V. F. R. JONES: THE TYPE OF CROSSED PRODUCT VON NEUMANN ALGEBRAS

CHRISTIAN VOIGT

ABSTRACT. This is an exposition of a section in the lecture notes by Jones. We discuss the type of von Neumann algebras obtained from the group-measure space construction.

Throughout the notes we consider only σ -finite measure spaces. Moreover Γ will always be a discrete group. For most purposes it is convenient to assume Γ to be countable, but we will indicate the steps where this is needed.

1. A TYPE *III*-ACTION

Let us recall the following definitions.

Definition 1.1. Let Γ be a discrete group acting on the measure space (X, μ) . The action is called

a) (essentially) transitive if there exists $x \in X$ such that $\mu(\Gamma \cdot x) = \mu(X)$.

b) (essentially) free if for every $e \neq \gamma \in \Gamma$ we have

$$\mu(\{x \in X | \gamma \cdot x = x\}) = 0$$

c) ergodic if for every measurable subset $A \subset X$ satisfying

$$(A\Delta(\gamma \cdot A)) = 0$$

for all $\gamma \in \Gamma$ we have either $\mu(A) = 0$ or $\mu(X \setminus A) = 0$.

If Γ acts ergodically on X and $Y \subset X$ is a Γ -invariant measurable subset then we have either $\mu(Y) = 0$ or $\mu(X \setminus Y) = 0$. Although not needed in the sequel, let us verify that ergodicity is in fact equivalent to this apparently weaker condition if the group is countable.

Lemma 1.2. If Γ is a countable group acting on the measure space (X, μ) then the action is ergodic iff for every Γ -invariant measurable subset $Y \subset X$ we have either $\mu(Y) = 0$ or $\mu(X \setminus Y) = 0$.

Proof. Assume first that the action is ergodic and let $A \subset$ be measurable with $\mu(A\Delta(\gamma \cdot A)) = 0$ for all $\gamma \in \Gamma$. Let

 $B = \{ x \in A | \gamma \cdot x \in A \text{ for all } \gamma \in \Gamma \} = \{ x \in X | \forall \gamma \in \Gamma \exists x_{\gamma} \in A : \gamma \cdot x_{\gamma} = x \}.$

Then

$$\mu(B) = \mu\left(\bigcap_{\gamma \in \Gamma} \gamma \cdot A\right) = \mu\left(A \setminus \bigcup_{\gamma \in \Gamma} A\Delta(\gamma \cdot A)\right) = \mu(A)$$

since $\bigcup_{\gamma \in \Gamma} A\Delta(\gamma \cdot A)$ is a μ -null set. Here we use that Γ is countable. Since B is Γ -invariant we obtain $\mu(A) = 0$ or $\mu(X \setminus A) = 0$ as claimed.

Conversely let $Y \subset X$ be Γ -invariant. Then $Y \Delta \gamma \cdot Y = \emptyset$ for all $\gamma \in \Gamma$. Hence the condition implies $\mu(Y) = 0$ or $\mu(X \setminus Y) = 0$.

Lemma 1.3. If the discrete group Γ acts ergodically on the measure space (X, μ) preserving the σ -finite measure μ then any other Γ -invariant measure ν on X which is absolutely continuous to μ is of the form $\nu = \lambda \mu$ for some $\lambda > 0$.

Proof. Since ν is assumed to be absolutely continuous to μ we can consider the Radon-Nikodym derivative $f = d\nu/d\mu$. Recall that $f: X \to [0, \infty)$ is a measurable function such that

$$\nu(A) = \int_A f d\mu$$

for all measurable sets $A \subset X$. Since both μ and ν are Γ -invariant we have

$$\int_{A} (\gamma \cdot f) d\mu = \int_{\gamma^{-1} \cdot A} f d\mu = \nu(\gamma^{-1} \cdot A) = \nu(A) = \int_{A} f d\mu$$

for all A and every $\gamma \in \Gamma$. By the uniqueness assertion of the Radon-Nikodym theorem we conclude that $\gamma \cdot f = f$ almost everywhere for all $\gamma \in \Gamma$. Since f is takes values in $[0, \infty)$ we find c > 0 such that

$$A = \{x \in X | f(x) \le c\}$$

has measure $\mu(A) > 0$. By our above considerations $\mu((\gamma \cdot A)\Delta A) = 0$ for all $\gamma \in \Gamma$. Since the action is ergodic and $\mu(A) > 0$ we conclude that $\mu(X \setminus A) = 0$. This means that f is essentially bounded by c. In particular, $f \in L^{\infty}(X, \mu)^{\Gamma} = \mathbb{C}$. Hence $f = \lambda$ is a constant function, and this yields the claim. \Box Let now $\Gamma = \mathbb{Q} \rtimes \mathbb{Q}^*$ be the ax + b-group. That is, $\Gamma = \mathbb{Q} \times \mathbb{Q}^*$ as a set with multiplication

$$(b_1, a_1) \cdot (b_2, a_2) = (b_1 + a_1 b_2, a_1 a_2).$$

Let λ denote the Lebesgue measure on \mathbb{R} and consider the action of Γ on (\mathbb{R}, λ) given by

$$(b,a) \cdot x = ax + b.$$

We collect some properties of this action in the following lemma.

Lemma 1.4. The natural action of the ax + b-group $\Gamma = \mathbb{Q} \rtimes \mathbb{Q}^*$ on (\mathbb{R}, λ) defined above is free and ergodic, and there is no Γ -invariant measure on \mathbb{R} equivalent to the Lebesgue measure λ .

Proof. We show that the additive subgroup $\mathbb{Q} \subset \Gamma$ acts ergodically on (\mathbb{R}, λ) . Assume that $f \in L^{\infty}(\mathbb{R})$ is invariant under translations by \mathbb{Q} . Then f satisfies in particular f(x) = f(x+1) almost everywhere, and it suffices to show that the corresponding function on \mathbb{T} , again denoted by f, is constant. Applying Fourier decomposition to $f \in L^{\infty}(\mathbb{T}) \subset L^{2}(\mathbb{T})$ we can write

$$f = \sum_{n \in \mathbb{Z}} f_n z^n$$

for some l^2 -sequence f_n . Now $r \in \mathbb{Q}/\mathbb{Z}$ acts by

$$r \cdot f = \sum_{n \in \mathbb{Z}} f_n e^{2\pi i n r} z^n$$

We conclude $f_n e^{2\pi i nr} = f_n$ for all $r \in \mathbb{Q}$ and hence $f_n = 0$ for $n \neq 0$. This means $f = f_e$ is a constant function.

For freeness of the action observe that $(a, b) \cdot x = ax + b = x$ means (a - 1)x = b. If a = 1 we obtain b = 0 and hence (a, b) = e. For $a \neq 1$ we see that x is uniquely determined. In particular, for $(a, b) \neq e$ the set $\{x \in X | (a, b) \cdot x = x\}$ contains only one element and has therefore measure zero.

Assume that ν is a Γ -invariant measure on \mathbb{R} . Then ν is in particular \mathbb{Q} -invariant. We have seen above that \mathbb{Q} acts ergodically on (\mathbb{R}, λ) . According to lemma 1.3 this means that ν is a scalar multiple of Lebesgue measure λ . However, the Lebesgue measure is not Γ -invariant since the multiplicative subgroup $\mathbb{Q}^* \subset \Gamma$ does not preserve λ .

2. Conditional expectations

Let Γ be a discrete group acting on the von Neumann algebra M. Then the projection $p_e : \mathcal{H} \otimes l^2(\Gamma) \to \mathcal{H} \otimes l^2(\Gamma)$ onto the closed subspace $\mathcal{H} \otimes \mathbb{C}e$ induces an ultraweakly continuous linear map $E : M \rtimes \Gamma \to M$ given by $E(x) = p_e x p_e$. Explicitly we find

$$E\left(\sum_{\gamma\in\Gamma}x_{\gamma}\gamma\right)=x_{e},$$

and hence E takes indeed values in M. The map E is called the conditional expectation from $M \rtimes \Gamma$ onto M.

Lemma 2.1. Let Γ be a discrete group acting on a von Neumann algebra M. The conditional expectation $E: M \rtimes \Gamma \to M$ has the following properties.

- a) E is unital and faithful, that is E(1) = 1 and $E(x^*x) = 0$ implies x = 0.
- b) E is a projection of norm one in the Banach space sense, that is, $E^2 = E$ and E has norm one as Banach space operator.
- c) E is an M-bimodule map, that is E(axb) = aE(x)b for all $x \in M \rtimes \Gamma$ and $a, b \in M \subset M \rtimes \Gamma$.

Proof. a) Clearly we have E(1) = 1. Assume that $x \in M \rtimes \Gamma$ satisfies $E(x^*x) = 0$. We may write $x = \sum_{\gamma \in \Gamma} x_{\gamma} \gamma$ for some $x_{\gamma} \in M$ and find

$$E(x^*x) = \sum_{\gamma \in \Gamma} x^*_{\gamma} x_{\gamma}.$$

Hence $E(x^*x) = 0$ implies $x_{\gamma} = 0$ for all γ and hence x = 0.

b) The formula $E^2 = E$ is obvious. From $E(x) = p_e x p_e$ we see that E has norm $||E|| \le 1$, and since E(1) = 1 it follows that ||E|| = 1.

c) Since $p_e \in M' \subset \mathbb{L}(\mathcal{H} \otimes l^2(\Gamma))$ we find

$$E(axb) = p_e axbp_e = ap_e xp_e b = aE(x)b$$

for $x \in M \rtimes \Gamma$ and $a, b \in M$ as claimed.

3. Semifinite crossed products

Theorem 3.1. Let Γ be an infinite countable discrete group acting freely and ergodically on the σ -finite measure space (X, μ) preserving the measure μ .

- a) If μ is a finite measure then $L^{\infty}(X,\mu) \rtimes \Gamma$ is a type II₁-factor.
- b) If μ is an infinite measure and Γ acts non-transitively then $L^{\infty}(X,\mu) \rtimes \Gamma$ is a type II_{∞} -factor.
- c) If μ is an infinite measure and Γ acts transitively then $L^{\infty}(X,\mu) \rtimes \Gamma$ is a type I_{∞} -factor.

Proof. a) We prove a slightly more general statement. Assume that M is a finite factor with normalized trace tr and assume that Γ preserves tr. Let $E: M \rtimes \Gamma \to M$ be the conditional expectation and consider $Tr = \text{tr} \circ E$. Then Tr is an ultraweakly continuous positive linear map. The computation

$$Tr(xu_{\gamma}yu_{\eta}) = \delta_{\gamma,\eta^{-1}}Tr(x(\gamma \cdot y)) = \delta_{\gamma,\eta^{-1}}\operatorname{tr}(x(\gamma \cdot y)) = \delta_{\gamma,\eta^{-1}}\operatorname{tr}((\gamma \cdot y)x)$$
$$= \delta_{\gamma,\eta^{-1}}\operatorname{tr}(y(\gamma^{-1} \cdot x)) = Tr(yu_{\eta}xu_{\gamma})$$

together with ultraweak continuity shows that Tr is in fact a normalized trace on $M \rtimes \Gamma$. Hence the factor $M \rtimes \Gamma$ is finite. We cannot obtain a finite type *I*-factor since Γ was assumed to be infinite. Hence $L^{\infty}(X, \mu) \rtimes \Gamma$ is of type II_1 .

b) We have to assume here that (X, μ) is a standard measure space. If Γ acts nontransitively, there cannot be atoms in (X, μ) . Otherwise $\Gamma \cdot x$ for $x \in X$ of positive measure would be a Γ -invariant set so $\mu(\Gamma \cdot x) = \mu(X)$ by ergodicity, contradicting

the assumption that Γ acts non-transitively. Let $A \subset X$ be a measurable subset with $0 < \mu(A) < \infty$ and $\xi = \chi_A \otimes \delta_e \in L^2(X, \mu) \otimes l^2(\Gamma)$. Then

$$\omega_{\xi}(fu_{\gamma}) = \langle \xi, fu_{\gamma}\xi \rangle = \delta_{\gamma,e} \int_{A} f(x)d\mu(x)$$

and for $p = \chi_A u_e \in L^{\infty}(X, \mu) \rtimes \Gamma$ we obtain

$$\begin{split} \omega_{\xi}((pfu_{\gamma}p)(pgu_{\eta}p)) &= \omega_{\xi}(\chi_{A}f(\gamma\cdot\chi_{A})(\gamma\cdot g)u_{\gamma\eta}) \\ &= \delta_{\gamma,\eta^{-1}}\int_{A\cap\gamma\cdot A}f(\gamma\cdot g)d\mu \\ &= \delta_{\gamma,\eta^{-1}}\int_{\gamma^{-1}A\cap A}(\gamma^{-1}\cdot f)gd\mu \\ &= \delta_{\gamma,\eta^{-1}}\int_{A\cap\eta\cdot A}g(\eta\cdot f)d\mu \\ &= \omega_{\xi}((pgu_{\eta}p)(pfu_{\gamma}p)) \end{split}$$

using the Γ -invariance of μ . It follows that ω_{ξ} is a trace on $p(L^{\infty}(X,\mu) \rtimes \Gamma)p$, and hence $p(L^{\infty}(X,\mu) \rtimes \Gamma)p$ is a finite factor. Since (X,μ) is a standard measure space then A, having no atoms, contains subsets of arbitrary measure smaller than $\mu(A)$. Hence the factor $p(L^{\infty}(X,\mu) \rtimes \Gamma)p$ cannot be of type I since it contains $L^{\infty}(A,\mu)$. If $L^{\infty}(X,\mu) \rtimes \Gamma$ itself were finite with finite trace tr then $\nu(Y) = \operatorname{tr}(\chi_Y)$ would give a finite Γ -invariant measure on X absolutely continuous to μ . According to lemma 1.3 this means $\nu = \lambda \mu$ for some $\lambda > 0$ and hence $\nu(X) = \infty$, a contradiction. Hence $L^{\infty}(X,\mu) \rtimes \Gamma$ is of type II_{∞} .

c) We may assume that $X = \Gamma$. Since Γ is countable it follows that μ is a multiple of the counting measure. The crossed product $L^{\infty}(\Gamma, \mu) \rtimes \Gamma$ is unitarily equivalent to $(L^{\infty}(\Gamma, \mu)\mathcal{L}(\Gamma))'' \subset \mathbb{L}(l^2(\Gamma))$. Direct computation shows that the latter contains all matrix units $e_{\gamma\eta}$ for $\gamma, \eta \in \Gamma$ and hence $L^{\infty}(\Gamma, \mu) \rtimes \Gamma \cong \mathbb{L}(l^2(\Gamma))$. \Box

4. Type *III*-crossed products

We need some prelimitries on lower semicontinuous functions.

Definition 4.1. Let X be a topological space. A function $f : X \to [-\infty, \infty] = \mathbb{R} \cup \{-\infty, \infty\}$ is called lower semicontinuous if

$$f^{-1}((K,\infty]) = \{x \in X | f(x) > K\}$$

is an open set for every $K \in \mathbb{R}$.

Let X be a topological space and let $f: X \to [-\infty, \infty]$ be a function. Clearly f is lower semicontinous iff the set $f^{-1}([-\infty, K])$ is closed for every $K \in \mathbb{R}$. If $x \in X$ we say that f is lower semicontinuous at x if either $f(x) = -\infty$ or $f(x) = \infty$ and for every K > 0 we find an open neighborhood U of x such that f(u) > K for all $u \in U$, or $f(x) \in \mathbb{R}$ such that for every $\epsilon > 0$ there exists an open neighborhood U of x such that

$$f(u) > f(x) - \epsilon$$

for all $u \in U$.

Lemma 4.2. Let X be a topological space. For a function $f : X \to [-\infty, \infty] = \mathbb{R} \cup \{-\infty, \infty\}$ the following conditions are equivalent.

a) f is lower semicontinuous.

b) f is lower semicontinuous at every $x \in X$.

Proof. $a \Rightarrow b$ Assume that $-\infty < f(x) < \infty$ and let $\epsilon > 0$. By lower semicontinuity, the set $U = f^{-1}((f(x) - \epsilon, \infty))$ is an open neighborhood of x.

 $b) \Rightarrow a)$ Let $K \in \mathbb{R}$ and consider $x \in f^{-1}((K, \infty))$. If $f(x) = \infty$ we find an open neighborhood U of x such that f(u) > K for all $u \in U$, hence $U \subset f^{-1}((K, \infty))$. If $f(x) < \infty$ we choose $\epsilon > 0$ such that $f(x) - \epsilon > K$. Then there is an open neighborhhood U of x such that $f(u) > f(x) - \epsilon > K$ so that $U \subset f^{-1}((K, \infty))$ as well. Hence $f^{-1}((K, \infty))$ is open which means that f is lower semicontinuous. \Box We collect some basic facts on lower semicontinuous functions.

Lemma 4.3. Let X be a compact space and let $f : X \to [-\infty, \infty]$ be a lower semicontinuous function. Then f attains its minimum on X.

Proof. b) If $-\infty$ is in the image of f of $f(x) = \infty$ for all $x \in X$ there is nothing to prove. Hence we may assume that $f(X) \subset (-\infty, \infty]$ and $f(x_0) < \infty$ for some $x_0 \in X$. The set $K = \{x \in X | f(x) \le f(x_0)\}$ is closed by lower semicontinuity, and it clearly suffices to show that the restriction of f to K attains its minimum. In other words, we may restrict to the case that $f: X \to \mathbb{R}$ takes values in \mathbb{R} . Fix $\epsilon > 0$ and let U_x for $x \in X$ be an open set such that $f(u) > f(x) - \epsilon$ for all $u \in U_x$. Then $(U_x)_{x \in X}$ is an open cover of X, and since X is compact there exist x_1, \ldots, x_n such that $U_{x_1} \cup \cdots \cup U_{x_n} = X$. It follows that f is bounded below, and we denote by r the infimum of the set f(X). The nonempty sets $A_n = f^{-1}([r, r+1/n])$ are closed for all $n \in \mathbb{N}$. Using again that X is compact we find a point y in the intersection of all A_n . We conclude f(y) = r and this yields the claim.

Lemma 4.4. If $(f_j)_{j\in J}$ is a family of lower semicontinuous functions from the topological space X to $[-\infty,\infty]$ and $\bigvee_{j\in J} f_j: X \to [-\infty,\infty]$ is defined by

$$\bigvee_{j \in J} f_j(x) = \sup_{j \in J} f_j(x),$$

then $\bigvee_{i \in J} f_j$ is again lower semicontinuous.

Proof. Let $K \in \mathbb{R}$. Then

$$\left(\bigvee_{j\in J} f_j\right)^{-1}((K,\infty]) = \bigcup_{j\in J} f_j^{-1}((K,\infty])$$

is an open set by lower semicontinuity of the f_j .

Lemma 4.5. Let \mathcal{H} be a Hilbert space and let $\xi \in \mathcal{H}$. Then $t_{\xi}(x) = ||x\xi||$ defines a lower semicontinuous function from $\mathbb{L}(\mathcal{H})$ with the weak topology to \mathbb{R} .

Proof. For arbitrary $K \in \mathbb{R}$ we have to show that the set

$$U_K = \{ x \in \mathbb{L}(\mathcal{H}) || |x\xi|| > K \}$$

is weakly open in $\mathbb{L}(\mathcal{H})$. Clearly U_K is strongly open. Hence

$$C_K = \mathbb{L}(\mathcal{H}) \setminus U_K = \{ x \in \mathbb{L}(\mathcal{H}) || |x\xi|| \le K \}$$

is strongly closed. Since C_K is convex this means that C_K is weakly closed by the Hahn-Banach theorem. Hence U_K is weakly open as desired.

Lemma 4.6. Let M be a semifinite factor with unit ball M_1 and let $\text{tr} : M_+ \to [0,\infty]$ be a semifinite trace on M. Then for each K > 0 the set

$$M(K) = \{x \in M_1 : \operatorname{tr}(x^*x) \le K\}$$

is weakly compact.

Proof. Let us first consider the case that M is finite. We may assume without loss of generality that tr is the normalized trace - recall that the normalized trace on a finite factor is unique, see 7.1.19.

Using the GNS-construction for tr we can write

 $\operatorname{tr}(x) = \langle \Lambda(1), x \Lambda(1) \rangle$

and hence $\operatorname{tr}(x^*x) = ||x\Lambda(1)||^2$ for all $x \in M$. According to lemma 4.5 we see that the map $t: M \to [0,\infty)$ given by $t(x) = \operatorname{tr}(x^*x)$ is weakly lower semicontinuous. Hence $t^{-1}([0,K]) = \{x \in M | \operatorname{tr}(x^*x) \leq K\} \subset M$ is weakly closed. By the Kaplansky density theorem the unit ball M_1 of M is weakly compact. We conclude that

$$M(K) = M_1 \cap t^{-1}([0, K])$$

is weakly compact. This yields the claim for finite M.

Now assume that M is a type $I_\infty\text{-}{\rm factor}$ or a type $II_\infty\text{-}{\rm factor}.$ Then we may write

$$M \cong N \otimes \mathbb{L}(l^2(\mathbb{N})) \subset L^2(M,\tau) \otimes \mathbb{L}(l^2(\mathbb{N}))$$

with $N = \mathbb{C}$ in the first case or N a type II_1 -factor in the second case. In both cases $\tau : N \to \mathbb{C}$ denotes the normalized trace. Then, up to a scalar,

$$\operatorname{tr}(x) = \sum_{j=1}^{\infty} \langle (\Lambda(1) \otimes e_j), x(\Lambda(1) \otimes e_j) \rangle$$

for $x \in M_+$.

We want to show that the function $t: M \to [0, \infty]$ given by

$$t(x) = \operatorname{tr}(x^*x) = \sum_{j=1}^{\infty} \langle x(\Lambda(1) \otimes e_j), x(\Lambda(1) \otimes e_j) \rangle = \sum_{j=1}^{n} ||x(\Lambda(1) \otimes e_j)||$$

is weakly lower semicontinuous. For this consider the function $t_n: M \to [0, \infty]$ given by

$$t_n(x) = \sum_{j=1}^n \langle x(\Lambda(1) \otimes e_j), x(\Lambda(1) \otimes e_j) \rangle = \sum_{j=1}^n ||x(\Lambda(1) \otimes e_j)||$$

Obviously we have

$$\bigvee_{n \in \mathbb{N}} t_n = t,$$

and according to lemma 4.5 the maps t_n are weakly lower semicontinuous for all n. Hence due to lemma 4.4 the function t is indeed weakly lower semicontinuous. Now the same argument as in the finite case finishes the proof.

Proposition 4.7. Let M be a semifinite factor with unit ball M_1 and let $\text{tr} : M_+ \rightarrow [0, \infty]$ be a semifinite trace on M. As above we write

$$M(K) = \{x \in M_1 : \operatorname{tr}(x^*x) \le K\}$$

for K > 0. Let $N \subset M$ be a von Neumann subalgebra. If $x \in M(K)$ let us denote by W(x) the weak closure of all convex combinations of elements of the form uxu^* for $u \in N$ unitary. Then $W(x) \subset M(K)$ and if $t : W(x) \to [0, \infty]$ is the function

$$t(y) = \operatorname{tr}(y^*y)$$

then t attains its minimum at a unique point e(x) of W(x).

Proof. Note that a convex combination of elements $u_j x u_j^*$ with $u_j \in N$ unitary is a finite sum of the form

$$c = \sum_{j=1}^{n} \lambda_j u_j x u_j^*$$

where $\sum_{j=1}^{n} \lambda_j = 1$, $\lambda_i > 0$ for all *i*. It is clear that the norm of such a convex combination is bounded by 1 since $x \in M_1$. Moreover the trace of *c* is clearly bounded by *K*. Since M(K) is weakly compact we see that W(x) is a weakly compact convex subset of M(K).

From the proof of lemma 4.6 we know that t is a weakly lower semicontinuous function. Hence according to lemma 4.3 there is a point $e(x) \in W(x)$ where t attain its minimum.

Next recall that the GNS-construction for tr is the Hilbert space completion \mathcal{H} of the linear space

$$\mathcal{N} = \{ z \in M : \operatorname{tr}(z^*z) < \infty \} \subset M$$

with respect to the inner product $\langle y, z \rangle = \operatorname{tr}(y^*z)$. The function t extends to the function $t : \mathcal{H} \to [0, \infty)$ given by $t(\xi) = ||\xi||^2$. Since $t(y) \ge t(e(x))$ for all $y \in W(x)$ and t is continuous for the norm topology of \mathcal{H} , we also have $t(\xi) \ge t(e(x))$ for all ξ in the norm closure $\overline{W(x)}$ of W(x). Since $\overline{W(x)} \subset \mathcal{H}$ is a convex closed subset, the function $t : \overline{W(x)} \to [0, \infty)$ has a unique minimum by basic Hilbert space geometry.

Proposition 4.8. Suppose that Γ acts freely and ergodically on $L^{\infty}(X, \mu)$ such that $M = L^{\infty}(X, \mu) \rtimes \Gamma$ is a semifinite factor. Let tr be a semifinite trace on M and let $p \in M$ be a nonzero projection with $tr(p) < \infty$. If $E : L^{\infty}(X, \mu) \rtimes \Gamma \to L^{\infty}(X, \mu)$ denotes the canonical conditional expectation then

$$e(p) = E(p)$$

and

$$0 < \operatorname{tr}(e(p)^2) \le \operatorname{tr}(p)$$

where $e(p) \in M$ is defined as above.

Proof. By the uniqueness of $e(p) \in M$ it follows that e(p) commutes with every unitary in $L^{\infty}(X,\mu)$. Since $N = L^{\infty}(X,\mu)$ is maximal abelian in the crossed product, by 11.2.11 it follows that $e(p) \in L^{\infty}(X,\mu)$. If $x = \sum_{j=1}^{n} \lambda_j u_j p u_j^* \in W(p)$ for $u_j \in N$ we clearly have

$$E(x) = \sum_{j=1}^{n} \lambda_j E(u_j p u_j^*) = \sum_{j=1}^{n} \lambda_j u_j E(p) u_j^* = E(p)$$

by the bimodule property of E and the fact that $L^{\infty}(X, \mu)$ is abelian. Since E is ultraweakly continuous we have in fact E(x) = E(p) for all $x \in W(p)$. Moreover we have $e(p) \in W(p)$ and together with our observation $e(p) \in L^{\infty}(M, \mu)$ above we therefore obtain

$$e(p) = E(e(p)) = E(p).$$

Since $E(p) \leq p$ we conclude

$$tr(e(p)^2) = tr(e(p)^*e(p)) = t(e(p)) \le t(p) = tr(p).$$

Finally $E(p) = E(p^2)$ is a positive non-zero element of M and hence $e(p)^2 = E(p)^2$ must have non-zero trace.

Theorem 4.9. Let the countable discrete group Γ act freely and ergodically on the countably separated σ -finite measure space (X, μ) . If the factor $L^{\infty}(X, \mu) \rtimes \Gamma$ is semifinite there exists a σ -finite Γ -invariant measure on X which is absolutely continuous with respect to μ .

Proof. Define a measure ν on X by $\nu(A) = \operatorname{tr}(\chi_A)$ for measurable subsets $A \subset X$. Then ν has to be finite and nonzero on some A. Indeed, choose a nonzero projection $p \in L^{\infty}(X, \mu) \rtimes \Gamma$ with $\operatorname{tr}(p) < \infty$. Then according to proposition 4.8 the function $E(p)^2 \in L^{\infty}(X, \mu)$ has finite positive measure with respect to ν . By ergodicity of

CHRISTIAN VOIGT

the action we see that the complement of the Γ -invariant set $\bigcup_{\gamma \in \Gamma} \gamma \cdot A$ has measure zero so that ν is σ -finite. From the relation

$$\nu(\gamma Y) = \operatorname{tr}(\gamma \cdot \chi_Y) = \operatorname{tr}(u_\gamma \chi_Y u_\gamma^{-1}) = \operatorname{tr}(\chi_Y) = \nu(Y)$$

for measurable $Y \subset X$ we see that ν is Γ -invariant.

As a consequence we obtain examples of factors which are not semifinite. Such factors are sometimes called purely infinite. Since being semifinite is the same things as being type I or II the following terminology is equivalently used.

Definition 4.10. A factor is of type III if it is not of type I or II.

According to theorem 4.9 we obtain a type *III*-factor from any example of a free ergodic group action on a countably separated, σ -finite measure space (X, μ) such that there is no invariant σ -finite invariant measure absolutely continuous with respect to μ . Hence lemma 1.4 gives the following result.

Corollary 4.11. The crossed product $L^{\infty}(\mathbb{R}, \lambda) \rtimes \Gamma$ for the natural action of the ax + b-group $\Gamma = \mathbb{Q} \rtimes \mathbb{Q}^*$ on (\mathbb{R}, λ) is a type III-factor.

References

Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany

E-mail address: cvoigt@math.uni-muenster.de