Local currents in the continuous spin representations of the Poincaré group

Christian Köhler

Uni Göttingen

2010-06-19

Wigner particle classification
Poincaré symmetry in Quantum Mechanics
irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions E (2) No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

1 Wigner particle classification
■ Poincaré symmetry in Quantum Mechanics
continuous spin representations

Christian Köhler

- irreps of \mathcal{P}^{c}
- The little group G_{p}
- massive particles

2 (Faithful) repn's for massless particles

- rigid motions $E(2)$
- No-Go Theorem

3 Construction of String-localized fields

- single particle states
- general construction of intertwiners
- the continuous spin case
- pointlike localized currents

4 Results/Outlook

- Summary

■ More warped convolutions (?)

Poincaré symmetry in Quantum Mechanics

■ Physical system described by Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$, its states are rays

$$
\Psi=\mathbb{C}|\psi\rangle \in \mathbb{P}(\mathcal{H}) \text { where }|\psi\rangle \in \mathcal{H}
$$

- Poincaré symmetry: projective repn of the group $\mathcal{P}_{+}^{\uparrow}$

$$
\begin{aligned}
\hat{U}: \mathcal{P}_{+}^{\uparrow}=\mathcal{L}_{+}^{\uparrow} \ltimes M & \rightarrow \operatorname{Aut}(\mathbb{P}(\mathcal{H})) \\
L & \mapsto \hat{U}(L)
\end{aligned}
$$

$\left(\mathcal{L}_{+}^{\uparrow}\right.$: proper orthochronous Lorentz group, M : 4-dim Minkowski space)
preserves transition amplitudes, i.e.

$$
\begin{aligned}
P(\Psi \rightarrow \Phi) & :=\left|\left\langle\frac{\phi}{\|\phi\|}, \frac{\psi}{\|\psi\|}\right\rangle\right|^{2} \\
P(\hat{U}(L) \Psi \rightarrow \hat{U}(L) \Phi) & =P(\Psi \rightarrow \Phi) \\
& \forall \Phi, \Psi \in P(\mathcal{H}), L \in \mathcal{P}_{+}^{\uparrow}
\end{aligned}
$$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's
for massless
particles
rigid motions E (2) No-Go Theorem

Construction of
String-localized

fields

single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

Summary

More warped
convolutions (?)

■ ray repn property:
$\hat{U}\left(L_{1} L_{2}\right)=\hat{U}\left(L_{1}\right) \hat{U}\left(L_{2}\right) \forall L_{1}, L_{2} \in \mathcal{P}_{+}^{\uparrow}$

- \Rightarrow (Wigner's Theorem) $\forall L \in \mathcal{P}_{+}^{\uparrow} \exists U(L) \in \operatorname{Aut}(\mathcal{H})$ real, isometric, (anti)unitary, unique up to a factor:

$$
\mathbb{C} U(L) \psi=\hat{U}(L) \Psi
$$

- Remark: $\mathcal{P}_{+}^{\uparrow}$ is the identity component of $\mathcal{P}=\mathcal{L} \ltimes M$: $\forall L \in \mathcal{P}_{+}^{\uparrow}=\mathcal{L}_{+}^{\uparrow} \ltimes M \exists \sqrt{L}$, thus $U\left(\mathcal{P}_{+}^{\uparrow}\right)$ consists of unitaries
- ray repn property \Rightarrow composition picks up phase factors

$$
U\left(L_{1}\right) U\left(L_{2}\right)=\mathrm{e}^{\mathrm{i} \omega\left(L_{1}, L_{2}\right)} U\left(L_{1} L_{2}\right)
$$

- Question: Can one absorb them into $U(L)$? \rightarrow group cohomology of $\mathcal{P}_{+}^{\uparrow}$
continuous spin

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions E (2) No-Go Theorem

Construction of String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

- If \hat{U} is weakly continuous, i.e.
$\langle\hat{U}(L) \Phi, \Psi\rangle \xrightarrow{L \rightarrow(\mathbf{1}, \overrightarrow{0})}\langle\Phi, \Psi\rangle$
continuous spin representations
\Rightarrow (Wigner-Bargmann) For \mathcal{P}^{c}, the twofold cover of
$\mathcal{P}_{+}^{\uparrow}{ }^{\wedge} \mathcal{P}^{c}$, there is a strongly continuous unitary repn U on \mathcal{H} :

$$
\mathbb{C} U(L) \psi=\hat{U}(\Lambda(L)) \Psi
$$

- Construction of the (homogeneous) covering homomorphism $\Lambda: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathcal{L}_{+}^{\uparrow}$:
For $x \in M$ one puts

$$
\underset{\sim}{x}:=x^{0}+\vec{\sigma} \cdot \vec{x}=\left(\begin{array}{cc}
x^{0}+x^{3} & x^{1}-\mathrm{i} x^{2} \\
x^{1}+\mathrm{i} x^{2} & x^{0}-x^{3}
\end{array}\right)
$$

and for $A \in \mathrm{SL}(2, \mathbb{C})$ defines $\Lambda(A) \in \mathcal{L}$ (check!) implicitly by requesting

$$
(\Lambda(A) x)_{\sim}=A \underset{\sim}{x} A^{*}
$$

Since $\Lambda(A)=\Lambda(B) \Rightarrow A= \pm B$, one has a twofold cover

irreducible representations of \mathcal{P}^{c}

■ Let U a [...] repn of \mathcal{P}^{c} and P_{μ} the generators of the translations (1, a):

$$
U((\mathbf{1}, a))=\mathrm{e}^{\mathrm{i} P a}
$$

- in the action of $\mathcal{L}_{+}^{\uparrow}$ on M the covering map Λ enters:

$$
\begin{aligned}
& \mathcal{P}:\left(\Lambda_{1}, a_{1}\right)\left(\Lambda_{2}, a_{2}\right)=\left(\Lambda_{1} \Lambda_{2}, \Lambda_{1} a_{2}+a_{1}\right) \\
& \mathcal{P}^{c}:\left(A_{1}, a_{1}\right)\left(A_{2}, a_{2}\right)=\left(A_{1} A_{2}, \Lambda\left(A_{1}\right) a_{2}+a_{1}\right)
\end{aligned}
$$

in particular:

$$
(A, 0)(\mathbf{1}, a)\left(A^{-1}, 0\right)=(A, 0)\left(A^{-1}, a\right)=(\mathbf{1}, \Lambda(A) a)
$$

- corresponding statement for the generators P_{μ} :

$$
U(A) P U(A)^{-1}=P \Lambda(A)
$$

$■ \Rightarrow \mathrm{sp} P$ is invariant under $\Lambda(A)$ since

$$
\begin{aligned}
P \psi=p \psi & \Rightarrow P U(A)^{-1} \psi=U(A)^{-1} \underbrace{P \Lambda(A) \psi}_{=p \Lambda(A) \psi} \\
& =p \Lambda(A) U(A)^{-1} \psi
\end{aligned}
$$

continuous spin representations

Christian Köhler

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's
for massless
particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

Summary

More warped
convolutions (?)

- p^{2} is a Lorentz scalar $\Rightarrow\left[P^{2}, U(A)\right]=0$
\Rightarrow (Schur's Lemma) $P^{2}=m^{2} \mathbf{1}$ in an irreducible rep
- w.r.t. the equiv. relation $p \sim p^{\prime}: \Leftrightarrow \exists L \in \mathcal{L}_{+}^{\uparrow}: p L=p^{\prime}$, $\mathrm{sp} P$ decomposes into Lorentz-orbits
- Orbits O of physical interest:
upper mass shell (massive particles)

$$
\begin{aligned}
H_{m}^{+}= & \left\{p \in M \mid p^{2}=m^{2}, p_{0}>0\right\} \\
& \text { forward light cone (photons \& worse) } \\
\partial V_{+}= & \left\{p \in M \mid p^{2}=0, p_{0}>0\right\} \rightarrow \text { later! }
\end{aligned}
$$

■ In the following: Assume U s.th. P are diagonal!
continuous spin
representations

Christian Köhler

Wigner particle classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

- Construction of momentum-space wavefunctions: Define

$$
\langle\phi, \psi\rangle_{\vec{p}}:=\frac{1}{(2 \pi)^{3}} \int \mathrm{~d}^{3} x\langle\phi, U(\vec{x}) \psi\rangle \mathrm{e}^{\mathrm{i} \vec{p} \cdot \vec{x}}
$$

continuous spin representations

Christian Köhler

Wigner particle
classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's
for massless
particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

Summary

More warped
convolutions (?)
using the repn U before projecting on \mathcal{H}_{p}.

the little group G_{p}

■ Useful observation: Stabilizer subgroups G_{p} of $\mathrm{SL}(2, \mathbb{C})$ for any momentum $p \in O$

$$
G_{p}=\{A \in \mathrm{SL}(2, \mathbb{C}) \mid p \Lambda(A)=p\}
$$

(little groups) are conjugate within O

$$
G_{p}=A G_{p \Lambda(A)} A^{-1}
$$

(attention: read from left to right, since p transforms with a lower index!)
■ repn's $\left.\underline{U}\right|_{\mathcal{H}_{p}}$ are related likewise, since for $R \in G_{p \Lambda(A)}$

$$
\underline{U}(\underbrace{A R A^{-1}}_{\in G_{p}})=\underline{U}(A) \underline{U}(R) \underline{U}(A)^{-1}
$$

- Construction simplified: One only needs G_{q} for fixed q and Wigner boosts $A_{p} \in \operatorname{SL}(2, \mathbb{C}): q \Lambda\left(A_{p}\right)=p$.
■ in the following: Implement this fallback to G_{q} on \mathcal{H}
continuous spin representations

Christian Köhler

Wigner particle

classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

■ Use an intertwiner $V: \mathcal{H} \rightarrow L^{2}\left(H_{m}^{+}, \widetilde{\mathrm{d} p}\right) \otimes \mathcal{H}_{q}$:

$$
\begin{aligned}
(V \psi)(p) & =\underline{U}\left(A_{p}\right) \psi(p) \\
& =\left(U\left(A_{p}\right) \psi\right)\left(p \Lambda\left(A_{p}^{-1}\right)\right) \in \mathcal{H}_{q}
\end{aligned}
$$

little Hilbert space-valued wavefunctions

■ Conjugating the original repn U with the intertwiner V gives an equivalent repn

$$
U^{\prime}=V U(\cdot) V^{-1}
$$

whose application to a vector $\psi \in \mathcal{H}$ now reads

$$
\begin{aligned}
\left(U^{\prime}(A, a) \psi\right)(p) & =\mathrm{e}^{\mathrm{i} p a} \underline{U}(R(p, A)) \psi(p \Lambda(A)) \\
R(p, A) & =A_{p} A A_{p \Lambda(A)}^{-1} \in G_{q}
\end{aligned}
$$

Wigner rotation
■ As demanded, one only needs $\underline{U}\left(G_{q}\right)$.
continuous spin representations

Christian Köhler

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

massive particles

■ Important example: Let $O=H_{m}^{+}$. Then one can pick $q=(m, \overrightarrow{0})$ as the reference vector.

- $(m, \overrightarrow{0})_{\sim}=m \mathbf{1}$, that is $(m, \overrightarrow{0}) \Lambda(R)=(m, \overrightarrow{0}) \Leftrightarrow R^{*} R=1$, hence

$$
G_{(m, \overrightarrow{0})}=\mathrm{SU}(2, \mathbb{C})
$$

■ irreducible repn's of $\mathrm{SU}(2, \mathbb{C})$ are characterized by spin $s \in \frac{1}{2} \mathbb{N}_{0}$
■ Majorana description: little Hilbert space

$$
\mathcal{H}^{(s)}:=\left(\mathbb{C}^{2}\right)_{\text {sym }}^{\otimes 2 s}=\operatorname{span} \xi^{\otimes 2 s}, \xi \in \mathbb{C}^{2}
$$

action of \underline{U}

- Transformation law for a covariant vector determines
continuous spin representations the Wigner boost

$$
\widetilde{p \Lambda(A)}=A^{*} \widetilde{p} A \Rightarrow A_{p}=\sqrt{\widetilde{p} / m} \text { (pos. def.) }
$$

■ Consider the map

$$
\begin{aligned}
u: H_{m}^{+} \times\left(\mathbb{C}^{2}\right)_{\text {sym }}^{\otimes 2 s} & \rightarrow \mathcal{H}_{q} \\
\left(p, \xi^{\otimes 2 s}\right) & \mapsto \underline{U}\left(A_{p}\right) \xi^{\otimes 2 s}
\end{aligned}
$$

which satisfies the intertwiner property

$$
D(R(\Lambda(A), p)) u\left(p \Lambda(A), \xi^{\otimes 2 s}\right)=u\left(p, A^{\otimes 2 s} \xi^{\otimes 2 s}\right)
$$

■ One can define a single particle state vector $\psi(f, v)$ for each $f \in \mathcal{S}(M), v \in\left(\mathbb{C}^{2}\right)_{\text {sym }}^{\otimes 2 s}$ by

$$
\psi(f, v)(p)=\widetilde{f}(p) u(p, v)
$$

- For $(\Lambda(A), a)$ one checks the transformation law

$$
U((\Lambda(A), a)) \psi(f, v)=\psi\left((\Lambda(A), a)_{*} f, A^{\otimes 2 s} v\right)
$$

Christian Köhler

Wigner particle

classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized

fields

single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

Summary

More warped
convolutions (?)

1 Wigner particle classification
continuous spin representations

- Poincaré symmetry in Quantum Mechanics
- irreps of \mathcal{P}^{c}
- The little group G_{p}

■ massive particles
2 (Faithful) repn's for massless particles
■ rigid motions $E(2)$
■ No-Go Theorem
3 Construction of String-localized fields
■ single particle states

- general construction of intertwiners
- the continuous spin case
- pointlike localized currents

4 Results/Outlook

- Summary

■ More warped convolutions (?)

rigid motions $E(2)$

■ Now consider the case $O=\partial V_{+}$and pick $q=\left(1 / 2,1 / 2 \vec{e}_{z}\right)$ as the reference vector.

- $\left(\widetilde{1 / 2,1 / 2} \vec{e}_{z}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, that is

$$
\left(1 / 2,1 / 2 \vec{e}_{z}\right) \Lambda(R)=\left(1 / 2,1 / 2 \vec{e}_{z}\right)
$$

$$
\Leftrightarrow R^{*}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) R=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \text { hence }
$$

$$
G_{\left(1 / 2,1 / 2 \vec{e}_{z}\right)}=\{\left.\underbrace{\left(\begin{array}{cc}
\mathrm{e}^{\mathrm{i} \varphi} & 0 \\
a & \mathrm{e}^{-\mathrm{i} \varphi}
\end{array}\right)}_{=:[\varphi, a]} \in \operatorname{SL}(2, \mathbb{C}) \right\rvert\, \varphi \in \mathbb{R}, a \in \mathbb{C}\}
$$

$$
=\widetilde{E(2)}
$$

the double cover of $E(2) \stackrel{\lambda}{\leftarrow} \widetilde{E(2)}$ (rigid motions in the Euclidean plane)
continuous spin representations

Christian Köhler

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions E (2)
No-Go Theorem
Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

Summary

More warped
convolutions (?)

- little group is not compact! \rightarrow more obstacles than in the $\mathrm{SU}(2, \mathbb{C})$-case!
■ already known: only repn \underline{U} of $G_{\left(1 / 2,1 / 2 \vec{e}_{z}\right)}+$ Wigner boost needed, then proceed analogously to the case $O=H_{m}^{+}$
- Let \underline{U} a repn of $\widetilde{E(2)}$ and G_{i} the generators of the translations $[0, a]$:

$$
\underline{U}\left(\left[0, a_{1}+\mathrm{i} a_{2}\right]\right)=\mathrm{e}^{\mathrm{i} G a}
$$

- like for \mathcal{P} itself: homogeneous transformation of the generators G_{i} :

$$
\underline{U}([\varphi, 0]) G \underline{U}([\varphi, 0])^{-1}=G \lambda([\varphi, 0])
$$

■ \Rightarrow (as before) $\operatorname{sp} G$ is invariant under $\lambda([\varphi, 0])$

- $g^{2}=g_{1}^{2}+g_{2}^{2}$ is a Euclidean scalar $\Rightarrow\left[G^{2}, \underline{U}([\varphi, 0])\right]=0$ \Rightarrow (Schur's Lemma) $G^{2}=\kappa^{2} \mathbf{1}$ in an irreducible rep
continuous spin representations

Christian Köhler

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless
particles
rigid motions E (2)
No-Go Theorem
Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

Summary

More warped
convolutions (?)

■ For $m>0$ repn's of $\mathrm{SU}(2, \mathbb{C})$ are classified by spin s.

- For $m=0$ repn's of $\widetilde{E(2)}$ are classified by the Pauli-Lubanksi parameter κ^{2}
- w.r.t. the equiv. relation $x \sim x^{\prime}: \Leftrightarrow \exists \lambda \in \mathrm{SO}(2, \mathbb{R}): x \lambda=x^{\prime}, \mathrm{sp} G$ decomposes into Rotation-orbits
- two types of Orbits O :

$$
\begin{aligned}
& \text { trivial repn of translations (helicity) } \\
O_{0}= & \{\overrightarrow{0}\} \subset \mathbb{R}^{2} \\
& \text { faithful repn of } \widetilde{E(2)} \\
O_{\kappa}= & \left\{x \in \mathbb{R}^{2} \mid x^{2}=\kappa^{2}\right\}
\end{aligned}
$$

Wigner particle classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$
No-Go Theorem
Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

No-Go Theorem

continuous spin representations

Christian Köhler

- Question: Can one construct Wightman fields for the case $m=0, \kappa>0$?
- Wightman axioms

1 fields=operator valued distributions $\Phi(x, v)$ on $M \times K$ ($K=$ space for inner degrees of freedom such as spin) mapping a dense subspace \mathcal{H}_{D} of \mathcal{H} into itself $A(f, v)^{\dagger}=A\left(\bar{f}, v^{*}\right)$
$2 \mathcal{P}_{+}^{\uparrow}$ represented continuously by U
shifts $U(\mathbf{1}, a)=\int \mathrm{d} E_{p} \mathrm{e}^{\mathrm{i} p a}$ satisfy the spectrum
condition supp d $E_{p} \in \partial V_{+}$
$U\left(\mathcal{P}_{+}^{\uparrow}\right) \mathcal{H}_{D} \subset \mathcal{H}_{D}$ and $\exists!\Omega \in \mathcal{H}_{D}: U\left(\mathcal{P}_{+}^{\uparrow}\right) \Omega=\{\Omega\}$
3 locality:
$\left[A(x, v), A\left(x^{\prime}, v^{\prime}\right)\right]=0$ if $x><x^{\prime}$ and any $v, v^{\prime} \in K$
4 covariance:
\exists repn D of $\operatorname{SL}(2, \mathbb{C})$ on K s.th.
$U(\Lambda, a) A(x, v) U(\Lambda, a)^{-1}=A(\Lambda x+a, D(\Lambda) v)$

Wigner particle classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's
for massless
particles
rigid motions E (2)
No-Go Theorem
Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

■ If one considers the subspace \mathcal{H}^{\prime} of vectors obtained by appplying $A(f, v)$ once to the vacuum Ω

$$
\mathcal{H}^{\prime}=\overline{\left\{\sum_{i=1}^{n} A\left(f_{i}, v_{i}\right) \Omega \mid n<\infty, f_{i} \in \mathcal{D}(M), v_{i} \in K\right\}}
$$

\Rightarrow (Yngvason '69)

- There is no subspace $\mathcal{H}_{\text {irr }} \subset \mathcal{H}$ such that
$1 E_{\text {irr }} \mathcal{H} \neq 0$, where $E_{\text {irr }}$ is the projection on $\mathcal{H}_{\text {irr }}$.
$2 U\left(\mathcal{P}_{+}^{\uparrow}\right) \mathcal{H}_{\text {irr }} \subset \mathcal{H}_{\text {irr }}$ and $U \mid \mathcal{H}_{\text {irr }}$ is an irreducible rep with $m=0$ and $\kappa>0$.
■ But: If one gives up pointlike localization on M, irreducible representations of $\mathcal{P}_{+}^{\uparrow}$ with covariant transformation behaviour can be constructed.
continuous spin

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions E (2)
No-Go Theorem
Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

1 Wigner particle classification

- Poincaré symmetry in Quantum Mechanics
continuous spin representations
- irreps of \mathcal{P}^{c}
- The little group G_{p}
- massive particles

2 (Faithful) repn's for massless particles

- rigid motions $E(2)$
- No-Go Theorem

3 Construction of String-localized fields
■ single particle states

- general construction of intertwiners

■ the continuous spin case
■ pointlike localized currents
4 Results/Outlook

- Summary

■ More warped convolutions (?)
Christian Köhler

Wigner particle classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless
particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

single particle states

- The following construction is due to Yngvason, Mund and Schroer
- Let $H=\left\{e \in M \mid e^{2}=-1\right\}$ the submanifold of spacelike directions and for a chosen reference vector $q \in O$ consider a map

$$
u: O \times H \quad \rightarrow \quad \mathcal{H}_{q}
$$

(cf V above) satisfying the intertwiner property

$$
\underline{U}(R(p, A)) u\left(\Lambda(A)^{-1} p, \Lambda(A)^{-1} e\right)=u(p, e)
$$

■ One can define a single particle state vector $\psi(f, e)$ for each $f \in \mathcal{S}(M), e \in H$ by

$$
\psi(f, e)(p)=\widetilde{f}(p) u(p, e)
$$

- For (Λ, a) one checks the transformation law

$$
U((\Lambda, a)) \psi(f, e)=\psi\left((\Lambda, a)_{*} f, \Lambda e\right)
$$

continuous spin representations

Christian Köhler

Wigner particle

classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized fields
single particle states
general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

general construction of string-intertwiners

- The intertwiner functions u for the little group G_{q} can be constructed with the follwing recipe:
1 One defines the G_{q}-orbit $\Gamma_{q}:=\{p \in O \mid p q=1\}$ and uses the pullback repn \widetilde{U} on $L^{2}\left(\Gamma_{q}\right)$:

$$
(\widetilde{U}(R) v)(\xi)=v\left(R^{-1} \xi\right) \forall R \in G_{q}, v \in L^{2}\left(\Gamma_{p}\right), \xi \in \Gamma_{p}
$$

2 Intertwine \widetilde{U} with \underline{U} by an isometric map V :

$$
\underline{U}(R) V=V \widetilde{U}(R)
$$

3 Construct a solution $\widetilde{u}^{\alpha}(p, e)(\xi):=F\left(\xi A_{p}^{-1} e\right)$ of the interwiner property on $L^{2}\left(\Gamma_{q}\right)$, where F is a numerical function (choice: $F(w)=w^{\alpha}$).
4 Use the isometry to get the \mathcal{H}_{q}-valued intertwiner

$$
u^{\alpha}(p, e):=V \widetilde{u}^{\alpha}(p, e)
$$

- the construction gives a covariantly transforming quantum field: $\left(\circ=\right.$ contraction over basis of $\left.\mathcal{H}_{p}\right)$
continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's
for massless
particles
rigid motions $E(2)$ No-Go Theorem

Construction of
String-localized
fields
single particle states
general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

Summary

More warped
convolutions (?)

$$
\Phi^{\alpha}(x, e)=\int_{O} \widetilde{\mathrm{~d} p} \mathrm{e}^{\mathrm{i} p x} u^{\alpha}(p, e) \circ a^{\dagger}(p)+\text { с.c. }
$$

$$
\left[\Phi(x, e), \Phi\left(x^{\prime}, e^{\prime}\right)\right]=0 \forall x+\mathbb{R}^{+} e><x^{\prime}+\mathbb{R}^{+} e^{\prime}(*)
$$

- proof

■ separate strings by suitable wedge W and its causal complement W^{\prime}
■ use covariance and PCT symmetry of the fields $\Phi(x, e)$
■ analytic continuation to desired equation (*)

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$
No-Go Theorem
Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

the continuous spin case

continuous spin representations

Christian Köhler

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

pointlike localized currents

■ Let $\Phi(x)$ a pointlike localized field with

$$
[\Phi(x), \Phi(y)]_{ \pm}=0 \text { if }(x-y)^{2}<0
$$

due to CCR/CAR for the creation/annihilation operators

$$
\left[a_{i}(x), a_{j}^{\dagger}(y)\right]_{ \pm}=\delta(x-y) \delta_{i j} \text { etc. }
$$

■ Normal ordered products fulfill local commutation relation

$$
\left[: \Phi^{2}(x):,: \Phi^{2}(y):\right]=0 \text { if }(x-y)^{2}<0
$$

because in contracted parts of $:\left(: \Phi^{2}(x):: \Phi^{2}(y):\right):$ use

$$
\stackrel{\ulcorner(x) \Phi}{ }(y)=[\Phi(x), \Phi(y)]_{ \pm}
$$

continuous spin representations

Christian Köhler

Wigner particle classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

■ Similar construction for stringlike fields?

■ Form of a pointlike scalar current proposed by Schroer:
continuous spin representations
$B(x):=\int_{O} \widetilde{\mathrm{~d} p} \int_{O} \widetilde{\mathrm{~d} p^{\prime}} \mathrm{e}^{\mathrm{i}\left(p+p^{\prime}\right) x} a^{\dagger}(p) \circ u_{2}\left(p, p^{\prime}\right) \circ a^{\dagger}\left(p^{\prime}\right)+\ldots$
with the double intertwiner function

$$
\begin{aligned}
u_{2}\left(p, p^{\prime}\right)\left(k, k^{\prime}\right)= & \int_{\mathbb{R}^{2}} \mathrm{~d}^{2} z \int_{\mathbb{R}^{2}} \mathrm{~d}^{2} z^{\prime} \mathrm{e}^{\mathrm{i}\left(k z+k^{\prime} z^{\prime}\right)} \\
& F\left(B_{p} \xi(z) \cdot B_{p^{\prime}} \xi\left(z^{\prime}\right)\right)
\end{aligned}
$$

- Question: Can B be constructed in a way s.th.
- relative locality between current and field

$$
\langle p, k|[B(x), \psi(y, e)]|0\rangle=0 \forall x><y+\mathbb{R}^{+} e ?
$$

(Schroer)

- causal commutativity for the currents

$$
\left[B(x, \tilde{x}), B\left(x^{\prime}, \tilde{x}^{\prime}\right)\right]=0 \forall x, \tilde{x}><x^{\prime}, \tilde{x}^{\prime}
$$

(Mund/Schroer/Yngvason, proven for the $\langle 0| \cdot|0\rangle$ part)

Christian Köhler

Wigner particle classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
continuous spin
representations
Christian Köhler

- Using the definition

$$
\begin{aligned}
& B(x, \tilde{x}) \\
& =\int_{\partial V^{+}} \widetilde{\mathrm{d} p} \int_{\partial V^{+}} \widetilde{\mathrm{d} \tilde{p}} \int \mathrm{~d} \nu(k) \int \mathrm{d} \nu(\tilde{k}) \int \mathrm{d}^{2} z \int \mathrm{~d}^{2} \tilde{z} \\
& F\left(+B_{p} \xi(z) \cdot B_{\tilde{p}} \xi(\tilde{z})\right) \\
& \cdot\left(\mathrm{e}^{\mathrm{i} p x} \mathrm{e}^{\mathrm{i} \tilde{p} \tilde{x}} \mathrm{e}^{\mathrm{i} k z} \mathrm{e}^{\mathrm{i} \tilde{k} \tilde{z}} a^{\dagger}(p, k) a^{\dagger}(\tilde{p}, \tilde{k})\right. \\
& \left.+\mathrm{e}^{-\mathrm{i} p x} \mathrm{e}^{-\mathrm{i} \tilde{p} \tilde{x}} \mathrm{e}^{-\mathrm{i} k z} \mathrm{e}^{-\mathrm{i} \tilde{k} \tilde{z}} a(p, k) a(\tilde{p}, \tilde{k})\right) \\
& +F\left(-B_{p} \xi(z) \cdot B_{\tilde{p}} \xi(\tilde{z})\right) \\
& \because\left(\mathrm{e}^{\mathrm{i} p x} \mathrm{e}^{-\mathrm{i} \tilde{p} \tilde{x}} \mathrm{e}^{\mathrm{i} k z} \mathrm{e}^{-\mathrm{i} \tilde{k} \tilde{z}} a^{\dagger}(p, k) a(\tilde{p}, \tilde{k})\right. \\
& \left.+\mathrm{e}^{-\mathrm{i} p x} \mathrm{e}^{\mathrm{i} \tilde{p} \tilde{x}} \mathrm{e}^{-\mathrm{i} k z} \mathrm{e}^{\mathrm{i} \tilde{z} \tilde{z}} a(p, k) a^{\dagger}(\tilde{p}, \tilde{k})\right):
\end{aligned}
$$

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

- the following properties can be shown
continuous spin representations

Christian Köhler

$$
\begin{aligned}
{\left[B(x, \tilde{x}), B\left(x^{\prime}, \tilde{x}^{\prime}\right)\right] } & =0 \forall x, \tilde{x}><x^{\prime}, \tilde{x}^{\prime} \\
{\left[B(x, \tilde{x}), \Phi\left(x^{\prime}, e^{\prime}\right)\right] } & =0 \forall x, \tilde{x}><y+\mathbb{R}^{+} e
\end{aligned}
$$

- proof similar to string-localization of fields

■ involves multiple matrix elements

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$
No-Go Theorem
Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

1 Wigner particle classification
continuous spin representations

- Poincaré symmetry in Quantum Mechanics

Christian Köhler

- irreps of \mathcal{P}^{c}
- The little group G_{p}
- massive particles

2 (Faithful) repn's for massless particles

- rigid motions $E(2)$
- No-Go Theorem

3 Construction of String-localized fields
■ single particle states

- general construction of intertwiners
- the continuous spin case
- pointlike localized currents

4 Results/Outlook

- Summary

■ More warped convolutions (?)

Summary

- Wigner-Analysis allows for classification of the irreducible repn's of \mathcal{P}^{c}.
- massive case: Particles classified by mass $m>0$ and $\operatorname{spin} s \in \frac{1}{2} \mathbb{N}_{0}$
- massless case: continuum of inner degrees of freedom("continuous spin")
■ Yngvason's Theorem: No pointlike localized Wightman fields in this case

■ Construction of intertwiners $\partial V_{+} \times H \rightarrow \mathcal{H}_{p}$ gives String-localized fields

- compact localized currents can be defined
- these are local w.r.t. each other and relatively local to the strings

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's
for massless
particles
rigid motions $E(2)$
No-Go Theorem
Construction of
String-localized
fields
single particle states
general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

More warped convolutions (?)

■ idea: Instead of momenta P (4-dim) in the formula

$$
A_{Q_{W}}=\int \mathrm{d} E_{p} \mathrm{e}^{\mathrm{i} P Q_{W} p} A \mathrm{e}^{-\mathrm{i} P Q_{W} p}
$$

for the deformation of field operators A ($W=$ wedge region) one might use shift operators G (2-dim) discussed before in an expression like

$$
A_{Q_{W}}=\int \mathrm{d} E_{a} \mathrm{e}^{\mathrm{i} G Q_{W} a} A \mathrm{e}^{-\mathrm{i} G Q_{W} a}
$$

with supp $\mathrm{d} E_{a} \subset O_{\kappa} \ldots$?

Wigner particle

classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions E (2) No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

References

continuous spin representations

Christian Köhler

R- Jakob Yngvason, Jens Mund, Bert Schroer '05 String-localized Quantum Fields and Modular Localization
arXiv:math-ph/0511042v2

- Jakob Yngvason, Jens Mund, Bert Schroer '04 String-localized quantum fields from Wigner representations
arXiv:math-ph/0402043v2
圊 Bert Schroer '08
Indecomposable semiinfinite string-localized positive energy matter and "darkness"
arXiv:0802.2098v4 [hep-th]

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions E (2) No-Go Theorem

Construction of
String-localized
fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook

References

continuous spin representations

Christian Köhler

Wigner particle classification
Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless particles
rigid motions $E(2)$ No-Go Theorem

Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

continuous spin

 representationsChristian Köhler

Thank you!

Wigner particle

 classificationPoincaré symmetry in Quantum Mechanics
irreps of \mathcal{P}^{c}
The little group G_{p} massive particles
(Faithful) repn's for massless
particles
rigid motions $E(2)$
No-Go Theorem
Construction of String-localized fields
single particle states general construction of intertwiners
the continuous spin case
pointlike localized currents

Results/Outlook
Summary
More warped
convolutions (?)

