continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions $E\left(2\right)$ No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case

pointlike localized currents

Results/Outlook

Summary More warped convolutions (?)

Local currents in the continuous spin representations of the Poincaré group

Christian Köhler

Uni Göttingen

2010-06-19

1 Wigner particle classification

- Poincaré symmetry in Quantum Mechanics
- irreps of \mathcal{P}^c
- \blacksquare The little group G_p
- massive particles
- 2 (Faithful) repn's for massless particles
 - **rigid motions** E(2)
 - No-Go Theorem
- 3 Construction of String-localized fields
 - single particle states
 - general construction of intertwiners
 - the continuous spin case
 - pointlike localized currents

4 Results/Outlook

- Summary
- More warped convolutions (?)

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case

pointlike localized currents

$\mathsf{Results}/\mathsf{Outlook}$

Poincaré symmetry in Quantum Mechanics

■ Physical system described by *Hilbert space* (*H*, ⟨·, ·⟩), its states are *rays*

 $\Psi = \mathbb{C} \ket{\psi} \in \mathbb{P}(\mathcal{H})$ where $\ket{\psi} \in \mathcal{H}$

Poincaré symmetry: *projective repn* of the group \mathcal{P}_+^{\uparrow}

$$\hat{U}: \mathcal{P}^{\uparrow}_{+} = \mathcal{L}^{\uparrow}_{+} \ltimes M \to \operatorname{Aut}(\mathbb{P}(\mathcal{H}))$$
$$L \mapsto \hat{U}(L)$$

 $(\mathcal{L}_{+}^{\uparrow}: \text{ proper orthochronous Lorentz group, } M: 4\text{-dim}$ Minkowski space)

preserves transition amplitudes, i.e.

$$P(\Psi \to \Phi) := \left| \left\langle \frac{\phi}{||\phi||}, \frac{\psi}{||\psi||} \right\rangle \right|^2$$
$$P(\hat{U}(L)\Psi \to \hat{U}(L)\Phi) = P(\Psi \to \Phi)$$
$$\forall \Phi, \Psi \in P(\mathcal{H}), L \in \mathcal{P}_{+}^2$$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

a ray repn property: $\hat{U}(L_1L_2) = \hat{U}(L_1)\hat{U}(L_2) \ \forall L_1, L_2 \in \mathcal{P}_+^{\uparrow}$

• \Rightarrow (Wigner's Theorem) $\forall L \in \mathcal{P}_{+}^{\uparrow} \exists U(L) \in Aut(\mathcal{H})$ real, isometric, (anti)unitary, unique up to a factor:

$$\mathbb{C}U(L)\psi = \hat{U}(L)\Psi$$

- Remark: P[↑]₊ is the identity component of P = L ⋈ M:
 ∀L ∈ P[↑]₊ = L[↑]₊ ⋈ ∃√L, thus U(P[↑]₊) consists of unitaries
- ray repn property \Rightarrow composition picks up phase factors

$$U(L_1)U(L_2) = e^{i\omega(L_1,L_2)}U(L_1L_2)$$

• Question: Can one absorb them into U(L)? \rightarrow group cohomology of $\mathcal{P}^{\uparrow}_{+}$ continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles rigid motions E(2)

rigid motions E(2No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

• If \hat{U} is weakly continuous, i.e. $\langle \hat{U}(L)\Phi,\Psi \rangle \xrightarrow{L \to (\mathbf{1},\vec{0})} \langle \Phi,\Psi \rangle$ \Rightarrow (Wigner-Bargmann) For \mathcal{P}^c , the twofold cover of $\mathcal{P}^{\uparrow}_+ \xleftarrow{\Lambda} \mathcal{P}^c$, there is a strongly continuous unitary repn Uon \mathcal{H} :

 $\mathbb{C}U(L)\psi=\hat{U}(\Lambda(L))\Psi$

 Construction of the (homogeneous) covering homomorphism Λ : SL(2, C) → L[↑]₊: For x ∈ M one puts

$$\tilde{x} := x^0 + \vec{\sigma} \cdot \vec{x} = \begin{pmatrix} x^0 + x^3 & x^1 - \mathrm{i}x^2 \\ x^1 + \mathrm{i}x^2 & x^0 - x^3 \end{pmatrix}$$

and for $A \in SL(2, \mathbb{C})$ defines $\Lambda(A) \in \mathcal{L}$ (check!) implicitly by requesting

$$(\Lambda(A)x) = A x A^*$$

Since $\Lambda(A)=\Lambda(B)\Rightarrow A=\pm B,$ one has a twofold cover

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

$\mathsf{Results}/\mathsf{Outlook}$

irreducible representations of \mathcal{P}^c

■ Let U a [...] repn of P^c and P_µ the generators of the translations (1, a):

$$U((\mathbf{1},a)) = \mathrm{e}^{\mathrm{i}Pa}$$

- in the action of $\mathcal{L}_{+}^{\uparrow}$ on M the covering map Λ enters: $\mathcal{P}: (\Lambda_1, a_1)(\Lambda_2, a_2) = (\Lambda_1\Lambda_2, \Lambda_1a_2 + a_1)$ $\mathcal{P}^c: (A_1, a_1)(A_2, a_2) = (A_1A_2, \Lambda(A_1)a_2 + a_1)$ in particular:
 - $(A,0)(\mathbf{1},a)(A^{-1},0) = (A,0)(A^{-1},a) = (\mathbf{1},\Lambda(A)a)$

corresponding statement for the generators P_µ:

$$U(A)PU(A)^{-1} = P\Lambda(A)$$

 $\blacksquare \Rightarrow {\rm sp} P$ is invariant under $\Lambda(A)$ since

$$P\psi = p\psi \Rightarrow PU(A)^{-1}\psi = U(A)^{-1}\underbrace{P\Lambda(A)\psi}_{=p\Lambda(A)\psi}$$

$$=p\Lambda(A)U(A)^{-1}\psi$$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case

pointlike localized currents

Results/Outlook

Summary More warped convolutions (?)

■
$$p^2$$
 is a Lorentz scalar $\Rightarrow [P^2, U(A)] = 0$
 \Rightarrow (Schur's Lemma) $P^2 = m^2 \mathbf{1}$ in an irreducible rep

- w.r.t. the equiv. relation $p \sim p' :\Leftrightarrow \exists L \in \mathcal{L}_+^{\uparrow} : pL = p'$, $\operatorname{sp} P$ decomposes into Lorentz-orbits
- Orbits O of physical interest:

upper mass shell (massive particles) $H_m^+ = \{p \in M | p^2 = m^2, p_0 > 0\}$ forward light cone (photons & worse) $\partial V_+ = \{p \in M | p^2 = 0, p_0 > 0\} \rightarrow later!$

In the following: Assume U s.th. P are diagonal!

Construction of momentum-space wavefunctions: Define

$$\langle \phi, \psi \rangle_{\vec{p}} := \frac{1}{(2\pi)^3} \int \mathrm{d}^3 x \, \langle \phi, U(\vec{x})\psi \rangle \mathrm{e}^{\mathrm{i}\vec{p}\cdot\vec{x}}$$

(Hepp/Jost: falloff of the integrand faster than polynomial)

• Almost a scalar-product, but semidefinite! Put $N_{\vec{p}} := \{\psi \in \mathcal{H} | \langle \psi, \psi \rangle_{\vec{p}} = 0\}$ and instead use

$$\mathcal{H}_p := \overline{\mathcal{H}/N_{\vec{p}}}^{||\cdot||_{\vec{p}}}$$

 $\rightarrow {\rm bundle}$ over momentum space - denote sections by $\psi(p)$

- Hilbert spaces \mathcal{H}_p with sharp momentum $p=(\omega(\vec{p}),-\vec{p})$ are related via

$$\underline{U}(A): \mathcal{H}_{p\Lambda(A)} \to \mathcal{H}_p \psi(p\Lambda(A)) \mapsto (U(A)\psi)(p)$$

using the repn U before projecting on \mathcal{H}_p .

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

the little group G_p

• Useful observation: Stabilizer subgroups G_p of $\mathrm{SL}(2,\mathbb{C})$ for any momentum $p\in O$

 $G_p = \{A \in \mathrm{SL}(2, \mathbb{C}) | p\Lambda(A) = p\}$

(little groups) are conjugate within O

$$G_p = AG_{p\Lambda(A)}A^{-1}$$

(attention: read from left to right, since p transforms with a lower index!)

• repn's $\underline{U}|_{\mathcal{H}_p}$ are related likewise, since for $R \in G_{p\Lambda(A)}$

$$\underline{U}(\underbrace{ARA^{-1}}_{\in G_p}) = \underline{U}(A)\underline{U}(R)\underline{U}(A)^{-1}$$

- Construction simplified: One only needs G_q for fixed q and Wigner boosts A_p ∈ SL(2, C) : qΛ(A_p) = p.
- in the following: Implement this fallback to G_q on \mathcal{H}

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

• Use an *intertwiner* $V : \mathcal{H} \to L^2(H_m^+, \mathrm{d}p) \otimes \mathcal{H}_q$:

$$(V\psi)(p) = \underline{U}(A_p)\psi(p)$$

= $(U(A_p)\psi)(p\Lambda(A_p^{-1})) \in \mathcal{H}_q$

little Hilbert space-valued wavefunctions

Conjugating the original repn U with the intertwiner V gives an equivalent repn

$$U' = VU(\cdot)V^{-1}$$

whose application to a vector $\psi \in \mathcal{H}$ now reads

$$\begin{aligned} (U'(A,a)\psi)(p) =& e^{ipa}\underline{U}(R(p,A))\psi(p\Lambda(A))\\ R(p,A) =& A_pAA_{p\Lambda(A)}^{-1} \in G_q\\ \text{Wigner rotation} \end{aligned}$$

• As demanded, one only needs $\underline{U}(G_q)$.

continuous spin representations

Christian Köhler

Wigner particle classification

 $\begin{array}{l} \mbox{Poincaré symmetry in}\\ \mbox{Quantum Mechanics}\\ \mbox{irreps of } \mathcal{P}^{\mathcal{C}}\\ \mbox{The little group } G_p\\ \mbox{massive particles} \end{array}$

(Faithful) repn's for massless particles

rigid motions $E\left(2\right)$ No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

massive particles

Important example: Let $O = H_m^+$. Then one can pick $q = (m, \vec{0})$ as the reference vector. $(m, \vec{0}) = m\mathbf{1}$, that is $(m, \vec{0})\Lambda(R) = (m, \vec{0}) \Leftrightarrow R^*R = 1$,

$$G_{(m,\vec{0})} = \mathrm{SU}(2,\mathbb{C})$$

- irreducible repn's of $\mathrm{SU}(2,\mathbb{C})$ are characterized by spin $s\in\frac{1}{2}\mathbb{N}_0$
- Majorana description: little Hilbert space

$$\mathcal{H}^{(s)} := (\mathbb{C}^2)_{\mathsf{sym}}^{\otimes 2s} = \operatorname{span} \xi^{\otimes 2s}, \xi \in \mathbb{C}^2$$

action of \underline{U}

$$\underline{U}(A)\xi^{\otimes 2s} := (A\xi)^{\otimes 2s}$$

for $A \in \mathrm{SU}(2,\mathbb{C})$ or $\mathrm{SL}(2,\mathbb{C})$.

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c} The little group G_{p} massive particles

(Faithful) repn's for massless particles rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

 $|\uparrow\uparrow\cdots\uparrow\rangle$

 $|\downarrow\uparrow\cdots\uparrow\rangle$

 $|\downarrow\downarrow\downarrow\cdots\uparrow\rangle$

 $||_{1}$ · · · · $|_{1}$

 Transformation law for a covariant vector determines the Wigner boost

$$\widetilde{p\Lambda(A)} = A^*\widetilde{p}A \Rightarrow A_p = \sqrt{\widetilde{p}/m}$$
 (pos. def.)

Consider the map

$$\begin{aligned} u: \ H_m^+ \times (\mathbb{C}^2)^{\otimes 2s}_{\mathsf{sym}} &\to \mathcal{H}_q \\ (p, \xi^{\otimes 2s}) &\mapsto \underline{U}(A_p) \xi^{\otimes 2s} \end{aligned}$$

which satisfies the intertwiner property

$$D(R(\Lambda(A),p))u(p\Lambda(A),\xi^{\otimes 2s})=u(p,A^{\otimes 2s}\xi^{\otimes 2s})$$

• One can define a single particle state vector $\psi(f, v)$ for each $f \in \mathcal{S}(M)$, $v \in (\mathbb{C}^2)_{\text{sym}}^{\otimes 2s}$ by

$$\psi(f,v)(p) = \widetilde{f}(p)u(p,v)$$

• For $(\Lambda(A), a)$ one checks the transformation law $U((\Lambda(A), a))\psi(f, v) = \psi((\Lambda(A), a)_*f, A^{\otimes 2s}v)$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c} The little group G_{p} massive particles

(Faithful) repn's for massless particles rigid motions E(2)

No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

1 Wigner particle classification

- Poincaré symmetry in Quantum Mechanics
- irreps of \mathcal{P}^c
- The little group G_p
- massive particles

2 (Faithful) repn's for massless particles

- **rigid** motions E(2)
- No-Go Theorem

3 Construction of String-localized fields

- single particle states
- general construction of intertwiners
- the continuous spin case
- pointlike localized currents

4 Results/Outlook

- Summary
- More warped convolutions (?)

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners

the continuous spin case

pointlike localized currents

${\sf Results}/{\sf Outlook}$

rigid motions E(2)

Now consider the case
$$O = \partial V_+$$
 and pick
 $q = (1/2, 1/2\vec{e}_z)$ as the reference vector.
 $(1/2, 1/2\vec{e}_z) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, that is
 $(1/2, 1/2\vec{e}_z)\Lambda(R) = (1/2, 1/2\vec{e}_z)$
 $\Leftrightarrow R^* \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} R = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, hence
 $G_{(1/2, 1/2\vec{e}_z)} = \left\{ \underbrace{\begin{pmatrix} e^{i\varphi} & 0 \\ a & e^{-i\varphi} \end{pmatrix}}_{=:[\varphi, a]} \in SL(2, \mathbb{C}) | \varphi \in \mathbb{R}, a \in \mathbb{C} \right\}$
 $= \widetilde{E(2)}$

the double cover of $E(2) \xleftarrow{\lambda} \widetilde{E(2)}$ (rigid motions in the Euclidean plane)

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

- little group is not compact! \rightarrow more obstacles than in the $\mathrm{SU}(2,\mathbb{C})$ -case!
- already known: only repn <u>U</u> of $G_{(1/2,1/2\vec{e}_z)} + Wigner$ boost needed, then proceed analogously to the case $O = H_m^+$
- Let <u>U</u> a repn of <u>E(2)</u> and G_i the generators of the translations [0, a]:

$$\underline{U}([0, a_1 + \mathrm{i}a_2]) = \mathrm{e}^{\mathrm{i}Ga}$$

■ like for *P* itself: homogeneous transformation of the generators *G_i*:

$$\underline{U}([\varphi,0])G\underline{U}([\varphi,0])^{-1} = G\lambda([\varphi,0])$$

■ ⇒(as before) spG is invariant under $\lambda([\varphi, 0])$ ■ $g^2 = g_1^2 + g_2^2$ is a Euclidean scalar ⇒ $[G^2, \underline{U}([\varphi, 0])] = 0$ ⇒(Schur's Lemma) $G^2 = \kappa^2 \mathbf{1}$ in an irreducible rep continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of $\mathcal{P}^{\mathcal{C}}$ The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

$\mathsf{Results}/\mathsf{Outlook}$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners

the continuous spin case

pointlike localized currents

Results/Outlook

Summary More warped convolutions (?)

- \blacksquare For m>0 repn's of ${\rm SU}(2,\mathbb{C})$ are classified by spin s.
- For m = 0 repn's of $\widehat{E(2)}$ are classified by the Pauli-Lubanksi parameter κ^2
- w.r.t. the equiv. relation $x \sim x' :\Leftrightarrow \exists \lambda \in \mathrm{SO}(2, \mathbb{R}) : x\lambda = x', \mathrm{sp}G$ decomposes into Rotation-orbits
- two types of Orbits *O*:

trivial repn of translations (helicity) $O_0 = \{\vec{0}\} \subset \mathbb{R}^2$ faithful repn of $\widetilde{E(2)}$ $O_\kappa = \{x \in \mathbb{R}^2 | x^2 = \kappa^2\}$

No-Go Theorem

- Question: Can one construct Wightman fields for the case $m = 0, \kappa > 0$?
- Wightman axioms
 - 1 fields=operator valued distributions $\Phi(x, v)$ on $M \times K$ (K=space for inner degrees of freedom such as spin) mapping a dense subspace \mathcal{H}_D of \mathcal{H} into itself $A(f, v)^{\dagger} = A(\overline{f}, v^*)$
 - 2 $\mathcal{P}^{\uparrow}_{+}$ represented continuously by Ushifts $U(\mathbf{1}, a) = \int dE_p e^{ipa}$ satisfy the spectrum condition $\operatorname{supp} dE_p \in \partial V_+$

 $U(\mathcal{P}^{\uparrow}_{+})\mathcal{H}_D \subset \mathcal{H}_D \text{ and } \exists ! \Omega \in \mathcal{H}_D : U(\mathcal{P}^{\uparrow}_{+})\Omega = \{\Omega\}$

3 locality:

[A(x,v), A(x',v')] = 0 if x > < x' and any $v, v' \in K$ 4 covariance:

 $\begin{array}{l} \exists \ \text{repn} \ D \ \text{of} \ \mathrm{SL}(2,\mathbb{C}) \ \text{on} \ K \ \text{s.th.} \\ U(\Lambda,a)A(x,v)U(\Lambda,a)^{-1} = A(\Lambda x + a, D(\Lambda)v) \end{array}$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

If one considers the subspace \mathcal{H}' of vectors obtained by appplying A(f,v) once to the vacuum Ω

$$\mathcal{H}' = \overline{\left\{\sum_{i=1}^{n} A(f_i, v_i)\Omega | n < \infty, f_i \in \mathcal{D}(M), v_i \in K\right\}}$$

 \Rightarrow (Yngvason '69)

 \blacksquare There is no subspace $\mathcal{H}_{\mathrm{irr}} \subset \mathcal{H}$ such that

- E_{irr} H ≠ 0, where E_{irr} is the projection on H_{irr}.
 U(P[↑]₊)H_{irr} ⊂ H_{irr} and U|H_{irr} is an irreducible rep with m = 0 and κ > 0.
- But: If one gives up *pointlike* localization on *M*, irreducible representations of $\mathcal{P}^{\uparrow}_{+}$ with covariant transformation behaviour can be constructed.

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

1 Wigner particle classification

- Poincaré symmetry in Quantum Mechanics
- irreps of \mathcal{P}^c
- \blacksquare The little group G_p
- massive particles
- 2 (Faithful) repn's for massless particles
 - rigid motions E(2)
 - No-Go Theorem

3 Construction of String-localized fields

- single particle states
- general construction of intertwiners
- the continuous spin case
- pointlike localized currents

4 Results/Outlook

Summary

More warped convolutions (?)

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c} The little group G_{p} massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin

case pointlike localized

Results/Outlook

single particle states

- The following construction is due to Yngvason, Mund and Schroer
- Let $H = \{e \in M | e^2 = -1\}$ the submanifold of spacelike directions and for a chosen reference vector $q \in O$ consider a map

$$u: O \times H \rightarrow \mathcal{H}_q$$

(cf V above) satisfying the *intertwiner property*

 $\underline{U}(R(p,A))u(\Lambda(A)^{-1}p,\Lambda(A)^{-1}e) = u(p,e)$

• One can define a single particle state vector $\psi(f, e)$ for each $f \in \mathcal{S}(M)$, $e \in H$ by

$$\psi(f,e)(p) = \widetilde{f}(p)u(p,e)$$

 \blacksquare For (Λ,a) one checks the transformation law

$$U((\Lambda,a))\psi(f,e)=\psi((\Lambda,a)_*f,\Lambda e)$$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states

general construction of intertwiners the continuous spin case pointlike localized currents

Results/Outlook

general construction of string-intertwiners

- The intertwiner functions u for the little group G_q can be constructed with the following recipe:
 - 1 One defines the G_q -orbit $\Gamma_q := \{p \in O | pq = 1\}$ and uses the *pullback repn* \widetilde{U} on $L^2(\Gamma_q)$:

 $(\widetilde{U}(R)v)(\xi) = v(R^{-1}\xi) \ \forall R \in G_q, v \in L^2(\Gamma_p), \xi \in \Gamma_p$

2 Intertwine \widetilde{U} with \underline{U} by an isometric map V:

$$\underline{U}(R)V = V\widetilde{U}(R)$$

- 3 Construct a solution ũ^α(p, e)(ξ) := F(ξA_p⁻¹e) of the interwiner property on L²(Γ_q), where F is a numerical function (choice: F(w) = w^α).
- 4 Use the isometry to get the \mathcal{H}_q -valued intertwiner

$$u^{\alpha}(p,e) := V\widetilde{u}^{\alpha}(p,e)$$

 the construction gives a covariantly transforming quantum field: (° = contraction over basis of H_p)

$$\Phi^{\alpha}(x,e) = \int_{O} \widetilde{\mathrm{d}}p \,\mathrm{e}^{\mathrm{i}px} u^{\alpha}(p,e) \circ a^{\dagger}(p) + \mathrm{c.c.}$$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners

the continuous spin case pointlike localized currents

Results/Outlook

string-localization

$$[\Phi(x, e), \Phi(x', e')] = 0 \ \forall x + \mathbb{R}^+ e > < x' + \mathbb{R}^+ e' \ (*)$$

proof

- \blacksquare separate strings by suitable wedge W and its causal complement W^\prime
- use covariance and PCT symmetry of the fields $\Phi(x, e)$
- analytic continuation to desired equation (*)

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions $E(2) \\ \mbox{No-Go Theorem}$

Construction of String-localized fields

single particle states general construction of intertwiners

the continuous spin case pointlike localized currents

Results/Outlook

the continuous spin case

For $G_{(1/2,1/2\vec{e}_z)}$ the set $\Gamma_{(1/2,1/2\vec{e}_z)}$ is isometric to \mathbb{R}^2 via the parametrization

$$\xi(z) = \left(\frac{1}{2}(z^2+1), z_1, z_2, \frac{1}{2}(z^2-1)\right)$$

Applying the above recipe one obtains the intertwiner

$$u^{\alpha}(p,e)(k) = e^{-i\alpha\pi/2} \int_{\mathbb{R}^2} d^2 z \, e^{ikz} \underbrace{(B_p\xi(z)e)^{\alpha}}_{=v^{\alpha}(p,\xi(z))}$$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners

the continuous spin case

pointlike localized currents

Results/Outlook

pointlike localized currents

• Let $\Phi(x)$ a pointlike localized field with

$$[\Phi(x), \Phi(y)]_{\pm} = 0$$
 if $(x - y)^2 < 0$

due to CCR/CAR for the creation/annihilation operators

$$[a_i(x), a_j^{\dagger}(y)]_{\pm} = \delta(x-y)\delta_{ij}$$
 etc.

 Normal ordered products fulfill local commutation relation

$$[:\Phi^2(x):,:\Phi^2(y):] = 0$$
 if $(x - y)^2 < 0$

because in contracted parts of $:(:\Phi^2(x)::\Phi^2(y):):$ use

$$\stackrel{!}{\Phi}(x)\stackrel{!}{\Phi}(y) = [\Phi(x), \Phi(y)]_{\pm}$$

Similar construction for stringlike fields?

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners

the continuous spin case

pointlike localized currents

Results/Outlook

Form of a pointlike scalar current proposed by Schroer:

$$B(x) := \int_O \widetilde{\mathrm{d}p} \int_O \widetilde{\mathrm{d}p'} \,\mathrm{e}^{\mathrm{i}(p+p')x} a^{\dagger}(p) \circ u_2(p,p') \circ a^{\dagger}(p') + \dots$$

with the double intertwiner function

$$u_2(p,p')(k,k') = \int_{\mathbb{R}^2} \mathrm{d}^2 z \int_{\mathbb{R}^2} \mathrm{d}^2 z' \,\mathrm{e}^{\mathrm{i}(kz+k'z')}$$
$$F(B_p\xi(z) \cdot B_{p'}\xi(z'))$$

• *Question:* Can *B* be constructed in a way s.th.

relative locality between current and field

$$\langle p, k | [B(x), \psi(y, e)] | 0 \rangle = 0 \ \forall x > < y + \mathbb{R}^+ e ?$$

(Schroer)

causal commutativity for the currents

$$[B(x, \tilde{x}), B(x', \tilde{x}')] = 0 \ \forall x, \tilde{x} > < x', \tilde{x}'$$

(Mund/Schroer/Yngvason, proven for the $\langle 0| \cdot |0\rangle$ part)

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c} The little group G_{p} massive particles

(Faithful) repn's for massless particles

rigid motions $E\left(2\right)$ No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin

case

pointlike localized currents

Results/Outlook

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin

case

pointlike localized currents

Results/Outlook

Summary More warped convolutions (?)

Using the definition

$$\begin{split} B(x,\tilde{x}) &= \int_{\partial V^+} \widetilde{\mathrm{d}}\tilde{p} \int_{\partial V^+} \widetilde{\mathrm{d}}\tilde{p} \int \mathrm{d}\nu(k) \int \mathrm{d}\nu(\tilde{k}) \int \mathrm{d}^2 z \int \mathrm{d}^2 \tilde{z} \\ F(+B_p\xi(z) \cdot B_{\tilde{p}}\xi(\tilde{z})) \\ \cdot (\mathrm{e}^{\mathrm{i}px} \mathrm{e}^{\mathrm{i}\tilde{p}\tilde{x}} \mathrm{e}^{\mathrm{i}kz} \mathrm{e}^{\mathrm{i}\tilde{k}\tilde{z}} a^{\dagger}(p,k) a^{\dagger}(\tilde{p},\tilde{k}) \\ &+ \mathrm{e}^{-\mathrm{i}px} \mathrm{e}^{-\mathrm{i}\tilde{p}\tilde{x}} \mathrm{e}^{-\mathrm{i}kz} \mathrm{e}^{-\mathrm{i}\tilde{k}\tilde{z}} a(p,k) a(\tilde{p},\tilde{k})) \\ + & F(-B_p\xi(z) \cdot B_{\tilde{p}}\xi(\tilde{z})) \\ &\cdot : (\mathrm{e}^{\mathrm{i}px} \mathrm{e}^{-\mathrm{i}\tilde{p}\tilde{x}} \mathrm{e}^{\mathrm{i}kz} \mathrm{e}^{-\mathrm{i}\tilde{k}\tilde{z}} a^{\dagger}(p,k) a(\tilde{p},\tilde{k}) \\ &+ \mathrm{e}^{-\mathrm{i}px} \mathrm{e}^{\mathrm{i}\tilde{p}\tilde{x}} \mathrm{e}^{-\mathrm{i}kz} \mathrm{e}^{\mathrm{i}\tilde{k}\tilde{z}} a(p,k) a^{\dagger}(\tilde{p},\tilde{k})): \end{split}$$

the following properties can be shown

$$\begin{split} & [B(x,\tilde{x}),B(x',\tilde{x}')] = 0 \ \forall x,\tilde{x} > < x',\tilde{x}' \\ & [B(x,\tilde{x}),\Phi(x',e')] = 0 \ \forall x,\tilde{x} > < y + \mathbb{R}^+ e \end{split}$$

- proof similar to string-localization of fields
- involves multiple matrix elements

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions $E(2)\xspace$ No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin

the continuous spin case

pointlike localized currents

Results/Outlook

1 Wigner particle classification

- Poincaré symmetry in Quantum Mechanics
- irreps of \mathcal{P}^c
- \blacksquare The little group G_p
- massive particles
- 2 (Faithful) repn's for massless particles
 - **rigid motions** E(2)
 - No-Go Theorem
- 3 Construction of String-localized fields
 - single particle states
 - general construction of intertwiners
 - the continuous spin case
 - pointlike localized currents

4 Results/Outlook

- Summary
- More warped convolutions (?)

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c} The little group G_{p} massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners

the continuous spin case

pointlike localized currents

Results/Outlook

Summary

- Wigner-Analysis allows for classification of the irreducible repn's of P^c.
- massive case: Particles classified by mass m > 0 and spin $s \in \frac{1}{2}\mathbb{N}_0$
- massless case: continuum of inner degrees of freedom("continuous spin")
- Yngvason's Theorem: No pointlike localized Wightman fields in this case
- Construction of intertwiners $\partial V_+ \times H \to \mathcal{H}_p$ gives String-localized fields
- compact localized currents can be defined
- these are local w.r.t. each other and relatively local to the strings

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles rigid motions E(2)

No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case

pointlike localized currents

Results/Outlook

Summary

More warped convolutions (?)

More warped convolutions (?)

■ idea: Instead of momenta P (4-dim) in the formula

$$A_{Q_W} = \int \mathrm{d}E_p \,\mathrm{e}^{\mathrm{i}PQ_W p} A \mathrm{e}^{-\mathrm{i}PQ_W p}$$

for the deformation of field operators A (W=wedge region) one *might* use shift operators G (2-dim) discussed before in an expression like

$$A_{Q_W} = \int \mathrm{d}E_a \,\mathrm{e}^{\mathrm{i}GQ_W a} A \mathrm{e}^{-\mathrm{i}GQ_W a}$$

with supp $dE_a \subset O_{\kappa}...?$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c} The little group G_{p} massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners

the continuous spin case

pointlike localized currents

Results/Outlook

References

- Jakob Yngvason, Jens Mund, Bert Schroer '05 String-localized Quantum Fields and Modular Localization arXiv:math-ph/0511042v2
- Jakob Yngvason, Jens Mund, Bert Schroer '04 String-localized quantum fields from Wigner representations

arXiv:math-ph/0402043v2

Bert Schroer '08

Indecomposable semiinfinite string-localized positive energy matter and "darkness"

arXiv:0802.2098v4 [hep-th]

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c} The little group G_{p} massive particles

(Faithful) repn's for massless particles

rigid motions E(2)No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin

case pointlike localized

currents

Results/Outlook

References

Jakob Yngvason '69

Zero-Mass Infinite Spin Representations of the Poincaré Group and Quantum Field Theory Commun. math. Phys. 18, 195–203 (1970)

📡 Klaus Fredenhagen '00

Quantenfeldtheorie

II. Institut für Theoretische Physik, Uni Hamburg 27–39

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^{c} The little group G_{p} massive particles

(Faithful) repn's for massless particles

rigid motions $E\left(2\right)$ No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case pointlike localized currents

$\mathsf{Results}/\mathsf{Outlook}$

continuous spin representations

Christian Köhler

Wigner particle classification

Poincaré symmetry in Quantum Mechanics irreps of \mathcal{P}^c The little group G_p massive particles

(Faithful) repn's for massless particles

rigid motions $E(2)\xspace$ No-Go Theorem

Construction of String-localized fields

single particle states general construction of intertwiners the continuous spin case

pointlike localized currents

Results/Outlook

Summary More warped convolutions (?)

Thank you!