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Motivation:
» The formulation of the standard model in noncommutative geometry
» Canonical gravity, Loop Quantum Gravity
Aim:
» Find intersection of noncommutative geometry with quantum
gravity (quantization + unification)
The construction:
> A spectral triple over a configuration space of connections.
» A noncommutative algebra of holonomy loops.
Physical interpretation:
» The spectral triple encodes the information of the kinematical part
of quantum gravity.
» The spectral triple has semi-classical states which gives the Dirac
Hamiltonian in 3 4+ 1 dimension.



The standard model and noncommutative geometry

(Connes, Lott, Chamsedine, Marcolli, ...)

(C®(M) @ Be, (M, S) @ Hp, D ® 1 + 75 @ DF)

where

M - 4-dimensional compact spin manifold

S - spin bundle

Br - finite dimensional algebra

Hr - finite dimensional Hilbert space, fermionic content of the

standard model
DrF - certain matrix
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The standard model and noncommutative geometry

Spectral action:

I'=(Y[Dly) + Tr (go (ﬁf))

action of standard model coupled to gravity.
Main point

Formulation of the standard model as a single gravitational theory.
Essentially classical, no quantization.
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Question:
How to formulate a quantization procedure within noncommutative
geometry?

Would involve quantum gravity.
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To construct a model which combines noncommutative geometry with
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Get inspiration/elements (actually rather a lot) from Loop Quantum
Gravity.

Loop Quantum Gravity:

Quantization of gravity. No unification.
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Loop Quantum Gravity

Poisson bracket

{A{(x), E[ (1)} = 6108(x — )

Constraints
Gauss constraint _ _
DEN+ €S, APEl = 0

Diffeomorphism constraint _
EjF} =0

Hamilton constraint (Euclidian)

ePEIELFS =0
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Loop Quantum Gravity

Reformulation
L loop on ¥.
h (V) = Hol(L, V)

V - SU(2)-connection on X.

F3(E) = /S €mnpET dx" dxP

S - surfacein X.



Loop Quantum Gravity

C Curve. Where C = GG G.
{FZ(E), he(V)} = +he,(V)Tahe, (V)

72 generator of su(2).
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Loop Quantum Gravity

Quantization strategy

A - space of SU(2) connections.

Construct L2(A).

Realize hc as a multiplikation operator hc on L2(A).
Construct F2 acting on L2(.A) satisfying

~ ~

[,’:—S’ %C] = ihcﬂ'ahc2

Express constraints in terms of hc, FZ and replace with I:'aS and hc.
Solve the quantum constraints to get the physical Hilbert space.



Our project part 2

G - connected compact Lie group.

G — My - matrix representation.

M - manifold.

Xo - pointin M.

A - space of connections in M x G.

hy : A— My  given
h (V) =Hol(L,V), Ve A

Let 3 be the algebra generated by

{hL}L based in x

We want to construct a spectral triple on B.



Completing spaces of connection

o lattice on M.
[, the n'th subdivision of .
Identify
.Arn = Ge(r“)
via
Ar, 2V — (Hol(e1,V),. .., Hol(eqr,), V)),

where e(T',) is the number of edges in T,.



Completing spaces of connection

o lattice on M.
[",, the n'th subdivision of [g.
Identify
.Ar = Ge(r“)
via
Ar, 2V — (Hol(e1,V),. .., Hol(eqr,), V)),
where e(I',) is the number of edges in I,.
When n tends to oo, Ar, will be a good approximation to A.
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Completing spaces of connection

There are maps
PnJrl,n . AnJrl — An.

Define
A =limA,

Topology on A, = G induces topology on A
It is not hard to see B
A < A densely

Define
[2(A°) = lim [%(A,)

n



The Ashtekar-Lewandowski case

M real analytic.

S, = { finite graphs with piecewise analytic edges }

S, is a directed set.
Define

Ar =60,
where I € S,, and define B

A’ = lim Ar

res,
2077 _ e g2
L7(A7) = I_I|er2 L*(Ar)

L[2(A%) is not separable.



Comparision

We have the following diagram

A° <— Diff,(M)

]

A A Diffs(M)

where Diff,(M) is the group of piecewise analytic diffeomorphisms, and
Diff;(M) is the group of diffeomorphisms preserving the infinite lattice.



Comparision

We have the following diagram

A° <— Diff,(M)

]

A A Diffs(M)

where Diff,(M) is the group of piecewise analytic diffeomorphisms, and
Diff;(M) is the group of diffeomorphisms preserving the infinite lattice.
We would therefore like to see A° as A’ subjected to a partial gauge
fixing of the diffeomorphism group.



The algebra

B3 is the algebra generated by {h;}, where L is a loop in Ul based in xo.
B° admits a representation on [2(A°) @ My.



The Dirac operator

ldea
Ar = G" is a classical geometry and therefore has a Dirac operator. We

take one acting on
L2(G",CI(T*G™)) ® My.

The maps Pjyq,i : G"*' — G" induces
o LP(G, CL(TG™)) — L2(G™+, CL(T*G™+))
To ensure that {D;} descends to an operator D on

lim L2(G™, CL(T*G™)) @ My = L2(A°, CL(T*A")) ® My,

we need to ensure
*
Fiy1i0 Di = Dit1



The Dirac operator

Restrict for simplicity to the case of a single edge.
Gives the projective system

G G2 G ...« GV -
with structure maps
Pni1n(81;- - 82m1) = (8182 - - -, Borr1-182041).
Can be rewritten to a projective system with structure maps

Poiin(g1,-- - 8om1) = (815 -+, &20)-



The Dirac operator

Define

D, = Z a; Do;
i
where Dy; is a Dirac operator on the j'the copy of G.

Take Dg; of the form
Doi = k- ey,
k

where {ex} denotes a orthonormal basis in g and the corresponding left
translated vectorfields.



The Dirac operator

Define
D, = Z a; Do;
i
where Dy; is a Dirac operator on the j'the copy of G.
Take Dg; of the form
Doi = k- ey,

k
where {ex} denotes a orthonormal basis in g and the corresponding left
translated vectorfields.

The family {D,} is a consistent family of operator and hence descends to
an operator D.



Semifiniteness

D does not have compact resolvent.

Definition

Let AV be a semifinite von Neumann algebra with a semifinite trace 7.
Let K, be the 7- compact operators. A semifinite spectral triple

(B,H, D) is a *-subalgebra B of N, a representation of ' on the Hilbert
space N and an unbounded densely defined self adjoint operator D on H
affiliated with A satisfying

1. (A= D)1 €K, forall be Band \ ¢ R..
2. [b, D] is densely defined and extends to a bounded operator.



Semifiniteness

Rewrite

L2(A°, CL(T*A%)) @ My = (L2(A°) @ My) @ CI(TLAY).

I

Let \/ be the weak closure of
B(L2(A") @ My) @ C,

where
C = C(THA) = lim CI(THA).

N is semi finite.

Theorem B B
When a; — oo the triple (B, D, [2(A°, CI(T*A°) @ M,)) is semi finite
with respect to N'



Poisson structure

C Curve. Where C = (G G,.
{F2(E), he(V)} = £hgmahe,

7, generator of su(2). In the quantization setting C; and C, corresponds
copies of G. Hence we look at L%(G?) ® My and

he.c(€) (g1, 82) = g182(g1. 82)-

With .
Fo = ‘chlTa
we have L . )
[F.fv hC1Cz] = hC1TahC2~

Therefore D in a certain sense contains quantization.



Semi-classical states

Let 7/(x) be a spinor field on X and let A(x) and E(x) be a
SU(2)-connection and a triad field on X.

We will now construct states that are localized around 9, A, E to get a
physical interpretation of D, our Dirac type operator.



Semi-classical states

Let 7/(x) be a spinor field on X and let A(x) and E(x) be a
SU(2)-connection and a triad field on X.

We will now construct states that are localized around 9, A, E to get a
physical interpretation of D, our Dirac type operator.

» On one edge ¢. ¢' € L?(SU(2), M) coherent state Hall 1994 with

lim (64[£16%) = Hol(c, A)
lim (6[tds|6) = 127 "EX(va),

where v; is the endpoint of € and the 1 in E. is the direction of e.



Consider the state
V(g) = (89(v2) + ieZo®(v1)) e (&)
A computation gives
lim (WtD|W) = a,27*"(—h(va)o B3 (1o(v1) — ¥(v2))

+(_7Z)( v2) — ¥(v1))o? Exip(va)
+(v1){27"Ar, 0P EL}b(wr))

where we have used g ~ 1+ 27"A;.
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Consider the state
V(g) = (89(v2) + ieZo®(v1)) e (&)
A computation gives
lim (WtD|W) = a,27*"(—h(va)o B3 (1o(v1) — ¥(v2))

(_1/7( v2) = 1h(v1))o® Exip(vi)
+P(v1){27"A1, ? L))

where we have used g ~ 1 +27"A;. Would like
an2 2" (Y(v1) — (v2)) = Arp(wa)

when n — oo, hence a, = 23". Then

lim [im (W[tDe|[W) = ¢ (v1)(0° E; V1 + V10 E})(w),

n—o0 t—0

where we have used partial integration and V = d + A. This is the
expression for the Dirac operator in 3 dimension in the 1 direction.



Change of basepoint

It turns out that to do this for all edges is related to the choice of
basepoint.

Ly - loop based in xg.

p - path from xo to x1, p={h,...,ln}.

Uy - parallel transport along p.

he, = Uph, U}
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Change of basepoint

Lift U, to

[jp — Dl Uy,
where B
Ui = ief(8i ® B7),
where 37 are skew self-adjoint matrices satisfying

S IBP =1

a

For p; # pa, o
<Up1|Upz> =0

(Here we have to tensor the Hilbert space with an extra matrix factor.)



Change of basepoint

Let ¥(v;), v; € I, transform
Dpiw(vf)v
where p; is a path from x to v;. We have

(Up0(v1) + Upyt0(v2) | iy | Upy t0(v1) + Upyt(v2))
= (h(va)lh, [ (v1)) + (W (v2) | hi, ¥ (v2)).-

Ly loop based in vy. Ly loop based in v;.



Change of basepoint

To eliminate this choice of base points we sum over all of them
V= o 3 D)
n— 5, i Vi
N ’_ '
and define

v =v, [] 4

ecl,



The expectation value of the Dirac operator

Set
B2 = N(vi)7° + iN*(v;)7°,

where N, N? are lapse and shift fields. A computation gives

liM s 00 liMe_so(WE| DWE)

= [ O()(VBETV m + Vimy/EBeT ) (N(x)77 + iN(x)7°)1(x)dx
+ lower order terms.

This expression resembles the Dirac hamiltonian in 3 4 1-dimension.
Thus the semi-classical states can be interpreted as one fermion states in
a background gravitational field with lapse N and shift N™.

Hence D can be interpretated as a quantization of the Dirac Hamiltonian.
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Outlook/Problems

» Compute quantum fluctuation of the semi-classical limit.

» Construct many particle states.

» Need more structure than just a spectral triple to make contact with
the standard model. Real structure,...In work in progress it look like
getting the matrix factor of the y-matrices right automatically gives
rise to part of the structure the standard model (the real structure.)
The expectation value of a Loop operator looks like a matrix valued
function on X.



Thank you for your attention
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