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Motivation:

I The formulation of the standard model in noncommutative geometry

I Canonical gravity, Loop Quantum Gravity

Aim:

I Find intersection of noncommutative geometry with quantum
gravity (quantization + unification)

The construction:

I A spectral triple over a configuration space of connections.

I A noncommutative algebra of holonomy loops.

Physical interpretation:

I The spectral triple encodes the information of the kinematical part
of quantum gravity.

I The spectral triple has semi-classical states which gives the Dirac
Hamiltonian in 3 + 1 dimension.
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The standard model and noncommutative geometry

(Connes, Lott, Chamsedine, Marcolli, ...)

(C∞(M)⊗ BF , L2(M,S)⊗HF ,D ⊗ 1 + γ5 ⊗ DF )

where
M - 4-dimensional compact spin manifold
S - spin bundle
BF - finite dimensional algebra
HF - finite dimensional Hilbert space, fermionic content of the
standard model
DF - certain matrix



The standard model and noncommutative geometry

Spectral action:

I = 〈ψ|D̃|ψ〉+ Tr

(
ϕ

(
D̃2

Λ2

))
action of standard model coupled to gravity.

Main point
Formulation of the standard model as a single gravitational theory.
Essentially classical, no quantization.
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Our aim:
To construct a model which combines noncommutative geometry with
elements of quantum gravity.

Get inspiration/elements (actually rather a lot) from Loop Quantum
Gravity.

Loop Quantum Gravity:
Quantization of gravity. No unification.
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Loop Quantum Gravity

M = R× Σ

The new (Ashtekar) variables
Ai
j - SU(2)-connection on Σ.

E i
j = |dete| 12 e i

j - e i
j orthonormal frame field.
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Poisson bracket

{Ai
j(x),E k

l (y)} = δil δ
k
j δ(x − y)

Constraints
Gauss constraint

∂iE
i
a + εcabAb

i E i
c = 0

Diffeomorphism constraint
E j
aF a

ij = 0

Hamilton constraint (Euclidian)

εabc E i
aE j
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Loop Quantum Gravity

Reformulation
L loop on Σ.

hL(∇) = Hol(L,∇)

∇ - SU(2)-connection on Σ.

F S
a (E ) =

∫
S

εmnpEm
a dxndxp

S - surface in Σ.
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Loop Quantum Gravity

C Curve. Where C = C1C2.

{F S
a (E ), hC (∇)} = ±hC1 (∇)τahC2 (∇)

τ a generator of su(2).



Loop Quantum Gravity

Quantization strategy
A - space of SU(2) connections.

Construct L2(A).
Realize hC as a multiplikation operator ĥC on L2(A).
Construct F̂ S

a acting on L2(A) satisfying

[F̂ S
a , ĥC ] = ±ĥC1τ

aĥC2

Express constraints in terms of hC ,F
a
S and replace with F̂ S

a and ĥC .
Solve the quantum constraints to get the physical Hilbert space.
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Our project part 2

G - connected compact Lie group.
G → MN - matrix representation.
M - manifold.
x0 - point in M.
A - space of connections in M × G .
hL : A → MN given

hL(∇) = Hol(L,∇), ∇ ∈ A.

Let B be the algebra generated by

{hL}L based in x0

We want to construct a spectral triple on B.



Completing spaces of connection

....

Γ0 lattice on M.
Γn the n’th subdivision of Γ0.
Identify

AΓn = G e(Γn)

via
AΓn 3 ∇ → (Hol(e1,∇), . . . ,Hol(ee(Γn),∇)),

where e(Γn) is the number of edges in Γn.

When n tends to ∞, AΓn will be a good approximation to A.
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Completing spaces of connection

There are maps
Pn+1,n : An+1 → An.

Define
As

= lim
n
An

Topology on An = G e(Γn) induces topology on As
.

It is not hard to see
A ↪→ As

densely

Define
L2(As

) = lim
n

L2(An)
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The Ashtekar-Lewandowski case

M real analytic.

Sa = { finite graphs with piecewise analytic edges }

Sa is a directed set.
Define

AΓ = G e(Γ),

where Γ ∈ Sa, and define
Aa

= lim
Γ∈Sa

AΓ

L2(Aa
) = lim

Γ∈Sa

L2(AΓ)

L2(Aa
) is not separable.



Comparision

We have the following diagram

Aa

��

Diffa(M)oo

A

88qqqqqqqqqqqqq // As Diffs(M)oo
?�

OO

where Diffa(M) is the group of piecewise analytic diffeomorphisms, and
Diffs(M) is the group of diffeomorphisms preserving the infinite lattice.

We would therefore like to see As
as Aa

subjected to a partial gauge
fixing of the diffeomorphism group.
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The algebra

Bs is the algebra generated by {hL}, where L is a loop in ∪Γn based in x0.
Bs admits a representation on L2(As

)⊗MN .



The Dirac operator

Idea
AΓ = G n is a classical geometry and therefore has a Dirac operator. We
take one acting on

L2(G n,Cl(T ∗G n))⊗MN .

The maps Pi+1,i : G ni+1 → G ni induces

P∗i+1,i : L2(G ni ,CL(T ∗G ni ))→ L2(G ni+1 ,CL(T ∗G ni+1 ))

To ensure that {Di} descends to an operator D on

lim
i

L2(G ni ,CL(T ∗G ni ))⊗MN = L2(As
,CL(T ∗As

))⊗MN ,

we need to ensure
P∗i+1,i ◦ Di = Di+1



The Dirac operator

Restrict for simplicity to the case of a single edge.
Gives the projective system

G ← G 2 ← G 4 ← . . .← G 2n

← · · ·

with structure maps

Pn+1,n(g1, . . . , g2n+1 ) = (g1g2, . . . , g2n+1−1g2n+1 ).

Can be rewritten to a projective system with structure maps

Pn+1,n(g1, . . . , g2n+1 ) = (g1, . . . , g2n).



The Dirac operator

Define
Dn =

∑
i

aiD0i

where D0i is a Dirac operator on the i ’the copy of G .
Take D0i of the form

D0i =
∑
k

ek · dek ,

where {ek} denotes a orthonormal basis in g and the corresponding left
translated vectorfields.

The family {Dn} is a consistent family of operator and hence descends to
an operator D.
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Semifiniteness

D does not have compact resolvent.

Definition
Let N be a semifinite von Neumann algebra with a semifinite trace τ .
Let Kτ be the τ - compact operators. A semifinite spectral triple
(B,H,D) is a ∗-subalgebra B of N , a representation of N on the Hilbert
space N and an unbounded densely defined self adjoint operator D on H
affiliated with N satisfying

1. b(λ− D)−1 ∈ Kτ for all b ∈ B and λ /∈ R..

2. [b,D] is densely defined and extends to a bounded operator.



Semifiniteness

Rewrite

L2(As
,CL(T ∗As

))⊗MN = (L2(As
)⊗MN)⊗ Cl(T ∗idA

s
).

Let N be the weak closure of

B(L2(As
)⊗MN)⊗ C ,

where
C = Cl(T ∗idA

s
) = lim

n
Cl(T ∗idAn).

N is semi finite.

Theorem
When ai →∞ the triple (Bs ,D, L2(As

,Cl(T ∗As
)⊗Mn)) is semi finite

with respect to N



Poisson structure

C Curve. Where C = C1C2.

{F S
a (E ), hC (∇)} = ±hC1τahC2

τa generator of su(2). In the quantization setting C1 and C2 corresponds
copies of G . Hence we look at L2(G 2)⊗MN and

ĥC1C2 (ξ)(g1, g2) = g1g2ξ(g1, g2).

With
F̂ S = LLg1

τa

we have
[F̂ S

a , ĥC1C2 ] = ĥC1τaĥC2 .

Therefore D in a certain sense contains quantization.



Semi-classical states

Let ψ(x) be a spinor field on Σ and let A(x) and E (x) be a
SU(2)-connection and a triad field on Σ.
We will now construct states that are localized around ψ,A,E to get a
physical interpretation of D, our Dirac type operator.

I On one edge ε. φt ∈ L2(SU(2),M2) coherent state Hall 1994 with

lim
t→0
〈φt |fε|φt〉 = Hol(ε,A)

lim
t→0
〈φt |tdeaε |φ

t〉 = i2−2nE 1
a (v2),

where v2 is the endpoint of ε and the 1 in E 1
a is the direction of ε.



Semi-classical states

Let ψ(x) be a spinor field on Σ and let A(x) and E (x) be a
SU(2)-connection and a triad field on Σ.
We will now construct states that are localized around ψ,A,E to get a
physical interpretation of D, our Dirac type operator.

I On one edge ε. φt ∈ L2(SU(2),M2) coherent state Hall 1994 with

lim
t→0
〈φt |fε|φt〉 = Hol(ε,A)

lim
t→0
〈φt |tdeaε |φ

t〉 = i2−2nE 1
a (v2),

where v2 is the endpoint of ε and the 1 in E 1
a is the direction of ε.



Consider the state

Ψ(g) = (gψ(v2) + iea
εσ

aψ(v1))φtε(g).

A computation gives

lim
t→0
〈Ψ|tDε|Ψ〉 = an2−2n(−ψ̄(v1)σaE 1

a (ψ(v1)− ψ(v2))

+(ψ̄(v2)− ψ̄(v1))σaE 1
aψ(v1)

+ψ̄(v1){2−nA1, σ
aE 1

a }ψ(v1))

where we have used g ∼ 1 + 2−nA1.

Would like

an2−2n(ψ(v1)− ψ(v2))→ ∂1ψ(v1)

when n→∞, hence an = 23n. Then

lim
n→∞

lim
t→0
〈Ψ|tDε|Ψ〉 = ψ̄(v1)(σaE 1

a∇1 +∇1σ
aE 1

a )ψ(v1),

where we have used partial integration and ∇ = d + A. This is the
expression for the Dirac operator in 3 dimension in the 1 direction.
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Change of basepoint

It turns out that to do this for all edges is related to the choice of
basepoint.
L0 - loop based in x0.
p - path from x0 to x1, p = {l1, . . . , ln}.
Up - parallel transport along p.

hLx1
= UphLx0

U∗p
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Change of basepoint

Lift Up to

Ũp = Ũ1 · · · Ũn,

where
Ũi = iea

i (gi ⊗ βa
i ),

where βa
i are skew self-adjoint matrices satisfying∑

a

|βa
i |2 = 1.

For p1 6= p2,
〈Ũp1 |Ũp2〉 = 0

(Here we have to tensor the Hilbert space with an extra matrix factor.)



Change of basepoint

Let ψ(vi ), vi ∈ Γn transform

Ũpiψ(vi ),

where pi is a path from x0 to vi . We have

〈Ũp1ψ(v1) + Ũp2ψ(v2)|hL0 |Ũp1ψ(v1) + Ũp2ψ(v2)〉
= 〈ψ(v1)|hL1 |ψ(v1)〉+ 〈ψ(v2)|hL2 |ψ(v2)〉.

L1 loop based in v1. L2 loop based in v2.



Change of basepoint

To eliminate this choice of base points we sum over all of them

Ψn =
1

N

∑
i

Ũpiψ(vi )

and define
Ψt

n = Ψn

∏
e∈Γn

φte



The expectation value of the Dirac operator

Set
βa
i = N(vi )γ

a + iNa(vi )γ
0,

where N,Na are lapse and shift fields. A computation gives

limn→∞ limt→0〈Ψt
n|tD|Ψt

n〉
=
∫

Σ
ψ̄(x)(

√
gem

a ∇m +∇m
√

gem
a )(N(x)γa + iNa(x)γ0)ψ(x)dx

+ lower order terms.

This expression resembles the Dirac hamiltonian in 3 + 1-dimension.
Thus the semi-classical states can be interpreted as one fermion states in
a background gravitational field with lapse N and shift Nm.
Hence D can be interpretated as a quantization of the Dirac Hamiltonian.



Outlook/Problems

To summarize

I Constructed triple over an algebra of holonomy loops

I The triple contains a quantization of the Poisson bracket of gravity

I The lattice involved in the construction is seen as a coordinate
system.

I In a certain semi-classical limit the Dirac type operator becomes the
Dirac Hamiltonian, and thus the semi-classical states can be
interpreted as one particle fermion states. The semi classical states
stem from the noncommutativity of the involved algebra.

Open problems

I Realizing the Hamilton constraint of gravity. This should be an
expression closely related to D2. We can construct a quantized
Hamiltonian constraint (and volume and area operator) having the
right expectation value on the semiclassical states.

I At a quantized level there is not an action of the diffeomorphism
group. However acts in the classical limit. Suggests that the
construction should be understood as a continuum limit.
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construction should be understood as a continuum limit.



Outlook/Problems

I Compute quantum fluctuation of the semi-classical limit.

I Construct many particle states.

I Need more structure than just a spectral triple to make contact with
the standard model. Real structure,...In work in progress it look like
getting the matrix factor of the γ-matrices right automatically gives
rise to part of the structure the standard model (the real structure.)
The expectation value of a Loop operator looks like a matrix valued
function on Σ.
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Thank you for your attention
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