsets as in the previous the-orem. For instane if G = F2, free on generators g and h, let ∆ be the setof all redued words ending in a non-zero power of g. Let α = g, β = h and
γ = h−1. The same works for more than two generators. We onlude:Theorem 16.3.2. The type II1 fator vN(Fn) for n ≥ does not have property
Γ.
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Chapter 17Bimodules and property T
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Chapter 18Fermions and Bosons:CAR andCCRAording to physis lore, the states of a quantum system are given by (theone-dimensional subspaes of) a Hilbert spae H and if two systems havestate spaes H and K, the joint system has state spae H ⊗ K. Fermionsare partiles suh that "the wave funtion of several fermions is antisymmet-ri" whih means that it is the antisymmetri tensor produt ΛnH whihdesribes n idential fermions. Bosons are partiles whose wave funtionsare symmetri so it is the symmetri tensor power SnH whih desribes nidential bosons. In order to treat families with an unlimited number offermions and Bosons we need the fermioni and bosoni Fok spaes (whihare Hilbert spae diret sums):
F(H) = ⊕∞

n=0Λ
nHand

S(H) = ⊕∞
n=0S

nH.The passage from H to F(H) or S(H) is known as �seond quantisation'.We will not attempt to explain the physis above but will de�ne properlythese two Fok spaes and how they give rise to interesting von Neumannalgebras related to physis.Both these Fok spaes are subspaes of the "full Fok spae" or tensoralgebra
T (H) = ⊕∞

n=0 ⊗n H
T (H) is related to quantum physis also though so far in a less funda-mental way through the large N behaviour of random N ×N matries andVoiulesu's free probability. 117



18.1 The Fok spaes.18.1.1 Full Fok spaeDe�nition 18.1.2. If H is a real or omplex Hilbert spae the full Fok spae
T (H) is the Hilbert spae diret sum ⊕∞

n=0 ⊗n H. By de�nition ⊗0H is onedimensional, spanned by the "vauum" vetor Ω.Even when H is real one omplexi�es T (H) so that it is a omplex Hilbertspae.For eah n and f ∈ H the operator ℓ(f) : ⊗nH → ⊗n+1H given by
ℓ(f)(ξ1 ⊗ ξ2 · · · ξn) = f ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξnis learly bounded by ||f || so extends to an operator we will all ℓ(f) on allof full Fok spae.Exerise 18.1.3. (i) Show that

ℓ(f)∗(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) = 〈ξ1, f〉ξ2 ⊗ ξ3 · · · ξn,

ℓ(f)∗(ξ) = 〈ξ, f〉Ω for ξ ∈ ⊗1H,and ℓ(f)∗Ω = 0.(ii) Show that
ℓ(f)∗ℓ(g) = 〈g, f〉Proposition 18.1.4. The ation of the ℓ(f) and ℓ(f)∗ on full Fok spae isirreduible.Proof. It su�es to show that any non-zero vetor in T (H) is yli. Thevauum vetor Ω is obviously yli. Note that the linear span of the imagesof the ℓ(f)ℓ(f)∗ is the orthogonal omplement Ω⊥. The projetion onto Ω⊥is thus in {ℓ(f), ℓ(f)∗}′′. If ξ is any vetor we are thus done if 〈ξ,Ω〉 6= 0.Otherwise 〈ξ, f1 ⊗ f2 · · · fn〉 must be non-zero for some fi ∈ H. But then

〈ℓ(f1)ℓ(f2) · · · ℓ(fn)Ω, ξ〉 6= 0 and the vetor (ℓ(f1)ℓ(f2) · · · ℓ(fn))∗ξ, whihan be reahed from ξ, projets non-trivially onto the vauum and is thusyli.One may also onsider the right reation operators r(ξ) de�ned by
r(f)(ξ1 ⊗ ξ2 · · · ξn) = ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn ⊗ f.They satisy the same relations as the ℓ(f) and almost ommute with them.To be preise 118



18.1.5.
ℓ(f)r(g) = r(g)ℓ(f)and

ℓ(f)r(g)∗ − r(g)∗ℓ(f) = −〈f, g〉pΩwhere pΩ is projetion onto the one dimensional subspae spanned by thevauum.The r(f)'s and r(f)∗'s at just as irreduibly as the ℓ's.18.1.6 Fermioni Fok spae.Given a Hilbert spae H, the nth. exterior or antisymmetri power of H is theHilbert spae ΛnH = p(⊗nH) where p is the antisymmetrisation projetion
p(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =

1

n!

∑

σ∈Sn
(−1)σξσ(1) ⊗ ξσ(1) ⊗ ξσ(2) · · · ⊗ ξσ(n)De�nition 18.1.7. The fermioni Fok spae of H is the Hilbert spae diretsum

F(H) = ⊕∞
n=0Λ

nH. Given ξ1, ..ξn ∈ H we set
ξ1 ∧ ξ2 ∧ · · · ∧ ξn =

√
n! p(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn)Exerise 18.1.8. Show that 〈ξ1 ∧ ξ2 ∧ · · · ∧ ξn, η1 ∧ η2 ∧ · · · ∧ ηn〉 is thedeterminant of the matrix whose (i, j) entry is 〈ξi, ηj〉.Obviously if σ ∈ Sn,

ξσ(1) ∧ ξσ(1) ∧ ξσ(2) · · · ∧ ξσ(n) = (−1)σξ1 ∧ ξ2 ∧ · · · ∧ ξn.Exerise 18.1.9. For f ∈ H de�ne A(f) : ⊗nH → Λn+1H by
A(f)(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn) =

1√
n!
f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn,show that A(f)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn.119



Exerise 18.1.10. The previous exerise shows that for eah f ∈ H there isa bounded linear map from ΛnH to Λn+1H de�ned by:
a(f)(ξ1 ∧ ξ2 ∧ · · · ∧ ξn) = f ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξn.Show that

a(f)∗(ξ1 ∧ ξ2 ∧ · · · ∧ ξn+1) =
n+1
∑

i=1

(−1)i+1ξ1 ∧ · · · ξ̂i · · · ∧ ξn+1We have sloppily left out the n on our operators a(f). But we an putthem all together to form the densely de�ned operators a(f) and a(f)∗ on
F(H) whose domain is the algebrai diret sum of the ΛnH.Exerise 18.1.11. Show that these densely de�ned operators satisfy the CARrelations.Exerise 18.1.12. Show that ||a(f)ξ|| ≤ ||ξ|| for ξ in the domain of a(f) so
a(f) an a(f)∗ extend to bounded operators on F(H) whih are one another'sadjoints and satisfy the CAR relations.Exerise 18.1.13. Imitate 18.1.4 to show that the *-algebra generated bythe a(f) ats irreduibly on fermioni Fok spae.18.2 CAR algebra, CCR algebra and the (ex-tended) Cuntz algebra.18.2.1 CAR algebraDe�nition 18.2.2. If H is a omplex Hilbert spae the CAR (anonialantiommuation relations) algebra CAR(H) is the unital *-algebra with gen-erators a(f) for eah f ∈ H subjet to the following relations:(i) The map f 7→ a(f) is linear.(ii) a(f)a(g) + a(g)a(f) = 0 ∀f, g ∈ H.(iii) a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉 ∀f, g ∈ H.(the identity is impliit on the right hand side of (iii))We already know a non-trivial representation of the CAR algebra onFermioni Fok spae.Exerise 18.2.3. Show that if dimH = 1, CAR(H) is isomorphi toM2(C).120



Proposition 18.2.4. If dimH = n < ∞, the Fok spae representation isirreduible and faithful so CAR(H) ∼= M2n(C).Proof. Irreduibility was already shown. This means that the dimensionof the image of the representation is 22n. But words in the a(f) may berearranged without hanging their linear span so that all a(f)'s ome beforeall a(g)∗'s. Moreover the order of the a(f)'s in a word only matters up to asign so that, after hoie of a orthogonal basis, the CAR algebra is linearlyspanned by words given by pairs of subsets of the basis-one for the a(f)'sand one for the a(f)∗'s. Thus the dimension of the CAR algebra is ≤ 22nand the Fok spae represenation is bijetive.Corollary 18.2.5. If K is a subspae of H, the obvious inlusion map of
CAR(K) into CAR(H) is injetive.Proof. If K is �nite dimensional this follows from the simpliity of a matrixalgebra. In general an element of CAR(H) is a �nite linear ombination ofwords on a(f)'s and a(f)∗'s so in CAR of a �nite dimensional subspae.Corollary 18.2.6. There is a unique C∗-norm and a unique normalised traeon CAR(H).Proof. This follows from the uniqueness of the norm and trae on a matrixalgebra as in 18.2.5We will see an expliit formula for the trae on words in the a(f) and
a(f)∗ later-it is a "quasi-free" state.Exerise 18.2.7. Show that ||a(f)|| = ||f ||.This shows that, if we hoose an orthonormal basis ξi of H (supposedseparable), the *-algebra generated by {a(ξi)|i = 1, 2, · · ·∞} is dense in the
C∗-ompletion of CAR(H). Thus this C∗-algebra is in fat isomorphi to theindutive limit of 2n × 2n matries and one obtains the hyper�nite II1 fatoras its GNS ompletion.From now on we will abuse notation by using CAR(H) for the C∗-algebraompletion.Exerise 18.2.8. A unitary u on H obviously de�nes an automorphism αuof CAR(H) (sometimes alled a Bogoliubov automorphism) by funtoriallyextending αu(a(f)) = a(uf). In partiular hoosing u = −1 makes CAR(H)into a Z/2Z-graded algebra. De�ne a notion of graded produt A ⊗Z/2Z Bfor Z/2Z-graded algebras A and B. Show that if V and W are orthogonalHilbert subspaes of H then CAR(V ⊕W ) ∼= CAR(V ) ⊗Z/2Z CAR(W ).121



18.3 Vauum expetation valueThe vauum vetor Ω de�nes a state ωΩ on CAR(H) as usual via 〈xΩ,Ω〉whih as we know would reonstrut Fok spae via the GNS onstrution.The following formula is lear:18.3.1.
ωΩ

(

a(fm)∗a(fm−1)
∗ · · · a(fm)∗a(g1)a(g2) · · · a(gn)

)

= δm,n det (〈gi, fj〉)We know that states on matrix algebras are given by tr(h)̇ so we wouldlike to know what ωΩ looks like in this piture. For this we will onstrut anexpliit isomorphism between CAR(H) and M2n(C). To do this it su�esto exhibit a family of n ommuting 2 × 2 matrix algebras. If we hoose anorthonormal basis ξ, eah a(ξ) will give a 2×2 matrix algebra but they won'tquite ommute. But this an be �xed up by unitaries whih implement theBogoliubov automorphism orresponding to −1.So let H be a Hilbert spae and let {ξi | i = 1, 2, ...∞} be an orthonormalbasis. Set
ai = a(ξi) ∈ CAR(H)and vi = 1 − 2a∗i ai. The vi ommute among themselves so put

uk =

k
∏

i=1

vi.Exerise 18.3.2. Show:
v2
i = 1 = u2

i , ujaiuj = −ai for i ≤ j and ujaiuj = ai for i > j.If we put ek12 = ukak, then [ek12, e
j
12] = 0 = [ek12, (e

j
12)

∗] for all j, k so thatthe ek12 generate mutually ommuting 2 × 2 matrix units with ek11 = aka
∗
kand ek22 = a∗kak. This gives an isomorphism between the CAR algebra of thelinear span of ξ, ξ2 · · · ..., ξn withM2n(C) and hene CAR(H) with ⊗∞

1 M2(C).Observe that uk implements the Bogoliubov automorphism for −1 and thusdepends on the basis only up to a sign.Now we an see what the vauum expetation value looks like:
ωΩ(ekij) =

{

0 i 6= j or i = 1

1 i = j = 2Thus in the matrix piture if h = ( 0 0
0 1 ) then ωΩ is the produt state

ωΩ(⊗∞
i=1xi) =

∞
∏

i=1

tr(hxi).122



18.4 Quasi-free statesWe will now generalise formula 18.3.1 to what are alled quasi-free states.The operator a in the theorem below is alled the �ovariane" of the state.Theorem 18.4.1. For eah self-adjoint a on H, 0 ≤ a ≤ 1 there is a state
φa on CAR(H) de�ned by

φa
(

a(fm)∗a(fm−1)
∗ · · · a(f1)

∗a(g1)a(g2) · · · a(gn)
)

= δm,n det (〈agi, fj〉)Proof.Lemma 18.4.2. Theorem 18.4.1 is true if a is a projetion p and dimH =
n <∞.Proof. Choose a basis ξ1, ξ2, ..., ξk for pH and η1, η2, ..., ηn−k for (1−p)H. Welaim that if v = η1 ∧ η2 ∧ · · · ηn−k the the vetor state ωv is the requiredstate. For this note that it su�es to prove the formula

ωv
(

a(fm)∗a(fm−1)
∗ · · · a(f1)

∗a(g1)a(g2) · · · a(gn)
)

= δm,n det (〈pgi, fj〉)when the f 's and g's are basis vetors sine both sides are suitably multilinear.If any of the f 's and g's is in (1− p)H both sides are zero. If all the f 's and
g's are in pH the left hand side is 〈g1 ∧ · · · ∧ gn ∧ v, f1 ∧ · · · fm ∧ v〉 whih is
0 unless m = n in whih ase it is the determinant:

(

det(〈gi,fj〉) 0
0 det(〈ηi,ηj〉)

)

= det (〈pgi, fj〉)Lemma 18.4.3. Theorem 18.4.1 is true if p is a projetion.Proof. Choose bases ξ1, ξ2, · · · for pH and η1, η2, · · · for (1 − p)H and let Vkbe the subspae of H spanned by {ξi, ηj|1 ≤ i, j ≤ k}. Then for eah k thereis a state on CAR(Vk) satisfying the formula and these states are oherentwith the inlusions CAR(Vk) ⊂ CAR(Vk+1). By density and ontinuity ofstates they extend to a state on CAR(H) still satisfying the formula of thetheorem.To end the proof of theorem 18.4.1 we form H ⊕ H and onsider theprojetion
p =

(

a
√
a(1−a)√

a(1−a) 1−a

). Obviously the quasifree state φp on CAR(H ⊕ H) restrits to a state on
CAR(H) ⊕ 0 satisfying the formula of the theorem.123



Exerise 18.4.4. Show that if a is diagonalisable with eigenvalues λi thenusing the basis of eignvetors to identify CAR(H) with ⊗∞M2(C), the quasi-free state with ovariane a beomes a produt state with hi =
(

λi 0
0 1−λi

).Let us think a little more about a quasi-free state whose ovariane is aprojetion p, �rst in �nite dimensions. The vetor of the GNS onstrutionhas been identi�ed with η1 ∧ η2 · · · ∧ ηk where the η are an orthonormal basisfor (1 − p)H. Physiists think of this η1 ∧ η2 · · · ∧ ηk as a new "vauum" inwhih the "states" η1, · · · ηk have been �lled. There is no partiular reason notto use this notation when dim(1− p)H = ∞ so the vauum is η1 ∧ η2 ∧ η3 · · ·whih represents Dira's �sea� and a state η1 ∧ η2 · · · ∧ η̌i ∧ · · · represents anexitation of the vauum by a �hole" or antipartile ηi.One may make of this what one likes but there is a partiularly signi�-ant mathematial onsequene. If ut is a one-parameter group of unitarieson H whih ommutes with p then the orresponding group of Bogoliubovautomorphisms αt preserves φp and so de�nes a one parameter unitary group
Ut(πφp(x)Ωp) = πφp(αt(x))Ωp of the GNS spae Hp with vauum vetor Ωpfor φp. The map from (1 − p)H to H, η 7→ a(η)∗Ωp is anti -linear so the signof t will be reversed. More onretely suppose for simpliity that ut has anorthonomal basis of eigenvetors {ξk|k ∈ Z} with

utξk = eiEktξk,and that p is the projetion onto the spae spanned by the ξk with Ek < 0.Then following through the de�nition of Ut, we see that
Utξk =

{

eiEktξk if Ek ≥ 0

e−iEktξk if Ek < 0.Physially this is remarkable. If we start with a Hamiltonian inadmissiblebeause of its negative energy eigenvalues, seond quantisation with the ap-propriate quasi-free state turns all the negative energies into positive ones!18.5 Complex strutureOne may obtain the existene of the quasi-free states without basis alula-tions by hanging the omplex struture on H.De�nition 18.5.1. If K is a real Hilbert spae, a omplex struture on K isan orthogonal transformation J with J2 = −1.124



Lemma 18.5.2. A real Hilbert spae K with inner produt (, ) and a omplexstruture J an be made into a omplex Hilbert spae by de�ning the ationof C as (x+ iy)ξ = xξ + yJξ and the inner produt
〈ξ, η〉 = (ξ, η) − i(Jξ, η)Proof. The vetor spae struture is routine as is sesquilinearity of 〈, 〉. But

〈ξ, ξ〉 = (ξ, ξ) − i(Jξ, ξ) and (Jξ, ξ) = −(ξ, Jξ) = −(Jξ, ξ) whih is thereforezero. Hene <,> is positive de�nite and de�nes the same norm as (, ) soompleteness is unhanged.De�nition 18.5.3. The Cli�ord algebra of a real Hilbert spae K is the(omplex) *-algebra generated by c(f) subjet to:(i) The map f 7→ c(f) is real linear.(ii) c(f) = c(f)∗ ∀f ∈ K.(iii) {c(f), c(g)} = 2(f, g) ∀f, g ∈ H.(learly c(f)2 = (f, f) is equivalent to (iii)).Proposition 18.5.4. If K is a real Hilbert spae with omplex struture J ,mapping a(f) to 1
2
(c(f)−ic(Jf)) de�nes an isomorphism of the CAR algebraof the omplex Hilbert spae onto the Cli�ord algebra of K. The inverse mapis given by c(f) 7→ a(f) + a(f)∗.Proof. It is routine that f 7→ a(f) is omplex-linear and satis�es the CARrelations, so the map extends to all of CAR. Also a(f) + a(f)∗ satis�es theCli�ord algebra relations and is an inverse to a(f) 7→ 1

2
(c(f)− ic(Jf)) on thegenerators hene on all of the Cli�ord algebra.Thus given a omplex Hilbert spae H and another omplex struture Jon the underlying real Hilbert spae, there is an isomorphism of omplex *-algebras χJ : CAR(H) → CAR(HJ) and hene a representation of CAR(H)every time we have one of CAR(HJ), in partiular the Fok representationof HJ gives a representation of CAR(H). Expliitly if we follow the isomor-phism through the Cli�ord algebra we obtain18.5.5.

χJ(a(f)) =
1

2

(

A(f − Jif) + A(f + Jif)∗
)where we have used A(f) for the generators of CAR(HJ).The simplest J if given by hoosing a projetion p ∈ B(H) and hangingof i on pB(H)⊥, thus J = ip− i(1 − p) (whih is atually C-linear).125



Exerise 18.5.6. Show that the state indued on CAR(H) by ξ and the Fokvauum for HJ with J as above is quasi-free of ovariane p.The question thus beomes: what does HJ , and hene its Fok spae,look like? If H is a Hilbert spae let H be the dual Hilbert spae of H and
ξ 7→ ξ be the anonial antilinear map from H to its dual.Proposition 18.5.7. Let q = (1 − p). Then the map ξ 7→ pξ ⊕ qξ is a
C-linear isomorphism from HJ to pH ⊕ (1 − p)H.Exerise 18.5.8. If the Hilbert spae H is the diret sum K⊕ L, show that
F(H) is anonially isomorphi to

⊕∞
n=0 ⊕i+j=n

(

ΛiK⊗ ΛjL
)Thus F(HJ) ∼= ⊕∞

n=0⊕i+j=n

(

ΛipH⊗Λj(1 − p)H
) on whih CAR(H) atsaording to 18.5.5.Exerise 18.5.9. Show how the general quasi-free states are related to arbi-trary omplex strutures on a omplex Hilbert spae.18.5.10 CCR algebra18.5.11 Cuntz algebraDe�nition 18.5.12. Given the omplex Hilbert spae H, let the extendedCuntz algebra of H, C(H), be the unital ∗-algebra with generators ℓ(f) foreah f ∈ H subjet to the following relations:(i) The map f 7→ ℓ(f) is linear.(ii) ℓ(f)∗ℓ(g) = 〈g, f〉 ∀f, g ∈ H.The ℓ(f) de�ned on full Fok spae show that this algebra is non-trivial.Exerise 18.5.13. Show that the representation of C(H) on full Fok spaeis faithful.This means that there is a C∗-norm on C(H) so we may onsider it as aC∗ algebra.Exerise 18.5.14. If ξ1, ξ2, ..., ξn are orthogonal unit vetors then ℓ(ξi) areisometries with orthogonal ranges, and the projetion

n
∑

i=1

ℓ(ξi)ℓ(ξi)
∗depends only on the spae spanned by ξ1, ξ2, ...., ξn.126



If H is �nite dimensional and ξi is an orthonormal basis we see that theprojetion p = 1−∑n
i=1 ℓ(ξi)ℓ(ξi)

∗ doesn't depend on anything. We may takethe quotient C∗ algebra by the two sided ideal generated by this projetion.This quotient is THE Cuntz algebra disovered by Cuntz in [℄. Note thatin the representation on full Fok spae p is the projetion onto the vauumthat we used to prove irreduibility.The ase dimH = 1 is already interesting. The full Fok spae is ℓ2(N)and if ξ is a unit vetor, ℓ(ξ) is the unilateral shift. C(H) in this ase isknown as the Toeplitz algebra and there is an exat sequene 0 → k(ℓ2(N)) 7→
C(H) 7→ C(S1) where k(ℓ2(N)) is the ideal generated by 1 − ℓ(ξ)ℓ(ξ)∗ whihis the ompat operators.If dimH > 1 it is known that the Cuntz algebra is simple ([℄).We refer to [℄ for a development of the notion of quasi-free states onthe extended Cuntz algebra. Most important is of ourse the vauum state
φ = ωΩ. It is obvious that C(H) is spanned by produts of the form
ℓ(f1)ℓ(f2) · · · ℓ(fm)ℓ(g1)

∗ · · · ℓ(gn)∗ and the vauum expetation value of thisword is 0 unless m = n = 0.Given a subspae V of H, C(V ) is naturally inluded in C(H).De�nition 18.5.15. Let ℓ(V )′′ be the von Neumann algebra generated by
C(V ) on T (H).Proposition 18.5.16. Let x ∈ ℓ(V )′′ be suh that φ(x) = 0. Then there is asequene xi with ||xi|| ≤ ||x|| of linear ombinations of produts of the form
ℓ(f1)ℓ(f2) · · · ℓ(fm)ℓ(g1)

∗ · · · ℓ(gn)∗ (with m or n di�erent from zero) suh that
xi tends strongly to x.Proof. Use Kaplansky density to get xi's in C(V ) then subtrat φ(xi) timesthe identity. Sine φ is ontinuous the orretion tends to zero.Lemma 18.5.17. The state φ has the following "freeness" property:let V1 and V2 be orthogonal subspaes of H and suppose x1x2 · · ·xn is a produtin ℓ(H)′′ suh that(i) φ(xi) = 0 ∀i(ii) Eah xi is in ℓ(V1)

′′ or ℓ(V2)
′′ and xi ∈ ℓ(V1)

′′ ⇐⇒ xi±1 ∈ ℓ(V2)
′′, then

φ(x1x2 · · · xn) = 0.Proof. Applying the previous proposition we an work in the C(V )'s wherethe result is obvious from orthogonality.127



Observe that the result works just as well for any family of mutuallyorthogonal subspaes and appropriate words. Note that the "free" terminol-ogy omes from vN(Fn) where the algebras generated by the generators of
Fn have this property with φ replaed by the trae (by essentially the samereasoning).De�nition 18.5.18. If A is a omplex unital *-algebra with a state φ, twounital *-subalgebras A1 and A2 will be alled φ-free if
φ(x1x2 · · ·xn) = 0 whenever x1x2 · · · xn is a produt in A suh that(i) φ(xi) = 0 ∀i(ii) Eah xi is in A1 or A2 and xi ∈ A1 ⇐⇒ xi±1 ∈ A2.make sure de�ntion of stateapplies to a general *-algebra The analogue of the Cli�ord algebra generators would be c(f) = ℓ(f) +
ℓ(f)∗. Taking ommutators reveals nothing interesting but onsidering C(H)on full Fok spae where we have the right reation operators and we mayform d(f) = r(f) + r(f)∗.Proposition 18.5.19. [c(f), d(f)] = 〈g, f〉 − 〈f, g〉Proof. See 18.1.5We see that c(f) and d(f) ommute if 〈f, g〉 is real.De�nition 18.5.20. A real subspae of H on whih 〈, 〉 is real will be alledisotropi A real struture on H is one of the following equivalent notinons.(i) An antilinear involution σ on H.(ii) An isotropi subspae V of H with H = V + iV .The subspae V is the �xed points for the involution σ.De�nition 18.5.21. If V is an isotropi subspae of H, all c(V ) the vonNeumann algebra generated by the c(f) for f ∈ V on T (H).Lemma 18.5.22. If V is an isotropi subspae of H then φ is a trae on
c(V ).Proof. By ontinuity it su�es to show that φ(wc(f)) = φ(c(f)w) for all
f ∈ V any word w on the c(g)'s. But

〈wc(f)Ω,Ω〉 = 〈wf,Ω〉 (18.1)
= 〈wd(f)Ω,Ω〉 (18.2)
= 〈d(f)wΩ,Ω〉 (18.3)
= 〈wΩ, d(f)Ω〉 (18.4)
= 〈wΩ, c(f)Ω〉 (18.5)
= 〈c(f)wΩ,Ω〉 (18.6)128



We will write tr for the restrition of φ to c(V ).Lemma 18.5.23. If V is a real struture on H, Ω is yli and separatingfor c(V ).Proof. By symmetry with the d(f)'s it su�es to prove that Ω is yli for
c(V ). By indution on n suppose c(V )Ω ontains ⊕n

i=0 ⊗i H. Then for
v ∈ ⊗nH, c(f)v = f ⊗ v + x with x ∈ ⊗n−1H. Hene c(V )ω ontains
f ⊗ (⊗nH) and sine H = V + iV we are done.We see that c(V ) is a �nite von Neumann algebra in standard form on
T (H). We will see that for dimh > 1 it is a type II1 fator by showing it isisomorphi to vN(Fn) where n = dimH, but let us begin by understandingthe one dimensional ase. Any unit vetor ξ spans a real struture and ℓ(ξ) isunitarily equivalent to the unilateral shift so that c(ξ) is given by the matrix

(

0 1 0 0 ···
1 0 1 0 ···
0 1 0 1 ···
0 0 1 0 ···
···

)Lemma 18.5.24. c(ξ) has no eigenvalues.Proof. If the eigenvalue were λ then it would have to be real. Let the eigen-vetor be (xn) with n ≥ 0. λ = 0 is easily exluded so xn+1 = λxn−xn−1 for
n ≥ 1 and x1 = λx0. Thus xn = Aσn + Bσ−n with both A and B di�erentfrom 0. So (xn) is not square summable.Although this lemma is enough to obtain our type II1 fator result, letus omplete the spetral analysis of c(ξ) by obtaining the moments, i.e. thetraes or vauum expetation values of c(ξ)n for n ≥ 0. Our method will bea bit long-winded but adapted to further alulations.Lemma 18.5.25. We have

tr(c(ξ)n) =

{

0 if n is odd
1

m+1

(

2m
m

) if n = 2mProof. Let x = c(ξ). Then we want to alulate
〈(x+ x∗)(x+ x∗) · · · (x+ x∗)Ω,Ω〉.That this is zero for odd n is obvious, so put n = 2m. Expand the produtinto 2n terms, eah a word on x and x∗. We want to enumerate those whihgive a non-zero ontribution to trae. There must be as many x's as x∗'s andthe word must end in x. We proeed to redue the word by the following129



algorighm: the last ourrene of x∗ is followed by an x so use x∗x = 1 toeliminate the pair. The new word must also end in x so ontinue until only
〈Ω,Ω〉 remains. We may reord the sequene of eliminations of (x∗, x) pairsby pairing them as indiated below for a typial word:

x∗ x x x∗ x x∗ x x.The diagram above the word is known as a Temperley-Lieb diagramor non-rossing pairing or planar pairing. It onsists of m smooth non-interseting ars joining the letters in the word. Thus for every suh pitureup to isotopy there is a ontribution of 1 to the trae. It remains only toount suh Temperley-Lieb diagrams. Let tn be the number of suh diagrams,with t0 set equal to 1. Then by onsidering the letter to whih the �rst letterof the word is onneted, it is obvious that
tn+1 =

n
∑

j=0

tjtn−j for n ≥ 0.Multiplying both sides by zn+1 and summing over n we get
Φ(z) − 1 = zΦ(z)2where Φ(z) =

∑∞
n=0 is the generating funtion for the tn. So

Φ(z) =
1 −

√
1 − 4z

2zand if we expand using the binomial formula we get the answer.Corollary 18.5.26. For −2 ≤ x ≤ 2 let dµ = 1
2π

√
4 − x2dx. Then thereis a trae preserving isomorphism of c(ξ)′′ onto L∞([−2, 2], dµ) sending c(ξ)onto the operator of multipliation by x.Proof. By7.1.9 it su�es to prove that

1

2π

∫ 2

−2

xn
√

4 − x2dx =

{

0 if n is odd
1

m+1

(

2m
m

) if n = 2mWe leave this as an exerise. 130



Now return to showing that c(V )′′ ∼= vN(Fn) for n = dimH. We will dothis when n = 2, leaving the general ase as a straightforward generalisation.So letH be a two dimensional omplex vetor spae with real struture V andlet V1 and V2 be the subspaes of V spanned by orthonormal vetors f1 and
f2 respetively. Then by lemma 18.5.17 we see that c(V ) is generated by twoabelian subalgebras c(V1) and c(V2) with the property that tr(x1x2 · · ·xn) = 0whenever tr(xi) = 0 ∀i and the xi are in c(V1) or c(V2) depending only on
i mod 2. But then if w = x1x2 · · · xn is any suh produt without imposing
tr(xi) = 0 we may in a universal way alulate the trae of w by writing
xi = (xi − tr(xi)) + tr(xi). The result depends only on the traes of the
xi. So if M is any other �nite von Neumann algebra with faithful normaltrae tr generated by two abelian subalgebras A1 and A2 having the sameproperty, we an onstrut an isomorphism between M and c(V ) as soon aswe are given tr-preserving isomorphisms from A1 to c(V1), and A2 to c(V2)respetively.Let us reord this more formally.Theorem 18.5.27. Let (A,A1, A2, φ) and (B,B1, B2, ψ) be algebras andstates as in de�nition 18.5.18, with A1 and A2 free with respet to φ and
B1 and B2 free with respet to ψ. Suppose θi are unital *-isomorphisms from
Ai to Bi for i = 1, 2, taking φ to ψ. Then there is a unique *-isomorphismfrom the algebra generated by A1 and A2 onto the algebra generated by B1and B2 extending θ1 and θ2.Proof. By faithfulness it su�es to show that

φ(y1y2 · · · yn) = ψ(θ(y1)θ(y2) · · · θ(yn))whenever eah yi is in either A1 or A2 and θ is θ1 or θ2 aordingly. We willprove this assertion by indution on n. We may learly assume suessive yi'sbelong to di�erent Ai's sine otherwise we an redue the length of the wordusing the properties of the θi and apply the indutive hypothesis. But thenwrite xi = yi−φ(yi) so that yi = φ(yi) +xi. Expanding (φ(y1) +x1)(φ(y2) +
x2) · · · (φ(yn) + xn) we see x1x2 · · · xn plus a linear ombination of words oflength less than n with oe�ients the same as those expanding (ψ(θ(y1)) +
θ(x1))(ψ(θ(y2))+ θ(x2)) · · · (ψ(θ(yn))+ θ(xn)) in the same way. The freenessondition and the indutive hypothesis imply the desired equality.Corollary 18.5.28. Let H be a Hilbert spae of dimension n with omplexstruture V . Then c(V )′′ ∼= vN(Fn).Proof. If Fn is free on generators ai and xi is an orthonormal basis in V for
H, then by 18.5.26,both {uai}′′ and c(Rxi) are L∞ of a standard atomless131



probability spae so there are trae preserving isomorphisms between them.We are done by 7.1.9 and the previous theorem (with 2 replaed by n).We an generalise 18.5.25 immediately to dimH > 1 as follows.Proposition 18.5.29. Let f1, f2, ..., fk be vetors in H. Then
〈c(f1)c(f2)...c(fk)Ω,Ω〉 =

∑∏

i,σ(i)

〈fi, fσ(i)〉where the sum is over all planar pairings σ of (1, 2, 3, · · · , k), with i < σ(i).Proof. The same argument as in 18.5.25 applies.Remark 18.5.30. We may form the *-algebra C〈X1, X2, · · ·Xn〉 of polyno-mials in n non-ommuting self-adjoint variables. The previous work may beonsidered as de�ning a trae on this algebra by sending Xi to c(ξi) for anorthonormal basis {ξi} of V .Thus the trae of a word x1x2x3 · · · xk, where eah of the xi is one of the
Xi is the number of Temperley Lieb diagrams as below for whih xj = xj ifthey are joined by a urve in the diagram:

x∗1 x2 x3 x∗4 x5 x∗6 x7 x8.We all this trae the Voiulesu trae on C〈X1, X2, · · ·Xn〉. An expliitformula like that of 18.5.25 is not so lear and it an be di�ult to workwith a salar produt for whih the words are not orthogonal. This an beorreted by using the obvious orthonormal basis of Fok spae as tensorproduts of the ξi. Multipliation in this basis is more ompliated but notmuh more so:Exerise 18.5.31. De�ne multipliation on C〈X1, X2, · · ·Xn〉 as follows:Let x1x2 · · · xp and y1y2...yq be words on X1, X2, · · ·Xn. Then
x1x2 · · ·xp⋆y1y2...yq =

min(p,q)
∑

i=0

δxp,y1δxp−1,y2 · · · δxp−i+1,yix1x2 · · ·xp−iyi+1yi+2 · · · yqThus for instane
X2

1X2X3 ⋆ X3X2X1X2 = X2
1X2X

2
3X2X1X2 +X2

1X
2
2X1X2 +X3

1X2 +X1X2132



We would like to show how the Voiulesu trae arises in the study of largerandom matries. For this we will use Wik's theorem onerning jointlyGaussian random variables. A omplex (entred) Gaussian random vari-able is a sum A+ iB of two independent identially distributed real entredGaussian random variables. The variane of A + iB is √E(A2) + E(B2),and E((A + iB)2) = 0. Suppose Z1, Z2 · · ·Zn are omplex entred jointlyGaussian random variables with E(ZiZj) = aij.Theorem 18.5.32.
E(Z1Z2 · · ·Zn) =

∑

σ

∏

i<σ(i)

aiσ(i)where the sum is over all pairings σ of {1, 2, · · ·n}.Now let X = Xij be a self-adjoint N × N random matrix. This meansthat the Xij are jointly Gaussian omplex random variables with
Xij = Xji for i 6= j and Xiiis real,and all other matrix entries are independent. Suppose E(|Xij |2) = d.Wewant to onsider E(Trace(Xk)). Writing this out in full we get
∑

i1,i2,···ik

E(Xi1i2Xi2i3Xi3i4 · · ·Xiki1).The individual terms in this sum an eah be expanded using Wik'sformula. In the �gure below we have represented a typial term in the ex-pansion, eah blak dot being an ourrene of X and the pairing is indiatedby urves outside the irle. We have used a irle rather than a straight linesegment to emphasize the yli aspet of the trae.133
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Beause of the independene of the Gaussians we will only get a non-zeroondition when k is even and the indies at one end of the pairing are thesame as at the other end, but in the opposite order. In order to get a non-zeroontribution, In the �gure above this fores i1 = i4, i4 = i6, i6 = i3, i3 = i2and i7 = i1. So in fat there are only 3 freely varying indies, i1, i5 and
i8 eah of whih gives a ontribution to the total sum of d3. We representeah suh ontribution below where we have thikened the urves de�ningthe pairing into (�at) ribbons. Observe that the indies i1, i5 and i8 extendto the boundary omponents of the surfae obtained by gluing the ribbonsto a entral dis. There are N3 ways to assign the indies and one assigned,eah term ontributes dk/2. So the total ontribution of all terms with thegiven pairing is N3dk/2. 134
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1Now onsider a general pairing and proeed in the same way. If we glue in(abstrat) diss along the boundary omponents we get an orientable surfaewhose Euler harateristi is �V-E+F" whih in general will be 1 − k/2 + Fwhere F is the number of diss glued in, i.e. the number of freely varyingindies for the given pairing. If g is the genus of the surfae, we have 2−2g =
F + 1 − k/2 whih gives

F = k/2 + 1 − 2g.So the total ontribution of all terms with the given pairing isNF dk/2. We seethat if d = 1√
N
then this ontribution will be N1−2g so that 1

N
E(Trace(Xk))will tend, as N → ∞, to the number of pairings with g = 0. But if the pairingis planar, obviously g = 0 and if g = 0 we know from the lassi�ation ofsurfaes that we get a 2-sphere, from whih it is lear that the partition isplanar! Hene we have shown:

lim
N→∞

1

N
E(Trace(Xk)) =

{

0 if k is odd
1

m+1

(

2m
m

) if k = 2mThe above argument works equally well with n random N ×N matries
X1, X2, · · ·Xn eah of whih has entries with ovariane as above and forwhih entries in di�erent random matries are independent. We see we haveproved the following: 135



Theorem 18.5.33. If w is a word on the random matries X1, X2, · · ·Xnas above then limN→∞
1
N
E(Trace(w)) exists and is equal to the Voiulesutrae of the same word viewed as an element of C〈X1, X2, · · ·Xn〉.This result, together with 18.5.28 gave Voiulesu a remarkable new in-sight into the vN(Fn) and he was able to prove some spetaular isomor-phisms between them -[℄.
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Chapter 19Subfators19.1 Warmup. Finite Groups.Let G be a �nite group with an outer ation α on the type II1 fator M . Let
N = MG be the �xed point algebra. We ontinue the notational onventionsfrom hapter 11 on the rossed produt.A ovariant representation of (M,α) is an ation of M on some Hilbertspae H together with a unitary representation vg on H with vgxv∗g = αg(x)for g ∈ G and x ∈M .Proposition 19.1.1. For �nite groups the rossed produt is universal forovariant unitary representations. In fat any ovariant representation of
(M,α) extends to an isomorphism from M ⋊G onto {M, {vg}}′′ by sending
ug to vg.Proof. De�ne π : M ⋊ G → {M, {vg}}′′ by π(

∑

g agug) =
∑

g agvg. π isobviously ultraweakly ontinuous so its image is a von Neumann algebra.But that image ontains M and the vg. And a type II1 fator is simple.A anonial way to obtain a ovariant representation is to extend theation of G on M to L2(M). We all these unitaries wg. We see that, for�nite groups only, another model for the rossed produt is the von Neumannalgebra on L(M) generated by M and the wg.Exerise 19.1.2. dimM M ⋊G = |G|.Proposition 19.1.3. The extension to L2(M) of the onditional expetation
EN : M → N is eN = 1

|G|
∑

g wg.Proof. Obvious. 137



Theorem 19.1.4.
JN ′J = {M ∪ {wg}}′′ = {M ∪ {eN}}′′Proof. Clearly J ommutes with the wg and eN so the assertion is the sameas N ′ = {M ′∪{wg}}′′ = {M ′∪{eN}}′′. BothM ′ and the wg's are in N ′ so itsu�es to prove that N ′ ⊆ {M ′ ∪ {eN}}′′ or equivalently {M ′ ∪ {eN}}′ ⊆ Nwhih follows from the assertion:
x ∈M and [x, eN] = 0 =⇒ x ∈ N.For this just evaluate xeN and eNx on the identity inside L2(M).Remark 19.1.5. There is atually quite a bit of ontent here. How youwould write an individual wg for instane as an element of {M ∪ {eN}}′′?Corollary 19.1.6. If G is a �nite group ating by outer automorphisms on atype II1 fatorM thenMG is a subfator with trivial entraliser, dimMG(L2(M)) =

|G| and (MG)′ ∩M ⋊G = CG.Proof. N is the ommutant of a type II1 fator inside a type II1 fator, henea type II1 fator. And N ′ ∩M = (M ′)′ ∩ {M ′ ∪ {vg}}′′ whih is the salarsby 19.1.1 and 11.2.5. For the dimension alulation note that by 11.2.5 weobtain M ⊆ M ⋊ G from any ovariant representation. In partiular wean start with the rossed produt on its own L2 spae and redue by aprojetion of trae |G|−1 in its ommutant. Thus by the formulae governingthe behaviour of dimM , dim{M,{wg}}′′ L
2(M) = |G|−1 and the result followsfrom 19.1.4. The last assertion is a trivial alulation.Exerise 19.1.7. If α is an outer ation of the �nite group G on the typeII1 fator M and ξ : G → T is a one dimensional harater, show there is aunitary u ∈M with

αg(u) = ξ(g)u ∀g ∈ G.Hint: try a 2x2 matrix argument, hanging the ation α⊗1 by Advg, vg beingthe unitary ( 1 0
0 ξ(g)

).The group Ĝ of all 1-dimensional haraters ξ : G → T ats on M ⋊ Gvia the formula
α̂ξ(
∑

g

agug) =
∑

g

ξ(g)agugThis is alled the dual ation. 138



Exerise 19.1.8. Show that the dual ation (even for in�nite groups G) isouter.If G is abelian one may form the rossed produt
(M ⋊α G) ⋊α̂ ĜExerise 19.1.9. Show that if G is �nite, the seond dual ation of G on

(M ⋊α G) ⋊α̂ Ĝ is onjugate to the "stabilised" ation
α⊗ Adℓgon M ⊗ B(L2(G)) (where ℓg is the left regular representation).The result of the previous exerise remains true for loally ompat abeliangroups and motivates an alternative de�nition of the rossed produt as the�xed points for the stabilised ation.19.2 Index.Inspired by the above and 10.2.2 we make the following:De�nition 19.2.1. If N ⊆ M are II1 fators, the index [M : N ] of N in Mis the real number dimN L

2(M).Exerise 19.2.2. Show that [M : N ] = 1 implies N = M .Proposition 19.2.3. (i) If M ats on H so that dimN H <∞ then
[M : N ] =

dimN H
dimM H .(ii) If [M : N ] < ∞ and p is a projetion in N ′ ∩M then set [M : N ]p =

[pMp : pN ], then
[M : N ]p = trN ′(p)trM (p)[M : N ].(for any ation of M on H for whih N ′is a type II1 fator.) (iii) If {p} isa partition of unity in N ′ ∩M then

[M : N ] =
∑

p

[M : N ]p
tr(p)

.(iv) If N ⊆ P ⊆ M are type II1 fators then
[M : N ] = [M : P ][P : Q].(v) If M ats on H suh that dimN H <∞ then

[M : N ] = [N ′ : M ′]139



Proof. (i) CertainlyM ′ (on H) is a type II1 fator sine N ′ is and taking thediret sum of �nitely many opies of H will not hange the ratio dimN H
dimM H . Sowe may assume dimM H ≥ 1 whih means there is a projetion p in M ′ with

pH ∼= L2(M) as an M module. But the trae of this p in N ′ is the same asthe trae in M ′ by uniqueness of the trae. Hene by the properties of theoupling onstant, dimN H
dimM H does not hange under redution by this p.(ii) This follows immediately from (i) and properties of the oupling onstant.(iii) Just sum [M :N ]p

trM(p)
over p.(iv) The only ase of interest is when [M : N ] <∞. Then the result followsimmediately from (i).(v) Immediate from (i).Corollary 19.2.4. If N ′ ∩M 6= Cid then [M : N ] ≥ 4.De�nition 19.2.5. We all a subfator irreduible if N ′ ∩M = Cid.De�nition 19.2.6. A subfator N ⊆ M is alled loally trivialif [M : N ]p = 1 for any minimal projetion in N ′ ∩M .Exerise 19.2.7. Show that dim(N ′ ∩M) ≤ [M : N ].Here is a list of what might be alled the "lassial" subfators- oneswhose existene owes nothing to the dediated development of subfator the-ory.Example 19.2.8. The trivial subfators.If M is a type II1 fator, so is M ⊗Mk(C) for any integer k > 0. We anembed M in M ⊗Mk(C) by x 7→ x ⊗ 1. It is lear that L2(M ⊗Mk(C)) isthe diret sum of k2 opies of L2(M) so [M ⊗Mk(C) : M ] = k2.Example 19.2.9. Continuously varying index.Choose a projetion of trae d in the hyper�nite type II1 fator R. Then

pRp and (1 − p)R(1 − p) are isomorphi by hyper�niteness so hoose a vonNeumann algebra isomorphism θ : pRp → (1− p)R(1 − p). Let M be R and
N be the subalgebra {x + θ(x)|x ∈ pRp}. It is lear that pMp = Np and
(1 − p)M(1 − p) so by lemma 19.2.3,

[M : N ] =
1

d
+

1

1 − d
.As d varies between 0 and 1, this index takes all real values ≥ 4.Observe though that N ′∩M ontains p so the subfator is reduible. Theset of index values for irreduible subfators of R is not understood thoughfor other type II1 fators it may be the interval [4,∞]140



Example 19.2.10. Group-subgroup subfators.If G is a disrete group ating by outer automorphisms on the type II1 fator
M , and H is a subgroup of G, it is lear that M ⊗H is a subfator ofM ⊗Gof index [G : H].If G is �nite we may onsider MG ⊆ MH whih also has index [G : H]by 19.1.2 and 19.2.3Example 19.2.11. Making the trivial non-trivial.De�nition 19.2.12. An ation of a ompat group on a fator M is alledminimal if (MG)′ ∩M = Cid.If G has a minimal ation α on M and ρ is an irreduible unitary repre-sentation of G on Ck we may take the ation α ⊗ Adρ on M ⊗Mk(C). Onethen de�nes the "Wassermann subfator"

(M ⊗ 1)G ⊆ (M ⊗Mk(C))G.The point is that the ommutant of (M ⊗ 1)G in M ⊗Mk(C) is already just
Mk(C) by minimality of the ation. So the �xed points are indeed fatorsand the Wassermann subfator is irreduible.Already for �nite groups this provides lots of examples. If G is in�nitethere is a simple way to onstrut minimal ations. Just take a �nite dimen-sional unitary representation ρ and onsider ⊗∞

1 Adρ on R. The group S∞ isontained in the �xed points via its (inner) ation permuting the tensor prod-ut fators. Moreover if we hoose an orthonormal basis {xi|i = 1, 2, ...k2} for
Mk(C) with x1 = 1, an orthonormal basis of R is formed by tensors ⊗∞

j=1xi(j)indexed by funtions i : N → {1, 2, · · · , k2} with i(j) = 1 for su�ientlylarge j. The ation of S∞ on this basis has only one �nite orbit-that of theidentity. So the only �xed points on in L2(R) are the salar multiplies of theidentity.Example 19.2.13. Finitely generated disrete groups.This example shows that �nite index subfators an be in�nite objets indisguise. Let Γ = 〈γ1, γ2 · · · γk〉 be a �nitely generated disrete group. Wehave seen that Γ an at in lots of ways, in partiular outer, on type II1fators. Choose any ation on M and for eah x in M de�ne the matrix
d(x) = xi,j over M by

xi,j =

{

0 if i 6= j

γi(x) if i = j141



Then onsider the subfator
D(M) = {d(x)|x ∈M} ⊆ M ⊗Mk(C).This subfator is loally trivial so its index is k2 and one may think of it asa "twisted" version of the trivial subfator of index k2.Exerise 19.2.14. Show that dim(D(M)′ ∩M ⊗Mk(C)) = k i� γ−1

i γj isouter whenever i 6= j.In fat one may easily extrat the image of Γ modulo inner automorphismsfrom the subfator D(M).We now want to onsider an entirely arbitrary subfator. For this the fol-lowing "basi onstrution" is important. We have already seen its usefulnessfor �nite group ations.Proposition 19.2.15. Let N ⊆ M be a type II1 fators ating on L2(M)and let eN be the extension to L2 of the trae-preserving onditional ENexpetation onto N . Then
JN ′J = (JNJ)′ = {M, eN}”.Proof. Already done in 19.1.4.De�nition 19.2.16. The von Neumann algebra 〈M, eN 〉 = {M, eN}” of theprevious result is said to be the "basi onstrution" for N ⊆M .Here are the most important fats about the basi onstrution. It willbe onvenient from now on to use τ for [M : N ]−1. Sine 〈M, eN 〉 is a typeII1 fator its trae is unique and its restrition to M is the trae of M . Sowe just use tr for it.Proposition 19.2.17.(i) For x ∈M, [x, eN] = 0 i� x ∈ N .(ii) eNxeN = EN (x)eN for x ∈M .(iii) [M : N ] <∞ i� 〈M, eN 〉 is a type II1 fator, in whih ase

[〈M, eN〉 : M ] = [M : N ].(iv) M +MeNM is a weakly dense *-subalgebra of 〈M, eN 〉.(v) eN〈M, eN 〉eN = NeN(vi) tr(eN ) = [M : N ]−1(vii) For x ∈M , tr(eNx) = τtr(x) 142



Proof. (i) was done in 19.1.4.(ii) is a onsequene of the bimodule property of EN on the dense subspae
M of L2(M).(iii) is immediate from proposition 19.2.15.(iv) Closure ofM+MeNM under multipliation follows from (ii). It ontains
M and eN hene is dense.(v) Follows immediately from (ii) and (iv).(vi) Follows from (v) and the behaviour of the oupling onstant under re-dution by projetions-note that eN(L2(M)) = L2(N).(vii) tr(xeN) = tr(eNxeN) = tr(eNxeN) = tr(EN(x)eN) = τ (EN(x) wherewe dedue the last equality from uniqueness of the trae on the type II1 fator
N . Sine the onditional expetation preserves the trae, we are done.From now on we will use τ for [M : N ]−1.Corollary 19.2.18. There is no subfator N ⊆M with 1 < [M : N ] < 2.Proof. By the uniqueness of the trae we see that trN ′(eN ) = τ . Thus trN ′(1−
eN) = 1 − τ . Hene [(1 − eN )〈M, eN 〉(1 − eN) : N(1 − eN)] = (1 − τ )2(1/τ )2whih is less than 1 if 1/2 < τ < 1.If we suppose [M : N ] < ∞ we see we may do the basi onstrutionfor M ⊆ 〈M, eN 〉. In the type II1 fator 〈〈M, eN 〉, eM〉 we have the twoprojetions eM and eN .Proposition 19.2.19.

eMeNeM = τeM and eNeMeN = τeN.Proof. For the �rst relation we must show that EM(eN ) = τ id. But this isjust another way of saying (vii) of 19.2.17.To prove the seond relation, by (iv) of 19.2.17 it su�es to apply eah sideto elements of the form x + yeNz ∈ L2(〈M, eN 〉) for x, y, z ∈ M . To do thisnote that eN ats by left multipliation.Corollary 19.2.20. If [M : N ] 6= 1 then
eM ∨ eN =

1

1 − τ
(eN + eM − eMeN − eNeM)Proof. The relations show that eN and eM generate a 4-dimensional non-ommutative algebra. By our analysis of two projetions its identity mustbe a multiple of (eM − eN)2. The normalisation onstant an be obtained byevaluating the trae. 143



Note that the speial ase eN ∨ eM = 1 (whih is equivalent to τ = 1/2or index 2) means that eN and eM satisfy an algebrai relation.Exerise 19.2.21. Use this relation to prove that, in index two, 〈〈M, eN 〉, eM 〉is the rossed produt of 〈M, eN 〉 by an outer ation of Z/2Z. Use dualityto dedue Goldman's theorem ([℄): a subfator of index 2 is the �xed pointalgebra for an outer Z/2Z ation.Let φ be the golden ratio 1+
√

5
2

.Corollary 19.2.22. There is no subfator N ⊆ M with 2 < [M : N ] < φ2.Proof. We see that eN and eM are equivalent in the algebra they generateso their traes are equal wherever they are. Thus tr〈〈M,eN〉,eM 〉(eN∨M) =
trN ′(eN∨M ) = 2τ and
[(1− eN ∨ eM)〈〈M, eN 〉, eM〉(1 − eN ∨ eM) : (1− eN ∨ eM)N ] = (1 − 2τ )2τ−3This is less than 1 if φ−2 < τ < 1/2.If we did yet another basi onstrution in the same way and alulatedthe trae of the supremum of the three onditional expetations we wouldonlude that there is no subfator with index between φ2 and 3. But it ishigh time to systematise the proess.19.3 The tower of type II1 fators and the ei's.De�nition 19.3.1. Let N ⊆ M be a subfator of �nite index τ−1. Set
M0 = N,M1 = M and de�ne indutively the tower of type II1 fators

Mi+1 = 〈Mi, eMi−1
〉.Set ei = eMi−1

for i = 1, 2, 3, · · · .Proposition 19.3.2. The ei's enjoy the following properties.(i) e2
i = e∗i = ei(ii) eiej = ejei if |i− j| ≥ 2(iii) eiei±1ei = τei(iv) tr(wei+1) = τtr(w) for any word w on {e1, e2, · · · ei}.Proof. These are all trivial onsequenes of the 19.2.17 and 19.2.20. Notethat the trae in (iv) is unambiguous by uniqueness of the trae on a typeII1 fator. 144



The relations of proposition 19.3.2 were disovered, albeit in a slightlydisguised form, in statistial mehanis in [℄, and were presented in almostthe above form in [℄ although property (iv) does not appear. With a beautifulinsight they were given a diagrammati form in [℄. They are now universallyknown, in whatever form, as the Temperley-Lieb relations or the Temperley-Lieb algebra. We present Kau�man's diagrammatis in the appendix A.There is a lot of interesting ombinatoris going with the Temperley-Liebalgebra but we want to get diretly to the results on index for subfators.Here are some exerises to familiarise the reader with these relations.Exerise 19.3.3. Any word w on e1, e2, · · · en whih is redued in the obvioussense with respet to the relations 19.3.2 ontains en (and e1) at most one.Exerise 19.3.4. The dimension of the algebra generated by 1 and e1, e2, · · · enis at most
1

n+ 2

(

2n+ 2

n+ 1

)(This exerise is the �rst hint that there might be some onnetion be-tween subfators and random matries-see 18.5.25.)19.4 Index restritionsIt is lear from the restritions we have obtained so far that we should beinterested in the trae of the sup of the �rst n ei's.De�nition 19.4.1. Let Pn(τ ) be the polynomials de�ned by P0 = 1, P1 = 1and
Pn+1 = Pn − τPn−1Thus P2 = 1 − τ = tr(1 − e1), P3 = 1 − 2τ = tr(1 − e1 ∨ e2) and

P4(τ ) = 1 − 3τ + τ 2.Exerise 19.4.2. De�ne q by τ−1/2 = q+q−1. Show that Pn(τ ) is essentiallythe "quantum integer" [n+ 1]q =
qn+1 − q−n−1

q − q−1
, to be preise

Pn(τ ) =
[n+ 1]q
([2]q)nDe�nition 19.4.3. Put f0 = 1 and for eah n = 1, 2, 3, · · · let

fn = 1 − e1 ∨ e2 ∨ · · · ∨ en. 145



Note that the fn are dereasing.Theorem 19.4.4. If fn 6= 0 then
tr(fn+1) = Pn+2(τ )Proof. Observe that the assertion is true for n = 0. Now suppose it is trueup to n. For onveniene set sn = 1 − fn = e1 ∨ e2 ∨ e3 · · · ∨ en. We wantto alulate tr(sn ∨ en+1) and we know tr(sn) and tr(en). So it su�es toalulate tr(sn ∧ en+1). To do this note that en+1snen+1 = EMn(sn)en+1 by19.2.17, and EMn(sn) is in the algebra generated by {1, e1, e2, · · · en−1} by19.3.3 and (iv) of 19.3.2. But by the bimodule property for a ondionalexpetation eiEMn(sn) = EMn(sn)ei = ei for i ≤ n − 1. So snEMn(sn) isthe identity for the algebra generated by {e1, e2, · · · en−1} and EMn(sn−1) =

sn−1+(1−sn−1)EMn(sn). However 1−sn−1 is a minimal and entral projetionin this algebra so
EMn(sn) = sn + λ(1 − sn)for some onstant λ. Obviously 0 ≤ λ ≤ 1 beause onditional expetationsdo not inrease norms. But if λ were equal to 1, we would have EMn(sn) = 1whih implies sn = 1, i.e. fn = 0 by faithfulness of the onditional expeta-tion. Thus λ < 1 and taking the limit as k → ∞ of (en+1snen+1)

k,
en+1 ∧ sn = en+1sn−1Taking the trae we see that tr(en+1 ∧ sn) = τtr(sn−1).Finally tr(sn+1) = tr(sn)+τ−τtr(sn−1) and tr(fn+1) = tr(fn)−τtr(fn−1).By indution and the de�nition of the Pn we are through.The formula of the next theorem is due to Wenzl in [℄ whih ontainsomplete information about families of projetions on Hilbert spae satisfying(i),(i) and (i)Theorem 19.4.5. If fn 6= 0 then

fn+1 = fn −
Pn(τ )

Pn+1(τ )
fnen+1fnProof. It is easy to hek for n = 1 and n = 2 for good measure.So suppose fn 6= 0. Then by the previous result Pn+1(τ ) 6= 0 and we mayonsider the element x = fn −

Pn(τ )

Pn+1(τ )
fnen+1fn. Obviously eix = 0 = xei146



for i ≤ n and en+1x = en+1fn− Pn(τ )
Pn+1(τ )

EMn(fn)en+1fn. By indution and thede�nition of Pn,
EMn(fn) =

Pn+1(τ )

Pn(τ )
fn−1Sine the fn are dereasing we get en+1x = 0 = xen+1 whih means x is a(possibly zero) multiple of fn+1. But the trae of x is Pn+2(τ ) so we are doneby the previous theorem.Theorem 19.4.6. Let N ⊆ M be type II1 fators. Then if [M : N ] < 4 it is

4 cos2 π/n for some n = 3, 4, 5, . . . .Proof. Observe that Pn(0) = 1 for all n. If we put q = eiθ in 19.4.2 we seethat τ−1 = 4cos2 θ and
Pn−1(τ ) =

sin nθ

2n−1 sin θ(cos θ)n−1This is zero for q a 2nth. root of unity (exept q = 1) and the one withlargest osine is θ = π/n. Thus the smallest real zero of Pn is 1
4 cos2 π/(n+1)

.Moreover π/(n+1) < π/n < 2π/(n+1). So Pn+1(τ ) < 0 between 1
4 cos2 π/(n+1)and 1

4 cos2 π/n
while Pk(τ ) > 0 for k ≤ n and τ in the same interval. Thusif τ is stritly between 1

4 cos2 π/(n+1)
and 1

4 cos2 π/n
we onlude that fn > 0 and

tr(fn+1) < 0 whih is impossible.19.5 Finite dimensionsIt is nie to have these restritions on the values of the index but at thisstage the only values we know between 1 and 4 are 2 and 3. We will showthat all the values of theorem 19.4.6 atually our. We will use a kindof "bootstrap" method. If the value of the index exists then there are ei'ssatsfying the relations of 19.3.2. But then we may onsider the von Neumannalgebra in the towerMn generated by {e1, e2, e3, · · · }. We will show that thisis a fator. Moreover we will see that the subfator generated by {e2, e3, · · · }will be seen to have index τ−1. But this presupposes the existene of thesubfator! For τ < 1/4 we an get the ei's from the tower obtained fromexample 19.2.9. For τ ≥ 1/4 we will be able to onstrut a tower omingfrom inlusions A ⊆ B of �nite dimensional von Neumann algebras whihgets around the problem. For this we obviously need to know how the basionstrution works in �nite dimensions.147



Reall from 4.4.3 that a unital inlusion A ⊆ B of �nite dimensional vonNeumann algebras is given by a vetor ~v whose entries are labelled by theminimal entral projetions of A and a matrix Λ = λp,q where q runs over theminimal entral projetions in A an p over the minimal entral projetions in
B. Λ~v is then vetor whose entries are the ranks of the simple omponents of
B. If e ≤ p is minimal in A and f ≤ q is minimal in B then ef is a projetionof rank λp,qin the fator qB.De�nition 19.5.1. We all ~v as above the dimension vetor of a �nite di-mensional von Neumann algebra and the matrix Λ the inlusion matrix. Wewill write ~vA and ΛB

A if we need to speify whih algebras we are talking about.We will say the inlusion is onneted if Z(A) ∩ Z(B) = Cid, whih an bereognised by onnetedness of the obvious bipartite graph assoiated to theinlusion matrix.Thus in full:
ΛB
A~vA = ~vBThis information is onveniently reorded graphially:

1

5 4

2 3Here A = M2(C)⊕M3(C)⊕C so ~vA =
(

2
3
1

) and B = M5(C)⊕M4(C) so
~vB = ( 5

4 ). There is no "multipliity" so minimal projetions in A are sumsof minimal projetions in di�erent simple omponents of B and the inlusionmatrix is ( 1 1 0
0 1 1 ).Exerise 19.5.2. If A ⊆ B and B ⊆ C then ΛC

A = ΛC
BΛB

A.This an be done by pure thought observing that ΛB
A is just the matrixof the inlusion map from K0(A) to K0(B).The basi onstrution an be performed without reourse to a traesimply by de�ning it as the ommutant on B of the right ation of A whihallows us to identify its entre with that of A. But we are after the ei's solets use (positive) traes.De�nition 19.5.3. If A is a �nite dimensional von Neumann algebra withtrae tr de�ne the trae vetor ~tr to be the row vetor whose entries are148



indexed by the entral projetions of A and whose pth. entry is tr(e), e beinga minimal projetion in A, e ≤ p.Remark 19.5.4.(i)A trae is learly normalised i� ~tr · ~vA = 1.(ii) If A ⊆ B are as above and Tr is a trae on B whose restrition to A is
tr then:

~T rΛ = ~trGiven a (normalised) faithful trae Tr on B we may perform the basionstrution 〈B, eA〉 exatly as for type II1 fators.The entre of 〈B, eA〉 an be identi�ed with that of A by x 7→ JxJ so theinlusion matrix for B ⊆ 〈B, eA〉 will have the same shape as the transposeof that of A ⊆ B.Exerise 19.5.5. Show that
Λ

〈B,eA〉
B = (ΛB

A)tThus in the example above we would get the "Bratteli" diagram:
4

5 4

2 3 1

5 9for the tower A ⊆ B ⊆ 〈B, eA〉.In the non-fator ase there is no anonially de�ned trae on the basionstrution. For obvious reasons we would like to have suh a trae TRwith the ruial property TR(eAx) = τT r(x) for x ∈ B.Theorem 19.5.6. If A ⊆ B is a onneted inlusion with matrix Λ, there isa unique normalised trae Tr on B whih extends to a trae TR on 〈B, eA〉suh that EB(eA) ∈ Cid. ~TRΛΛt = τ−1 ~TR for τ satisfying EB(eA) = τeA.Proof. Observe that if f is a minimal projetion in A then eAf is a minimalprojetion in 〈B, eA〉 by (v) of 19.2.17. If p is a minimal entral projetionin A with pf = f , we want to show that eAf is under JpJ . To do this it isenough to show that JpJeAf 6= 0. But applying it to the identity in B we get
fp. So if Tr has an extension TR satisfying TR(eAx) = τT r(x) for x ∈ B,149



TR(eAf) = τT r(f). This means that the trae vetor ~TR is τ ~tr where tr isthe restrition of Tr to A. On the other hand by exerises 19.5.2 and 19.5.5we have ~tr = ~TRΛΛt. So ~TR is the suitably normalised Perron-Frobeniuseigenvetor for the irreduible matrix ΛΛt with eigenvalue τ−1. Hene TR isunique and so is Tr.Corollary 19.5.7. If τ−1 is the Perron Frobenius eigenvalue for an irre-duible matrix ΛtΛ for an N-valued matrix Λ, there exists a von Neumannalgebra M with faithful trae tr ontaining an in�nite sequene of projetions
ei satisfying the relations of 19.3.2.Proof. Choose a onneted inlusion A ⊆ B with matrix Λ and trae TRon 〈B, eA〉 as above. Then if we onsider the inlusion B ⊆ 〈B, eA〉, we seethat ~T r = ~TRΛ is the Perron-Frobenius eigenvetor for ΛΛt so the trae on
〈B, eA〉 guaranteed by the previous theorem has the same value of τ and isequal to TR. We may thus iterate the basi onstrution always using thetrae given by the theorem. To getM just use GNS on the union of the (C∗-)algebras in the tower.Remark 19.5.8. In fat the M onstruted above is a type II1 fator (pro-vided τ 6= 1 ....). This follows from the fat that the only trae on the toweris in fat the one used. See exerise 6.2.1.19.6 Existene of the 4 cos2 π/n subfators.De�nition 19.6.1. GIven a �nite von Neumann algebra M with faithfulnormal normalised trae tr ontaining a sequene ei of projetions satisfying19.3.2 we de�ne the algebra P = {e1, e2, e3 · · · }′′ and the subalgebra Q =
{e2, e3, · · · }.We will have shown the existene of subfators of index 4 cos2 π/n foreah n = 3, 4, 5, · · · if we an show:(i) For eah n there exists an N-valued matrix Λ whose norm is 2 cos π/n.(ii) P and Q are type II1 fators and [P : Q] = 4 cos2 π/n.Let us begin with (i) sine it is easy. Just onsider the matrix whih is theadjaeny matrix Λn in the bipartite sense for the graph An with n verties:

.......... 150



Thus for n = 2m even, Λn is m×m and for n = 2m+1 it is m× (m+1).In both ases
λi,j =

{

1 if i = j or j + 1

0 otherwiseExerise 19.6.2. Show that ||Λn|| = 2cos π/(n+ 1).Note that these are not the only hoies for Λ. If Λ is the bipartite adja-eny matrix for a Coxeter-Dynkin graph of type A, D or E one has:
||Λ|| = 2cos π/n where n =































n + 1 for An

2n − 2 for Dn

12 for E6

18 for E7

30 for E8These are the only possibilities for ||Λ|| < 2 (see [℄).Now let us show that P (and hene obviously Q) is a fator.We will need a simple lemma.Lemma 19.6.3. With notation as in 19.6.1, any normal trae on P is de-termined by its restrition to all ommutative subalgebras of the form AI =
{ei|i ∈ I}′′ where I is a subset of N with the property that

i, j ∈ I =⇒ |i− j| ≥ 2.Proof. If φ is a normal trae on P it is determined by its value on wordson the ei's. But it is a simple matter to dedue from exerise 19.3.3 thatany word an be redued after yli permuations to a multiple of a word inwhih all the indies of ei's di�er by at least two.Theorem 19.6.4. Let P , M and tr be as in de�nition 19.6.1. Then P is atype II1 fator (provided τ 6= 1).Proof. By 19.6.3 it su�es to show that any normal normalised trae on Pis equal to tr. But let φ be suh a trae. Let I be as in 19.6.3. Embed I intoan in�nite set J with the same property. Let i < j be elements of J withnothing in between i and j in J . We laim the the normaliser of AJ ontainsa self-adjoint unitary u suh that ueiu = ej and ueku = ek for k 6= i, j.For this just onsider the algebra generated by 1, ei, ei+1, ei+2 · · · ej. The151



projetions ei and ej are equivalent in this �nite dimensional von Neumannalgebra and it is a simple exerise to see that two equivalent projetions in amatrix algebra are always onjugate under a self-adjoint unitary.But AJ is the in�nite tensor produt of opies of C2 with produt stategiven by tr(ei) = τ . And the normaliser ontains the group S∞ ating bypermuting the tensor produt omponents. So just as in 19.2.11, the ation of
S∞ is ergodi and there is only one invariant probability measure absolutelyontinuous with respet to tr. Thus tr = φ on AJ and we are done.The last detail is to show that Q ⊆ P has the right index.Theorem 19.6.5. [P : Q] = τ−1.Proof. Perform the basi onstrution 〈P, eQ〉. P is spanned by words of theform ae1b with a and b in Q. Let R = {e3, e4, · · · }′′. Using 19.3.2 we have
e1(ae1b) = ER(a)e1b and e1eQe1(ae1b) = τER(a)e1b. And easily eQe1eQ =
τeQ. Thus eQ and e1 are equivalent in 〈P, eQ〉.We onlude �rst that 〈P, eQ〉 is a type II1 fator sine eQ is a �niteprojetion ( eQ〈P, eQ〉eQ = QeQ), and a �nite projetion in a II∞ fatorannot be in a II1 subfator. So tr(eQ) = τ−1 sine tr(e1) = τ−1.19.7 The struture of the algebras En = {e1, e2, · · · en}′′.We have that En is �nite dimensional but we will see that its dimensiondepends on τ . Clearly En ⊆ En+1 so there is a Bratteli diagram to ompute.Theorem 19.7.1. "Generially", that is for 0 < τ ≤ 1/4, the Bratteli dia-gram for the tower En is below:Where we have reorded the traes of minimal projetions in eah simplesummand.Proof.
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Appendix AKau�man's diagrammatis for theTemperley-LIeb algebra.
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Appendix BProof of the KMS ondition.Theorem B.0.2. Let φ be a faithful normal state on a von Neumann algebra
M . Then the modular group σφt is the unique one parameter automorphismgroup of M whih satis�es the KMS ondition for φ.Proof. Perform the GNS onstrution with anonial yli and separatingvetor Ω and modular operators S = J∆1/2. Reall that f(∆)Ω = Ω for anyfuntion of ∆ with f(1) = 1. In partiular φ(σφt (x) = 〈(∆itx∆−itΩ,Ω〉 so σφtpreserves φ.Now let us hek the rest of the KMS ondition. We have

φ(σφt (x)y) = 〈∆−ityΩ, x∗Ω〉and
φ(yσφt (x)) = 〈yσφt (x)Ω,Ω〉

= 〈J∆1/2σφt (x
∗)Ω, J∆1/2yΩ〉

= 〈∆1/2yΩ,∆1/2∆itx∗Ω〉
= 〈∆1/2−ityΩ,∆1/2x∗Ω〉So let ξ = yΩ, η = x∗Ω and let pn be the spetral projetion for ∆ forthe interval [1/n, n] so that pn tends strongly to 1 and ∆±1 are bounded on

pnHφ. The funtions
Fn(z) = 〈∆−izpnξ, η〉are then entire and

|Fn(t) − φ(σφt (x)y)| = |〈∆−it(1 − pn)ξ, η〉| ≤ ||(1 − pn)ξ|| ||η||
|Fn(t+ i) − φ(yσφt (x))| = |〈∆1/2−it(1 − pn)ξ,∆

1/2η〉| ≤ ||(1 − pn)∆
1/2ξ|| ||∆1/2η||.155



Hene the Fn are bounded and ontinuous on the strip {z : 0 < ℑmz < 1}and onverge uniformly on its boundary. By the Phragmen-Lindelof theoremwe are done.Now let us prove uniqueness of the modular group with the KMS ondi-tion.Let αt be another ontinous one-parameter automorphism group satisfy-ing KMS for φ. The fat that αt preserves φ means we an de�ne a stronglyontinous one-parameter unitary group t 7→ ut by utxΩ = αt(x)Ω. By Stone'stheorem it is of the form t 7→ Dit for some non-singular positive self-adjointoperator A. The goal is to prove that D = ∆. As a �rst step we onstrut adense set of analyti vetors in MΩ by Fourier transform. Let A be the setof all operators of the form
∫ ∞

−∞
f̂(t)αt(x)dxfor all C∞ funtions f of ompat support on R. The integral onvergesstrongly so

f(log(D))xΩ =

∫ ∞

−∞
f̂ (t)Dit(xΩ)dxis in AΩ. Thus the spetral projetions of D are in the strong losure of Aand AΩ is dense. Moreover z 7→ DzxΩ is analyti for x ∈ A sine xΩ isin the spetral subspae of A for a bounded interval. Also AΩ is invariantunder Dz by the funtional alulus. To ompare with φ de�ne, for x and yin A, the entire funtion

F1(z) = 〈D−izyΩ, x∗Ω〉.Let F be the funtion, analyti inside the strip and ontinuous and boundedon it, guaranteed for x and y by the KMS ondition. Then if we de�ne G(z)for −1 ≤ ℑmz ≤ 1 by
G(z) =











F (z)− F1(z) if ℑmz ≥ 0;
F (z) − F1(z) if ℑmz ≤ 0.Sine F and F1 agree on the real line G is analyti for −1 < ℑmz < 1, henehek typesetting equal to 0, and sine both F and F1 are ontinous on the strip, φ(yσt(x)) =

F (t+ i) = F1(t+ i) = 〈D1−ityΩ, x∗Ω〉. In partiular putting t = 0 we get
〈DyΩ, x∗Ω〉 = φ(yx)

= 〈xΩ, y∗Ω〉
= 〈J∆1/2x∗Ω, J∆1/2yΩ〉
= 〈∆1/2yΩ,∆1/2x∗Ω〉156



So ∆1/2yΩ is in the domain of ∆1/2 and ∆yΩ = DyΩ.Thus D and ∆ agree on AΩ. But multipliation by the funtion ez + 1 isa linear isomorphism of C∞
c so by funtional alulus (D+1)AΩ = AΩ whihis thus dense. Sine D + 1 is invertible by spetral theory, any (ξ, (D + 1)ξ)in the graph of D+1 an be approximated by (AnΩ, (D+1)AnΩ). Thus D isessentially self-adjoint on AΩ, and both ∆ and D are self-adjoint extensionsof the restrition of D to this domain. Thus D = ∆.
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