
V. F. R. JONES: THE TYPE OF CROSSED PRODUCT VON
NEUMANN ALGEBRAS

CHRISTIAN VOIGT

Abstract. This is an exposition of a section in the lecture notes by Jones. We

discuss the type of von Neumann algebras obtained from the group-measure
space construction.

Throughout the notes we consider only σ-finite measure spaces. Moreover Γ will
always be a discrete group. For most purposes it is convenient to assume Γ to be
countable, but we will indicate the steps where this is needed.

1. A type III-action

Let us recall the following definitions.

Definition 1.1. Let Γ be a discrete group acting on the measure space (X,µ). The
action is called
a) (essentially) transitive if there exists x ∈ X such that µ(Γ · x) = µ(X).
b) (essentially) free if for every e 6= γ ∈ Γ we have

µ({x ∈ X|γ · x = x}) = 0

c) ergodic if for every measurable subset A ⊂ X satisfying

µ(A∆(γ ·A)) = 0

for all γ ∈ Γ we have either µ(A) = 0 or µ(X \A) = 0.

If Γ acts ergodically on X and Y ⊂ X is a Γ-invariant measurable subset then
we have either µ(Y ) = 0 or µ(X \ Y ) = 0. Although not needed in the sequel, let
us verify that ergodicity is in fact equivalent to this apparently weaker condition if
the group is countable.

Lemma 1.2. If Γ is a countable group acting on the measure space (X,µ) then the
action is ergodic iff for every Γ-invariant measurable subset Y ⊂ X we have either
µ(Y ) = 0 or µ(X \ Y ) = 0.

Proof. Assume first that the action is ergodic and let A ⊂ be measurable with
µ(A∆(γ ·A)) = 0 for all γ ∈ Γ. Let

B = {x ∈ A|γ · x ∈ A for all γ ∈ Γ} = {x ∈ X|∀γ ∈ Γ ∃xγ ∈ A : γ · xγ = x}.
Then

µ(B) = µ

(⋂
γ∈Γ

γ ·A
)

= µ

(
A \

⋃
γ∈Γ

A∆(γ ·A)
)

= µ(A)

since
⋃
γ∈ΓA∆(γ · A) is a µ-null set. Here we use that Γ is countable. Since B is

Γ-invariant we obtain µ(A) = 0 or µ(X \A) = 0 as claimed.
Conversely let Y ⊂ X be Γ-invariant. Then Y∆γ · Y = ∅ for all γ ∈ Γ. Hence the
condition implies µ(Y ) = 0 or µ(X \ Y ) = 0. �

Lemma 1.3. If the discrete group Γ acts ergodically on the measure space (X,µ)
preserving the σ-finite measure µ then any other Γ-invariant measure ν on X which
is absolutely continuous to µ is of the form ν = λµ for some λ > 0.
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2 CHRISTIAN VOIGT

Proof. Since ν is assumed to be absolutely continuous to µ we can consider the
Radon-Nikodym derivative f = dν/dµ. Recall that f : X → [0,∞) is a measurable
function such that

ν(A) =
∫
A

fdµ

for all measurable sets A ⊂ X. Since both µ and ν are Γ-invariant we have∫
A

(γ · f)dµ =
∫
γ−1·A

fdµ = ν(γ−1 ·A) = ν(A) =
∫
A

fdµ

for all A and every γ ∈ Γ. By the uniqueness assertion of the Radon-Nikodym
theorem we conclude that γ · f = f almost everywhere for all γ ∈ Γ.
Since f is takes values in [0,∞) we find c > 0 such that

A = {x ∈ X|f(x) ≤ c}

has measure µ(A) > 0. By our above considerations µ((γ ·A)∆A) = 0 for all γ ∈ Γ.
Since the action is ergodic and µ(A) > 0 we conclude that µ(X \ A) = 0. This
means that f is essentially bounded by c. In particular, f ∈ L∞(X,µ)Γ = C. Hence
f = λ is a constant function, and this yields the claim. �
Let now Γ = Q o Q∗ be the ax + b-group. That is, Γ = Q × Q∗ as a set with
multiplication

(b1, a1) · (b2, a2) = (b1 + a1b2, a1a2).

Let λ denote the Lebesgue measure on R and consider the action of Γ on (R, λ)
given by

(b, a) · x = ax+ b.

We collect some properties of this action in the following lemma.

Lemma 1.4. The natural action of the ax+ b-group Γ = Q o Q∗ on (R, λ) defined
above is free and ergodic, and there is no Γ-invariant measure on R equivalent to
the Lebesgue measure λ.

Proof. We show that the additive subgroup Q ⊂ Γ acts ergodically on (R, λ). As-
sume that f ∈ L∞(R) is invariant under translations by Q. Then f satisfies in
particular f(x) = f(x + 1) almost everywhere, and it suffices to show that the
corresponding function on T, again denoted by f , is constant. Applying Fourier
decomposition to f ∈ L∞(T) ⊂ L2(T) we can write

f =
∑
n∈Z

fnz
n

for some l2-sequence fn. Now r ∈ Q/Z acts by

r · f =
∑
n∈Z

fne
2πinrzn

We conclude fne2πinr = fn for all r ∈ Q and hence fn = 0 for n 6= 0. This means
f = fe is a constant function.
For freeness of the action observe that (a, b) · x = ax + b = x means (a − 1)x = b.
If a = 1 we obtain b = 0 and hence (a, b) = e. For a 6= 1 we see that x is uniquely
determined. In particular, for (a, b) 6= e the set {x ∈ X|(a, b) ·x = x} contains only
one element and has therefore measure zero.
Assume that ν is a Γ-invariant measure on R. Then ν is in particular Q-invariant.
We have seen above that Q acts ergodically on (R, λ). According to lemma 1.3 this
means that ν is a scalar multiple of Lebesgue measure λ. However, the Lebesgue
measure is not Γ-invariant since the multiplicative subgroup Q∗ ⊂ Γ does not
preserve λ. �
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2. Conditional expectations

Let Γ be a discrete group acting on the von Neumann algebra M . Then the
projection pe : H ⊗ l2(Γ) → H ⊗ l2(Γ) onto the closed subspace H ⊗ Ce induces
an ultraweakly continuous linear map E : M o Γ → M given by E(x) = pexpe.
Explicitly we find

E

(∑
γ∈Γ

xγγ

)
= xe,

and hence E takes indeed values in M . The map E is called the conditional expec-
tation from M o Γ onto M .

Lemma 2.1. Let Γ be a discrete group acting on a von Neumann algebra M . The
conditional expectation E : M o Γ→M has the following properties.
a) E is unital and faithful, that is E(1) = 1 and E(x∗x) = 0 implies x = 0.
b) E is a projection of norm one in the Banach space sense, that is, E2 = E and

E has norm one as Banach space operator.
c) E is an M -bimodule map, that is E(axb) = aE(x)b for all x ∈ M o Γ and

a, b ∈M ⊂M o Γ.

Proof. a) Clearly we have E(1) = 1. Assume that x ∈M o Γ satisfies E(x∗x) = 0.
We may write x =

∑
γ∈Γ xγγ for some xγ ∈M and find

E(x∗x) =
∑
γ∈Γ

x∗γxγ .

Hence E(x∗x) = 0 implies xγ = 0 for all γ and hence x = 0.
b) The formula E2 = E is obvious. From E(x) = pexpe we see that E has norm
||E|| ≤ 1, and since E(1) = 1 it follows that ||E|| = 1.
c) Since pe ∈M ′ ⊂ L(H⊗ l2(Γ)) we find

E(axb) = peaxbpe = apexpeb = aE(x)b

for x ∈M o Γ and a, b ∈M as claimed. �

3. Semifinite crossed products

Theorem 3.1. Let Γ be an infinite countable discrete group acting freely and er-
godically on the σ-finite measure space (X,µ) preserving the measure µ.
a) If µ is a finite measure then L∞(X,µ) o Γ is a type II1-factor.
b) If µ is an infinite measure and Γ acts non-transitively then L∞(X,µ) o Γ is a

type II∞-factor.
c) If µ is an infinite measure and Γ acts transitively then L∞(X,µ) o Γ is a type

I∞-factor.

Proof. a) We prove a slightly more general statement. Assume that M is a finite
factor with normalized trace tr and assume that Γ preserves tr. Let E : MoΓ→M
be the conditional expectation and consider Tr = tr ◦E. Then Tr is an ultraweakly
continuous positive linear map. The computation

Tr(xuγyuη) = δγ,η−1Tr(x(γ · y)) = δγ,η−1 tr(x(γ · y)) = δγ,η−1 tr((γ · y)x)

= δγ,η−1 tr(y(γ−1 · x)) = Tr(yuηxuγ)

together with ultraweak continuity shows that Tr is in fact a normalized trace on
M o Γ. Hence the factor M o Γ is finite. We cannot obtain a finite type I-factor
since Γ was assumed to be infinite. Hence L∞(X,µ) o Γ is of type II1.
b) We have to assume here that (X,µ) is a standard measure space. If Γ acts non-
transitively, there cannot be atoms in (X,µ). Otherwise Γ · x for x ∈ X of positive
measure would be a Γ-invariant set so µ(Γ · x) = µ(X) by ergodicity, contradicting



4 CHRISTIAN VOIGT

the assumption that Γ acts non-transitively. Let A ⊂ X be a measurable subset
with 0 < µ(A) <∞ and ξ = χA ⊗ δe ∈ L2(X,µ)⊗ l2(Γ). Then

ωξ(fuγ) = 〈ξ, fuγξ〉 = δγ,e

∫
A

f(x)dµ(x)

and for p = χAue ∈ L∞(X,µ) o Γ we obtain

ωξ((pfuγp)(pguηp)) = ωξ(χAf(γ · χA)(γ · g)uγη)

= δγ,η−1

∫
A∩γ·A

f(γ · g)dµ

= δγ,η−1

∫
γ−1A∩A

(γ−1 · f)gdµ

= δγ,η−1

∫
A∩η·A

g(η · f)dµ

= ωξ((pguηp)(pfuγp))

using the Γ-invariance of µ. It follows that ωξ is a trace on p(L∞(X,µ) o Γ)p, and
hence p(L∞(X,µ) o Γ)p is a finite factor. Since (X,µ) is a standard measure space
then A, having no atoms, contains subsets of arbitrary measure smaller than µ(A).
Hence the factor p(L∞(X,µ) o Γ)p cannot be of type I since it contains L∞(A,µ).
If L∞(X,µ)oΓ itself were finite with finite trace tr then ν(Y ) = tr(χY ) would give
a finite Γ-invariant measure on X absolutely continuous to µ. According to lemma
1.3 this means ν = λµ for some λ > 0 and hence ν(X) =∞, a contradiction. Hence
L∞(X,µ) o Γ is of type II∞.
c) We may assume that X = Γ. Since Γ is countable it follows that µ is a multiple
of the counting measure. The crossed product L∞(Γ, µ) o Γ is unitarily equivalent
to (L∞(Γ, µ)L(Γ))′′ ⊂ L(l2(Γ). Direct computation shows that the latter contains
all matrix units eγη for γ, η ∈ Γ and hence L∞(Γ, µ) o Γ ∼= L(l2(Γ)). �

4. Type III-crossed products

We need some prelimiaries on lower semicontinuous functions.

Definition 4.1. Let X be a topological space. A function f : X → [−∞,∞] =
R ∪ {−∞,∞} is called lower semicontinuous if

f−1((K,∞]) = {x ∈ X|f(x) > K}

is an open set for every K ∈ R.

Let X be a topological space and let f : X → [−∞,∞] be a function. Clearly f
is lower semicontinous iff the set f−1([−∞,K]) is closed for every K ∈ R. If x ∈ X
we say that f is lower semicontinuous at x if either f(x) = −∞ or f(x) = ∞ and
for every K > 0 we find an open neighborhood U of x such that f(u) > K for all
u ∈ U , or f(x) ∈ R such that for every ε > 0 there exists an open neighborhood U
of x such that

f(u) > f(x)− ε
for all u ∈ U .

Lemma 4.2. Let X be a topological space. For a function f : X → [−∞,∞] =
R ∪ {−∞,∞} the following conditions are equivalent.

a) f is lower semicontinuous.
b) f is lower semicontinuous at every x ∈ X.
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Proof. a) ⇒ b) Assume that −∞ < f(x) < ∞ and let ε > 0. By lower semiconti-
nuity, the set U = f−1((f(x)− ε,∞]) is an open neighborhood of x.
b) ⇒ a) Let K ∈ R and consider x ∈ f−1((K,∞]). If f(x) = ∞ we find an open
neighborhood U of x such that f(u) > K for all u ∈ U , hence U ⊂ f−1((K,∞]).
If f(x) < ∞ we choose ε > 0 such that f(x) − ε > K. Then there is an open
neighborhhood U of x such that f(u) > f(x)− ε > K so that U ⊂ f−1((K,∞]) as
well. Hence f−1((K,∞]) is open which means that f is lower semicontinuous. �
We collect some basic facts on lower semicontinuous functions.

Lemma 4.3. Let X be a compact space and let f : X → [−∞,∞] be a lower
semicontinuous function. Then f attains its minimum on X.

Proof. b) If −∞ is in the image of f of f(x) = ∞ for all x ∈ X there is nothing
to prove. Hence we may assume that f(X) ⊂ (−∞,∞] and f(x0) < ∞ for some
x0 ∈ X. The set K = {x ∈ X|f(x) ≤ f(x0)} is closed by lower semicontinuity, and
it clearly suffices to show that the restriction of f to K attains its minimum. In
other words, we may restrict to the case that f : X → R takes values in R. Fix
ε > 0 and let Ux for x ∈ X be an open set such that f(u) > f(x)− ε for all u ∈ Ux.
Then (Ux)x∈X is an open cover of X, and since X is compact there exist x1, . . . , xn
such that Ux1∪· · ·∪Uxn

= X. It follows that f is bounded below, and we denote by
r the infimum of the set f(X). The nonempty sets An = f−1([r, r+1/n]) are closed
for all n ∈ N. Using again that X is compact we find a point y in the intersection
of all An. We conclude f(y) = r and this yields the claim. �

Lemma 4.4. If (fj)j∈J is a family of lower semicontinuous functions from the
topological space X to [−∞,∞] and

∨
j∈J fj : X → [−∞,∞] is defined by∨

j∈J
fj(x) = sup

j∈J
fj(x),

then
∨
j∈J fj is again lower semicontinuous.

Proof. Let K ∈ R. Then(∨
j∈J

fj

)−1

((K,∞]) =
⋃
j∈J

f−1
j ((K,∞])

is an open set by lower semicontinuity of the fj . �

Lemma 4.5. Let H be a Hilbert space and let ξ ∈ H. Then tξ(x) = ||xξ|| defines
a lower semicontinuous function from L(H) with the weak topology to R.

Proof. For arbitrary K ∈ R we have to show that the set

UK = {x ∈ L(H)|||xξ|| > K}

is weakly open in L(H). Clearly UK is strongly open. Hence

CK = L(H) \ UK = {x ∈ L(H)|||xξ|| ≤ K}

is strongly closed. Since CK is convex this means that CK is weakly closed by the
Hahn-Banach theorem. Hence UK is weakly open as desired. �

Lemma 4.6. Let M be a semifinite factor with unit ball M1 and let tr : M+ →
[0,∞] be a semifinite trace on M . Then for each K > 0 the set

M(K) = {x ∈M1 : tr(x∗x) ≤ K}

is weakly compact.
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Proof. Let us first consider the case that M is finite. We may assume without loss
of generality that tr is the normalized trace - recall that the normalized trace on a
finite factor is unique, see 7.1.19.
Using the GNS-construction for tr we can write

tr(x) = 〈Λ(1), xΛ(1)〉
and hence tr(x∗x) = ||xΛ(1)||2 for all x ∈M . According to lemma 4.5 we see that
the map t : M → [0,∞) given by t(x) = tr(x∗x) is weakly lower semicontinuous.
Hence t−1([0,K]) = {x ∈ M | tr(x∗x) ≤ K} ⊂ M is weakly closed. By the Ka-
plansky density theorem the unit ball M1 of M is weakly compact. We conclude
that

M(K) = M1 ∩ t−1([0,K])
is weakly compact. This yields the claim for finite M .
Now assume that M is a type I∞-factor or a type II∞-factor. Then we may write

M ∼= N ⊗ L(l2(N)) ⊂ L2(M, τ)⊗ L(l2(N))

with N = C in the first case or N a type II1-factor in the second case. In both
cases τ : N → C denotes the normalized trace. Then, up to a scalar,

tr(x) =
∞∑
j=1

〈(Λ(1)⊗ ej), x(Λ(1)⊗ ej)〉

for x ∈M+.
We want to show that the function t : M → [0,∞] given by

t(x) = tr(x∗x) =
∞∑
j=1

〈x(Λ(1)⊗ ej), x(Λ(1)⊗ ej)〉 =
n∑
j=1

||x(Λ(1)⊗ ej)||

is weakly lower semicontinuous. For this consider the function tn : M → [0,∞]
given by

tn(x) =
n∑
j=1

〈x(Λ(1)⊗ ej), x(Λ(1)⊗ ej)〉 =
n∑
j=1

||x(Λ(1)⊗ ej)||.

Obviously we have ∨
n∈N

tn = t,

and according to lemma 4.5 the maps tn are weakly lower semicontinuous for all
n. Hence due to lemma 4.4 the function t is indeed weakly lower semicontinuous.
Now the same argument as in the finite case finishes the proof. �

Proposition 4.7. Let M be a semifinite factor with unit ball M1 and let tr : M+ →
[0,∞] be a semifinite trace on M . As above we write

M(K) = {x ∈M1 : tr(x∗x) ≤ K}
for K > 0. Let N ⊂ M be a von Neumann subalgebra. If x ∈ M(K) let us denote
by W (x) the weak closure of all convex combinations of elements of the form uxu∗

for u ∈ N unitary. Then W (x) ⊂M(K) and if t : W (x)→ [0,∞] is the function

t(y) = tr(y∗y)

then t attains its minimum at a unique point e(x) of W (x).

Proof. Note that a convex combination of elements ujxu∗j with uj ∈ N unitary is
a finite sum of the form

c =
n∑
j=1

λjujxu
∗
j
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where
∑n
j=1 λj = 1, λi > 0 for all i. It is clear that the norm of such a convex

combination is bounded by 1 since x ∈ M1. Moreover the trace of c is clearly
bounded by K. Since M(K) is weakly compact we see that W (x) is a weakly
compact convex subset of M(K).
From the proof of lemma 4.6 we know that t is a weakly lower semicontinuous
function. Hence according to lemma 4.3 there is a point e(x) ∈ W (x) where t
attain its minimum.
Next recall that the GNS-construction for tr is the Hilbert space completion H of
the linear space

N = {z ∈M : tr(z∗z) <∞} ⊂M
with respect to the inner product 〈y, z〉 = tr(y∗z). The function t extends to the
function t : H → [0,∞) given by t(ξ) = ||ξ||2. Since t(y) ≥ t(e(x)) for all y ∈W (x)
and t is continuous for the norm topology of H, we also have t(ξ) ≥ t(e(x)) for all
ξ in the norm closure W (x) of W (x). Since W (x) ⊂ H is a convex closed subset,
the function t : W (x) → [0,∞) has a unique minimum by basic Hilbert space
geometry. �

Proposition 4.8. Suppose that Γ acts freely and ergodically on L∞(X,µ) such that
M = L∞(X,µ) o Γ is a semifinite factor. Let tr be a semifinite trace on M and let
p ∈ M be a nonzero projection with tr(p) < ∞. If E : L∞(X,µ) o Γ → L∞(X,µ)
denotes the canonical conditional expectation then

e(p) = E(p)

and
0 < tr(e(p)2) ≤ tr(p)

where e(p) ∈M is defined as above.

Proof. By the uniqueness of e(p) ∈ M it follows that e(p) commutes with every
unitary in L∞(X,µ). Since N = L∞(X,µ) is maximal abelian in the crossed
product, by 11.2.11 it follows that e(p) ∈ L∞(X,µ).
If x =

∑n
j=1 λjujpu

∗
j ∈W (p) for uj ∈ N we clearly have

E(x) =
n∑
j=1

λjE(ujpu∗j ) =
n∑
j=1

λjujE(p)u∗j = E(p)

by the bimodule property of E and the fact that L∞(X,µ) is abelian. Since E is
ultraweakly continuous we have in fact E(x) = E(p) for all x ∈ W (p). Moreover
we have e(p) ∈W (p) and together with our observation e(p) ∈ L∞(M,µ) above we
therefore obtain

e(p) = E(e(p)) = E(p).
Since E(p) ≤ p we conclude

tr(e(p)2) = tr(e(p)∗e(p)) = t(e(p)) ≤ t(p) = tr(p).

Finally E(p) = E(p2) is a positive non-zero element of M and hence e(p)2 = E(p)2

must have non-zero trace. �

Theorem 4.9. Let the countable discrete group Γ act freely and ergodically on
the countably separated σ-finite measure space (X,µ). If the factor L∞(X,µ) o Γ
is semifinite there exists a σ-finite Γ-invariant measure on X which is absolutely
continuous with respect to µ.

Proof. Define a measure ν on X by ν(A) = tr(χA) for measurable subsets A ⊂ X.
Then ν has to be finite and nonzero on some A. Indeed, choose a nonzero projection
p ∈ L∞(X,µ) o Γ with tr(p) <∞. Then according to proposition 4.8 the function
E(p)2 ∈ L∞(X,µ) has finite positive measure with respect to ν. By ergodicity of
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the action we see that the complement of the Γ-invariant set
⋃
γ∈Γ γ ·A has measure

zero so that ν is σ-finite. From the relation

ν(γY ) = tr(γ · χY ) = tr(uγχY u−1
γ ) = tr(χY ) = ν(Y )

for measurable Y ⊂ X we see that ν is Γ-invariant. �
As a consequence we obtain examples of factors which are not semifinite. Such
factors are sometimes called purely infinite. Since being semifinite is the same
things as being type I or II the following terminology is equivalently used.

Definition 4.10. A factor is of type III if it is not of type I or II.

According to theorem 4.9 we obtain a type III-factor from any example of a
free ergodic group action on a countably separated, σ-finite measure space (X,µ)
such that there is no invariant σ-finite invariant measure absolutely continuous with
respect to µ. Hence lemma 1.4 gives the following result.

Corollary 4.11. The crossed product L∞(R, λ) o Γ for the natural action of the
ax+ b-group Γ = Q o Q∗ on (R, λ) is a type III-factor.
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