
AN INCOMPLETE OVERVIEW ABOUT THE KONTSEVICH

MODEL

Abstract. In 1992, Kontsevich proved that intersection numbers of line bun-
dles over the moduli space of complex curves can be computed by structures
familiar from quantum field theory. Today we know that these structures de-
scribe the φ3-model on a family of noncommutative geometries. Conversely,
one can prove results about these noncommutative quantum field theories
which by far exceed what can be done usually. I try to sketch how the φ3-
interaction arises in the Kontsevich model.

1. The moduli space of curves

We let Mg,s be the moduli space of equivalence classes of complex curves (1-
dimensional oriented complex manifolds) of genus g with s distinct marked points,
modulo biholomorphic reparametrisation. If the Euler characteristic χ = 2−2g−s
is negative, Mg,s is locally parametrised by dg,s = (3g−3+s) complex parameters
called moduli. Mg,s is an orbifold, not a manifold.

• The simplest case M0,3 consists of the Riemann sphere C̄ with three
marked points z1, z2, z3. The automorphisms of C̄ are the Möbius trans-

forms z 7→ az+b
cz+d

with

(

a b
c d

)

∈ SL(2,C). There is a unique Möbius

transform which maps z1, z2, z3 into 0, 1,∞. Therefore, M0,3 is a point.
• A genus-1 Riemann surface is a torus which can be conformally mapped to
the parallelogram with vertices 0, 1, τ, 1+τ , where Im(τ) > 0 and opposite
sides identified. The resulting common vertex is the distinguished marked
point. Two such parallelograms τ, τ ′ define the same surface if τ ′ = aτ+b

cτ+d

with

(

a b
c d

)

∈ SL(2,Z). This includes the generators τ 7→ τ + 1 and

τ 7→ − 1
τ
and restricts the parametrisation domain to |τ | ≥ 1 and −1

2
<

Re(τ) ≤ 1
2
. Moreover, on the boundary τ = eiθ, with π

3
≤ θ < 2π

3
, we

identify eiθ and ei(π−θ) which restricts the angle to [π
3
, π
2
]. In summary,

M1,1 = {−1
2
< Re(τ) ≤ 1

2
} ∩ {Im(τ) > 0} ∩ {|τ | > 1} ∪ {τ = eiθ , π

3
≤ θ ≤ π

2
} .

The spaces Mg,s are typically not compact. They can be compactified to Mg,s

by adding degenerate surfaces. In case of the torus class M1,1 one includes the
pinched torus, which corresponds to a sphere with three marked points which is
glued along two of them to a pinched torus: M1,1 = M1,1 ∪ M0,3. There is a
stability condition: All connected components of degenerate surfaces have neg-
ative Euler characteristics. These Deligne-Mumford compactifications carry an

1
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analytic (hence smooth) structure, but they are no longer of constant dimension;
they are called a stack.

2. Chern classes and intersection numbers

On the smooth space Mg,s we have a natural family {L1, . . . ,Ls} of complex
line bundles (i.e. rank-1 vector bundles) over Mg,s. Every point x ∈ Mg,s is a
stable complex curve x = C with the same labelled regular points z1, . . . , zs ∈ C.
Take as the fibre of Li at x = C the cotangent space T ∗

zi
C, which is well-defined

because every zi is a smooth point even for degenerate curves in Mg,s \ Mg,s.
It is known that smooth complex line bundles are classified by their first Chern
class c1(Li), an element of the second cohomology group H2(Mg,s,Q). In case
of manifolds M , the Chern classes take values in H2(M,Z); the Chern classes
then count the number of linearly independent sections of a vector bundle. For
orbispaces the rational cohomology group arises. A representative of c1(Li) is the
curvature form Ωi of any connection on Li. The class [Ωi] does not depend on
the choice of the connection.

The (commutative) wedge product of dim(Mg,s) = 3g− 3+ s of these 2-forms
c1(Li) is of top degree 2(3g−3+s), equal to the real dimension ofMg,s. Therefore,
the following integral is well-defined:

〈τd1 · · · τds〉 :=
∫

Mg,s

s
∏

j=1

(

c1(Lj)
)dj (1)

which is non-zero only if d1 + · · · + ds = 3g − 3 + s. The simplest cases turn
out to be 〈τ0τ0τ0〉 = 1 for M0,3 and 〈τ1〉 = 1

24
for M1,1. Sometimes one includes

〈1〉 = − 1
12

from the Euler characteristics of M1,0. These rational numbers are

called intersection numbers. They are topological invariants of Mg,s.

3. Witten’s conjecture

Since the order of marked points does not matter, we write 〈τ0τ0τ0〉 ≡ 〈τ 30 〉 and
a general intersection number as 〈τk00 τk11 · · · 〉. Consider the generating function

F (t0, t1, . . . ) =
〈

exp
(

∞
∑

i=0

tiτi

)〉

=
∞
∑

k0,k1,···=0

〈τk00 τk11 . . . 〉
∞
∏

i=0

tkii
ki!

, (2)

which is a formal power series in the variables ti. Conversely, the intersection
numbers are easily extracted from F :

〈τn1

i1
· · · τnr

ir
〉 = ∂n1

∂tn1

i1

· · · ∂
nr

∂tnr

ir

F ({t})
∣

∣

∣

ti=0
(3)

The simplest cases F (t0, t1, . . . ) =
t30
3!
+ t1

24
+. . . and an analogy to the hermitean

one-matrix model led Witten to the following conjecture:
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Conjecture 1 ([Witten, 1991]). (1) The generating function F obeys the string
equation

∂F

∂t0
=

t20
2
+

∞
∑

i=0

ti+1
∂F

∂ti
. (4)

(2) The second derivative U({t}) := ∂2

∂t2
0

F ({t}) satisfies the Korteweg-de Vries

equations

∂U

∂tn
=

∂

∂t0
Rn+1(U, ∂t0U, ∂

2
t0
U, . . . ) , (5)

where the Rn are polynomials in U and their t0-derivatives which are
recursively defined by R1(U) = U and

∂

∂t0
Rn+1 =

1

2n+ 1

(

Rn

∂U

∂t0
+ 2U

∂Rn

∂t0
+

1

4

∂3Rn

∂t30

)

.

These equations (if true) allow to recursively evaluate all intersection numbers.
For instance, the first KdV-equation reads

∂U

∂t1
= U

∂U

∂t0
+

1

12

∂3U

∂t30
(6)

and determines the part in U that only depends on t0, t1 to U(t0, t1, 0, 0, . . . ) =
t0

1−t1
. In particular, 〈τ 30 τk1 〉 = k!.

4. The Kontsevich model

[Kontsevich, 1992] gave a proof of the Witten’s conjecture 1 by relating F to
the partition function of a new type of matrix model, the Kontsevich model. His
construction uses closed ribbon graphs (or fatgraphs). These are graphs whose
edges are thickened to bands to make an oriented 2-manifold with boundary
embedded in R3. The boundary is a disjoint union of circles which we call faces.
We let RG3

s be the set of closed ribbon graphs made of 3-valent vertices with s
labelled faces. Such a closed ribbon graph has an even number v of vertices, 3

2
v

edges and can be drawn without intersection on a surface of genus g given by
v − 3

2
v + s = 2− 2g.

Theorem 2 ([Kontsevich, 1992]). The intersection numbers of line bundles on
Mg,s are generated by

∞
∑

d1,...,ds=0

〈τd1 · · · τds〉
s
∏

i=1

(2di − 1)!!

λ2di+1
i

=
∑

Γ∈RG3
s

2−|V (Γ)|

#Aut(Γ)

∏

e∈E(Γ)

2

λ′(e) + λ′′(e)
, (7)

where V (Γ), E(Γ) are the sets of vertices and edges of Γ and #Aut(Γ) is the
order of the automorphism group of Γ. The faces are labelled by formal variables
λ1, . . . , λs, and λ′(e), λ′′(e) are the labels of the two faces separated by the edge e.
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For example, the intersection number 〈τ0τ0τ0〉 arises from graphs in Γ ∈ RG3
3

with v = 2 vertices,

〈τ0τ0τ0〉
λ1λ2λ3

=
1

4

( 8

(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)
+

8

(λ1 + λ2)(λ1 + λ3)(λ1 + λ1)

+
8

(λ1 + λ2)(λ2 + λ3)(λ2 + λ2)
+

8

(λ1 + λ3)(λ2 + λ3)(λ3 + λ3)

)

,

which yields 〈τ0τ0τ0〉 = 1. For v = 2 vertices and s = 1 faces there is a single
graph with symmetry factor Aut(Γ) = 6:

〈τ1〉
λ3
1

=
1

4 · 6
( 2

λ1 + λ1

)3

,

which yields 〈τ1〉 = 1
24
.

Several proofs are known today. Kontsevich started from a theorem by Strebel
from the 1960s. We follow [Eynard, 2016]:

Theorem 3 ([Strebel, 1984]). On any Riemann surface C ∈ Mg,s with marked
points z1, . . . , zs there is, for any given L1, . . . , Ls ∈ R+ (called perimeters), a
unique quadratic differential Ω(z) = f(z)dz ⊗ dz such that

• f is meromorphic on C
• Ω(z) ∝ − L2

j

(z−zi)
(1 +O(z − zj))dz ⊗ dz near zj.

Moreover, the horizontal trajectories of Ω, defined by Im(
∫ z √

Ω) = const, are
either circles about the marked points or critical trajectories which form a ribbon
graph with s faces drawn on C. The jth face has perimeter Lj when measured

with the metric 1
2π
|
√
Ω|.

Near a double pole zj one has
∫ z

√
Ω ∼ iLj log(z − zj) so that the horizontal

trajectories are (round) circles with centre zj. By continuity they remain topo-
logical circles away from zj , until a critical trajectory which goes through the

zeros of Ω. Near a simple zero zv of Ω one has
∫ z √

Ω ∼ (z − zv)
3

2 so that three
horizontal trajectories meet at a vertex.

For the single surface in M0,3 with marked points at 0, 1,∞, the Strebel dif-
ferential is

Ω(z) = −L2
∞z2 − (L2

∞ + L2
0 − L2

1)z + L2
0

z2(z − 1)2
dz ⊗ dz . (8)

One has Ω(zv) = 0 at

zv =
1

2L2
∞

(

L2
∞ + L2

0 − L2
1 ±

√

L2
0 + L4

1 + L2
∞ − 2L2

0L
2
1 − 2L2

0L
2
∞ − 2L2

1L
2
∞

)

.

Generically 3-valent vertices corresponding to simple zeros arise. Only the three
cases L0 = L1 + L∞, L1 = L0 + L∞, L∞ = L0 + L1 produce a 4-valent ribbon
graph.
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The metric 1
2π
|
√
Ω| allows to measure the length ℓe of every edge of the ribbon

graph Γ. 3-valent graphs with v vertices have 3
2
v edges and Euler characteristics

χ = 2−2g = v− 3
2
v+s, or 3

2
v = 3(2g+s−2) = 2(3g−3+s)+s. Hence, Strebel’s

theorem assigns to a curve with perimeters (C, L1, . . . , Ls) ∈ Mg,s × (R×
+)

s a
unique ribbon graph Γ with edge lengths {ℓe} ∈ (R+)

s+2(3g−3+s). This assignment
turns out to be an isomorphism of orbifolds,

Mg,s × (R×
+)

s ∼
⋃

ribbon graphs

(R+)
s+2(3g−3+s)

by which Mg,s × (R×
+)

s is stratified into cells labelled by genus-g 3-valent ribbon
graphs of s faces. [At some point still obscure to me the order of the automorphism
group arises ]

In particular, the top degree differential forms must be proportional to each
other. Kontsevich proved that

22g−2+s

s+2(3g−3+s)
∧

e=1

dℓe =
23−3g−s

(3g − 3 + s)!

(

s
∑

i=1

L2
i c1(Li × (R×

+)
s)
)3g−3+s

∧ dL1 ∧ · · · ∧ dLs ,

(9)

independently of the ribbon graph. This formula is the main achievement in
[Kontsevich, 1992]. One has c1(Li × (R×

+)
s) = c1(Li) because (R×

+)
s is trivial. It

is written in this form because on Li × (R×
+)

s Kontsevich can prove a formula for
the connection form which gives rise to the Chern classes. A technically difficult
aspect is that the stratification into ribbon graphs is only possible for true curves
in Mg,s and not for the boundary of Mg,s. This difficulty was addressed, but we
ignore it here.

The non-compactness of (R×
+)

s is addressed by a Laplace transform. One mul-
tiplies (9) by

∏s

j=1 e
−λjLj and integrates. On the rhs the multinomial formula

gives

rhs =
∑

d1+···+ds=3g−3+s

(

s
∏

j=1

∫ ∞

0

dLj

L
2dj
j e−Ljλj

2djdj!

)

∫

Mg,s

s
∏

j=1

(c1(Lj))
dj

=
∑

d1+···+ds=3g−3+s

(

s
∏

j=1

(2dj − 1)!!

λ
2dj+1
j

)

〈τd11 · · · τdss 〉

On the lhs we have with
∏

i∈faces e
−λiLi =

∏

e∈E(Γ) e
−ℓe(λ′(e)+λ′′(e))

lhs =
∑

Γ∈RG3
s

1

#Aut(Γ)

1

22g−2+s

∏

e∈E(Γ)

∫ ∞

0

dℓee
−ℓe(λ′(e)+λ′′(e))

=
∑

Γ∈RG3
s

2−V (Γ)

#Aut(Γ)

∏

e∈E(Γ)

2

λ′(e) + λ′′(e)
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where V (Γ)− |E(Γ)|+ s = 2− 2g has been used. The factor #Aut(Γ) is not yet
clear to me. Altogether Theorem 2 is obtained.

5. Matrix model

A direct determination of the symmetry factor #Aut(Γ) is not easy. It is
therefore convenient to consider a generating function for ribbon graphs including
symmetry factor. The solution is given by a partition function of a new type of
matrix model.

Let Λ = diag(λ1, . . . , λN) be a diagonal positive matrix. We normalise the
translation-invariant Lebesgue measure on the space M∗

N of self-adjoint N × N -
matrices as follows:

W (λ) :=

∫

M∗

N

dX e−
1

2
Tr(ΛX2) =

N
∏

i,j=1

1
√

λi + λj

(10)

Note that 1
2
Tr(ΛX2) =

∑N

i,j=1
λi+λj

4
XijXji. If J = (Jij) is another self-adjoint

matrix, then by translation invariance

∫

M∗

N

dX e−
1

2
Tr(ΛX2)+Tr(JX) = exp

(

∑

i,j

JijJji

λi + λj

)

N
∏

i,j=1

1
√

λi + λj

.

This gives
∫

M∗

N

dX XabXcde
− 1

2
Tr(ΛX2) =

∂2

∂JbaJdc

∫

M∗

N

dX e−
1

2
Tr(ΛX2)+Tr(JX)

∣

∣

∣

J=0

=
2δadδbc
λa + λb

·W (λ) .

In other words, up to the prefactor W (λ), the weight factor 2
λa+λb

is precisely the
covariance of the Gaußian matrix measure. Trivalent band graphs are generated
as follows:

∫

M∗

N

dX e−
1

2
Tr(ΛX2)+ i

6
Tr(X3)

=
∞
∑

v=0

(i/2)v

v!

(1

3
Tr
( ∂3

∂J

))v
∫

M∗

N

dX e−
1

2
Tr(ΛX2)+Tr(JX)

∣

∣

∣

J=0

=
[

∞
∑

s=0

(−1)s

s!

N
∑

a1,...,as=1

∑

Γ∈(ΠRG3)s

2−v

#Aut(Γ)

∏

e∈E(Γ)

2

λ′(e) + λ′′(e)

]

W (λ) . (11)

Here iv = (−1)
v
2 = (−1)s was used. The sum runs over the set (ΠRG3)s of not

necessarily connected 3-valent ribbon graphs with together s faces labelled by
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λa1 , . . . , λas. It is known from combinatorics that the logarithm of [. . . ] in (11)
generates connected graphs:

log

(

∫

M∗

N

dX e−
1

2
Tr(ΛX2)+ i

6
Tr(X3)

∫

M∗

N

dX e−
1

2
Tr(ΛX2)

)

=
∞
∑

s=1

(−1)s

s!

N
∑

a1,...,as=1

∑

Γ∈RG3
s

2−v

#Aut(Γ)

∏

e∈E(Γ)

2

λ′(e) + λ′′(e)

=

∞
∑

s=1

1

s!

∞
∑

d1,...,ds=0

〈τd1 · · · τds〉
s
∏

i=1

N
∑

ai=1

−(2di − 1)!!

λ2di+1
ai

(12)

where Kontsevich’s theorem 2 is inserted. Collecting identical powers of Chern
classes, we arrive at:

Theorem 4.

log

(

∫

M∗

N

dX e−
1

2
Tr(ΛX2)+ i

6
Tr(X3)

∫

M∗

N

dX e−
1

2
Tr(ΛX2)

)

=

∞
∑

k0,k1,···=0

〈τk00 τk11 . . . 〉
∞
∏

i=0

tkii
ki!

= F (t0, t1, . . . ) ,

where ti := −(2i− 1)!!Tr(Λ−2i−1).

Independence of the ti requires N → ∞. The formula is understood asymp-
totically for λa → ∞. It is not clear that the partition function converges.

6. Proof of the string equation

We follow [Witten, 1992]. To prove the string equation (4) one applies the

operator T :=
∑N

a=1
1
λa

∂
∂λa

to

WeF =

∫

M∗

N

dX e−
1

2
Tr(ΛX2)+ i

6
Tr(X3) , where W =

N
∏

i,j=1

1
√

λi + λj

.

On the lhs one has

TW = −1

2
W

N
∑

i,j=1

1
λi

+ 1
λj

λi + λj

= −1

2
t20W
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and TeF =
∑∞

i=0
∂F
∂ti

(T ti)e
F . With T ti = −∑N

a=1
1
λa

∂
∂λa

(2i − 1)!!
∑N

b=1
1

λ2i+1

b

=

+(2i+ 1)!!
∑N

b=1
1

λ2i+3

b

= −ti+1 we have

−WeF
(

∞
∑

i=0

ti+1
∂F

∂ti
+

t20
2

)

=

∫

M∗

N

dX T
(

e−
1

2
Tr(ΛX2)+ i

6
Tr(X3)

)

= −1

2

∫

M∗

N

dX
N
∑

a,b=1

1

λa

XabXbae
− 1

2
Tr(ΛX2)+ i

6
Tr(X3)

=

∫

M∗

N

dX

N
∑

a=1

1

λa

(

i
∂

∂Xaa

+ iλaXaa

)

e−
1

2
Tr(ΛX2)+ i

6
Tr(X3)

= i

∫

M∗

N

dX Tr(X)e−
1

2
Tr(ΛX2)+ i

6
Tr(X3) . (13)

Comparing with (4) it remains to prove
∫

M∗

N

dX Tr(iX)e−
1

2
Tr(ΛX2)+ i

6
Tr(X3) = −∂F

∂t0
·
∫

M∗

N

dX e−
1

2
Tr(ΛX2)+ i

6
Tr(X3)

This equation has a quantum field theoretical interpretation,

∂F

∂t0
= (−i)

n
∑

a=1

∂

∂Jaa

(

log

∫

M∗

N

dX e−
1

2
Tr(ΛX2)+ i

6
Tr(X3)+Tr(JX)

)
∣

∣

∣

J=0
.

It means that we have to prove that ∂F
∂t0

is the trace of the connected one-point
function, which expands into open ribbon graphs with a distinguished external
1-valent vertex. We start from the generating function (2),

∂F

∂t0
=
∑

k0,k1...

〈τ0τk00 τk11 . . . 〉
∞
∏

i=0

tkii
ki!

which has an additional insertion of τ0. Starting from (7), we have

∞
∑

d1,...,ds=0

〈τ0τd1 · · · τds〉
s
∏

i=1

(2di − 1)!!

λ2di+1
i

= lim
λ0→∞

λ0

∑

Γ∈RG3
s+1

2−|V (Γ)|

#Aut(Γ)

∏

e∈E(Γ)

2

λ′(e) + λ′′(e)
.

The sum is over ribbon graphs with face labels λ0, λ1, . . . , λs. The only contri-
bution to the limit λ0 → ∞ is from graphs where 2

λ0+λ′
only arises once, i.e.

from tadpole subgraphs. Including the vertex, but not the edge leading to the
tadpole, the subgraph contributes weight i

2
· 2
λ0+λ′

, i.e. a factor i in the limit. The

additional sign results from (−1)s versus (−1)s+1. After summation over all λa

one includes precisely the graphs with Tr(X)-insertion. This finishes the proof of
(4).
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7. Relation to the Virasoro algebra

The non-linear KdV-equation for U can be solved by essentially the same
strategy. We refer to [Witten, 1992]. We mention another result discussed in
[Witten, 1992]. Define for p ∈ Z+ 1

2
operators

ap :=
(2p)!!√

2

∂

∂tp− 1

2

, p > 0

ap :=
1

(−2p− 2)!!
√
2

(

t−p− 1

2

− δp,− 3

2

)

, p < 0

Then [ap, qq] = pδp,−q. Define

Ln :=
1

2

∑

p∈Z+ 1

2

apan−p for n 6= 0 , L0 :=
1

16
+
∑

p∈N+ 1

2

a−pap . (14)

One can show that the Ln satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + δm,−nm(m2 − 1) .

Then the KdV-equations for F are equivalent to Lne
F = 0 for all n ≥ −1, i.e.

the partition function eF is a highest-weight vector for the Virasoro algebra.

8. Outlook

In general it becomes necessary to study the expectation values

〈Xa1b1 · · ·Xanbn〉 := log

∫

M∗

N

dX Xa1b1 · · ·Xanbne
−NTr(ΛX2)+ i

3
NTr(X3)

∫

M∗

N

dX e−NTr(ΛX2)+ i

3
NTr(X3)

(15)

These are independently accessible via a topological recursion [Eynard, 2016] in

the genus. For that purpose we have already rescaled Λ, X by a factor (2N)
1

3 .
This leads to an additional factor (2N)v−e = (2N)2−2g−s in (12). The factor 1

Ns

is absorbed in a new definition ti = −(2i − 1)!! 1
N
Tr(Λ−2i−1) which has a better

large-N limit. The remaining N2−2g provides the grading for the genus expansion
F =

∑∞
g=0N

2−2gFg. n-point functions (15) have exceeding unmarked faces which

receive a factor 1
N

〈Xa1a1 · · ·Xanan〉 =
∞
∑

g=0

N2−2g−nG
(g)
a1|...|an

.

For these functions G
(g)
a1|...|an

one can prove Schwinger-Dyson equations and solve

them in terms of the eigenvalues λi or the functions ti. Possibly up to numerical
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factors, the simplest case reads in terms of W (x) = G
(0)
a − λa

∣

∣

λ2
a=Nx

:

W 2(x)−
∫ β

α

dt ρ(t)
W (x)−W (t)

x− t
= x (16)

where ρ(t) =
∑∞

a=1 δ(Nt− λ2
a). Such an equation can be algebraically solved by

techniques for boundary values of sectionally holomorphic functions
[Makeenko-Semenoff, 1991]:

W (x) =
√
x+ c− 1

2

∫ β

α

dt
ρ(t)

(
√
x+ c+

√
t+ c)

√
t + c

, c =

∫ β

α

dt
ρ(t)√
t + c

(17)

All other g-homogeneous parts of n-point functions satisfy linear Schwinger-
Dyson equations. They can be evaluated recursively. This is one of the rare
cases where QFT-correlation functions can be computed exactly.
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