Determinacy of Refinements to the Difference Hierarchy of Co-analytic sets

Chris Le Sueur http://www.maths.bris.ac.uk/~cl7907/
University of Bristol

3rd Münster Conference in Inner Model Theory, the Core Model Induction and Hod Mice

Goal

Theorems of the form:

$$
\exists M(M \vDash T, M \text { is iterable }) \Longrightarrow \operatorname{Det}\left(\omega^{2}-\Pi_{1}^{1}+\Gamma\right)
$$

Goal

Theorems of the form:

$$
\exists M(M \vDash T, M \text { is iterable }) \Longrightarrow \operatorname{Det}\left(\omega^{2}-\Pi_{1}^{1}+\Gamma\right)
$$

$$
\mathrm{T} \subseteq \mathrm{ZFC}, \Gamma \subseteq \Delta_{1}^{1}
$$

Goal

Theorems of the form:

$$
\exists M(M \vDash T, M \text { is iterable }) \Longrightarrow \operatorname{Det}\left(\omega^{2}-\Pi_{1}^{1}+\Gamma\right)
$$

$$
\mathrm{T} \subseteq \mathrm{ZFC}, \Gamma \subseteq \Delta_{1}^{1}
$$

For the above to hold we would like to have:

$$
\mathrm{T} \vdash \operatorname{Det}(\Gamma)
$$

Goal

Theorems of the form:

$$
\exists M(M \vDash T, M \text { is iterable }) \Longrightarrow \operatorname{Det}\left(\omega^{2}-\Pi_{1}^{1}+\Gamma\right)
$$

$$
\mathrm{T} \subseteq \mathrm{ZFC}, \Gamma \subseteq \Delta_{1}^{1}
$$

For the above to hold we would like to have:

$$
\mathrm{T} \vdash \operatorname{Det}(\Gamma)
$$

Consider: $\mathrm{T}=\mathrm{KP}+\Sigma_{1}$-Sep, $\Gamma=\Sigma_{2}^{0}$.

Picture

Δ_{2}^{1}
Π_{1}^{1}
Δ_{1}^{1}
\vdots
Σ_{2}^{0}
Σ_{1}^{0}
Borel, Projective hierarchy

Picture

$$
\left(\omega^{2}+1\right)-\Pi_{1}^{1}
$$

Δ_{2}^{1}

$$
\begin{gathered}
\omega^{2}-\Pi_{1}^{1} \\
\vdots \\
3-\Pi_{1}^{1} \\
2-\Pi_{1}^{1} \\
\Pi_{1}^{1}
\end{gathered}
$$

Σ_{1}^{0}
Difference hierarchy on Π_{1}^{1}
Borel, Projective hierarchy

Picture

$$
\stackrel{\longrightarrow}{\cdots}\left(\omega^{2}+1\right)-\Pi_{1}^{1} \text { Det } \leftrightarrow 0^{\dagger}
$$

Δ_{2}^{1}

$$
\omega^{2}-\Pi_{1}^{1}
$$

$$
\vdots
$$

$$
3-\Pi_{1}^{1}
$$

$$
2-\Pi_{1}^{1}
$$

$$
\Pi_{1}^{1}
$$

$$
\rightarrow \text { Det } \leftrightarrow 0^{\sharp}
$$

Σ_{1}^{0}

Difference hierarchy on Π_{1}^{1}

Borel, Projective hierarchy

Picture

Picture

Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_{1}^{1}), α be a countable ordinal. We say a set A is $\alpha-\Gamma$ if there is a sequence $\left\langle A_{\beta} \mid \beta \leqslant \alpha\right\rangle$ such that:

Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_{1}^{1}), α be a countable ordinal. We say a set A is $\alpha-\Gamma$ if there is a sequence $\left\langle A_{\beta} \mid \beta \leqslant \alpha\right\rangle$ such that:

- each $A_{\beta} \in \Gamma$;

Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_{1}^{1}), α be a countable ordinal. We say a set A is $\alpha-\Gamma$ if there is a sequence $\left\langle A_{\beta} \mid \beta \leqslant \alpha\right\rangle$ such that:

- each $A_{\beta} \in \Gamma$;
- $A_{\alpha}=\varnothing$;

Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_{1}^{1}), α be a countable ordinal. We say a set A is $\alpha-\Gamma$ if there is a sequence $\left\langle A_{\beta} \mid \beta \leqslant \alpha\right\rangle$ such that:

- each $A_{\beta} \in \Gamma$;
- $A_{\alpha}=\varnothing$; and

$$
x \in A \leftrightarrow \text { the least } \beta \text { such that } x \notin A_{\beta} \text { is odd }
$$

Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_{1}^{1}), α be a countable ordinal. We say a set A is $\alpha-\Gamma$ if there is a sequence $\left\langle A_{\beta} \mid \beta \leqslant \alpha\right\rangle$ such that:

- each $A_{\beta} \in \Gamma$;
- $A_{\alpha}=\varnothing$; and

$$
x \in A \leftrightarrow \text { the least } \beta \text { such that } x \notin A_{\beta} \text { is odd }
$$

So $\left(A_{0} \backslash A_{1}\right) \cup\left(A_{2} \backslash A_{3}\right) \cup \cdots$.

Difference Hierarchy

Definition

Let Γ be a pointclass closed under countable intersections (e.g. Π_{1}^{1}), α be a countable ordinal. We say a set A is $\alpha-\Gamma$ if there is a sequence $\left\langle A_{\beta} \mid \beta \leqslant \alpha\right\rangle$ such that:

- each $A_{\beta} \in \Gamma$;
- $A_{\alpha}=\varnothing$; and

$$
x \in A \leftrightarrow \text { the least } \beta \text { such that } x \notin A_{\beta} \text { is odd }
$$

So $\left(A_{0} \backslash A_{1}\right) \cup\left(A_{2} \backslash A_{3}\right) \cup \cdots$.

Fact

If $\alpha>1$ is a computable ordinal then

$$
\Pi_{1}^{1} \subsetneq \alpha-\Pi_{1}^{1} \subsetneq(\alpha+1)-\Pi_{1}^{1} \subsetneq \Delta_{2}^{1}
$$

Refining the Difference Hierarchy

We can refine the difference hierarchy by restricting the final set in the sequence.

Definition

For $\Lambda \subseteq \Gamma$, we say

$$
A \in \alpha-\Gamma+\Lambda
$$

if $A \in(\alpha+1)-\Gamma$, as witnessed by the sequence $\left\langle A_{\beta} \mid \beta \leqslant \alpha+1\right\rangle$, but $A_{\alpha} \in \Lambda$.

Refining the Difference Hierarchy

We can refine the difference hierarchy by restricting the final set in the sequence.

Definition

For $\Lambda \subseteq \Gamma$, we say

$$
A \in \alpha-\Gamma+\Lambda
$$

if $A \in(\alpha+1)-\Gamma$, as witnessed by the sequence $\left\langle A_{\beta} \mid \beta \leqslant \alpha+1\right\rangle$, but $A_{\alpha} \in \Lambda$.

Let $A \in \omega^{2}-\Pi_{1}^{1}+\Gamma$. In order to win the game for A, both players are trying not to be the first one to go out of an A_{β} for $\beta<\omega^{2}$, and if they both succeed then I wins if he gets into $A_{\omega^{2}}$.

Auxiliary Game

The proof follows Martin's "integration" method for proving $\alpha-\Pi_{1}^{1}$ determinacy from indiscernibles. The ingredients of that proof are:

Auxiliary Game

The proof follows Martin's "integration" method for proving $\alpha-\Pi_{1}^{1}$ determinacy from indiscernibles. The ingredients of that proof are:

- Characterise membership in Π_{1}^{1} sets by well-orders

Auxiliary Game

The proof follows Martin's "integration" method for proving $\alpha-\Pi_{1}^{1}$ determinacy from indiscernibles. The ingredients of that proof are:

- Characterise membership in Π_{1}^{1} sets by well-orders
- Define an auxiliary game in which the players must confirm that they played into certain sets by exhibiting those wellorders

Auxiliary Game

The proof follows Martin's "integration" method for proving $\alpha-\Pi_{1}^{1}$ determinacy from indiscernibles. The ingredients of that proof are:

- Characterise membership in Π_{1}^{1} sets by well-orders
- Define an auxiliary game in which the players must confirm that they played into certain sets by exhibiting those wellorders
- The auxiliary game is constructed so as to be determined

Auxiliary Game

The proof follows Martin's "integration" method for proving $\alpha-\Pi_{1}^{1}$ determinacy from indiscernibles. The ingredients of that proof are:

- Characterise membership in Π_{1}^{1} sets by well-orders
- Define an auxiliary game in which the players must confirm that they played into certain sets by exhibiting those wellorders
- The auxiliary game is constructed so as to be determined
- Using a winning strategy for the auxiliary game, a winning strategy for the original game is defined

Auxiliary Game

The proof follows Martin's "integration" method for proving $\alpha-\Pi_{1}^{1}$ determinacy from indiscernibles. The ingredients of that proof are:

- Characterise membership in Π_{1}^{1} sets by well-orders
- Define an auxiliary game in which the players must confirm that they played into certain sets by exhibiting those wellorders
- The auxiliary game is constructed so as to be determined
- Using a winning strategy for the auxiliary game, a winning strategy for the original game is defined
- In moving from the auxiliary strategy to that for the original game, the players must "imagine" the auxiliary moves being played by their opponent; indiscernibility ensures that this is possible.

Details of the Auxiliary Game

Details of the Auxiliary Game

- The ordinal components $\eta_{i} \in \aleph_{\omega}$ are partitioned so as to create ω^{2} many countable orderings. Each should witness that $x=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle \in A_{\beta}$ for some $\beta<\omega^{2}$.

Details of the Auxiliary Game

- The ordinal components $\eta_{i} \in \aleph_{\omega}$ are partitioned so as to create ω^{2} many countable orderings. Each should witness that $x=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle \in A_{\beta}$ for some $\beta<\omega^{2}$.
- We say that the play is badly lost if one of these orderings witnesses that $x \notin \mathcal{A}_{\beta}$. If the first such mistake occurs with β even then it is badly lost for I, otherwise for II.

Details of the Auxiliary Game

- The ordinal components $\eta_{i} \in \aleph_{\omega}$ are partitioned so as to create ω^{2} many countable orderings. Each should witness that $x=\left\langle a_{0}, a_{1}, a_{2}, \ldots\right\rangle \in A_{\beta}$ for some $\beta<\omega^{2}$.
- We say that the play is badly lost if one of these orderings witnesses that $x \notin \mathcal{A}_{\beta}$. If the first such mistake occurs with β even then it is badly lost for I, otherwise for II.
- II wins the auxiliary game if the play is not badly lost for either player; I wins if it is badly lost for II.

Complexity

"Being badly lost" is an open condition because a play is badly lost iff there is an initial position where the orderings for one player are wrong. Altogether this means that the above auxiliary game is open, and so it is determined.

Complexity

"Being badly lost" is an open condition because a play is badly lost iff there is an initial position where the orderings for one player are wrong. Altogether this means that the above auxiliary game is open, and so it is determined.

Now consider extending the proof to our situation: we don't have a $\omega^{2}-\Pi_{1}^{1}$ set, but a $\omega^{2}-\Pi_{1}^{1}+\Gamma$ set, so we modify the win condition to be: I wins if the play is badly lost for II or it is not badly lost for either player and $x \in \mathcal{A}_{\omega^{2}}$.

Complexity

"Being badly lost" is an open condition because a play is badly lost iff there is an initial position where the orderings for one player are wrong. Altogether this means that the above auxiliary game is open, and so it is determined.

Now consider extending the proof to our situation: we don't have a $\omega^{2}-\Pi_{1}^{1}$ set, but a $\omega^{2}-\Pi_{1}^{1}+\Gamma$ set, so we modify the win condition to be: I wins if the play is badly lost for II or it is not badly lost for either player and $x \in \mathcal{A}_{\omega^{2}}$.
$A_{\omega^{2}}$ is an element of Γ, so this condition is no longer open; to find a winning strategy we need to analyse the complexity of this condition.

Complexity

"Being badly lost" is an open condition because a play is badly lost iff there is an initial position where the orderings for one player are wrong. Altogether this means that the above auxiliary game is open, and so it is determined.

Now consider extending the proof to our situation: we don't have a $\omega^{2}-\Pi_{1}^{1}$ set, but a $\omega^{2}-\Pi_{1}^{1}+\Gamma$ set, so we modify the win condition to be: I wins if the play is badly lost for II or it is not badly lost for either player and $x \in \mathcal{A}_{\omega^{2}}$.
$A_{\omega^{2}}$ is an element of Γ, so this condition is no longer open; to find a winning strategy we need to analyse the complexity of this condition.

We will need a lightface condition, so the first task is to work out what "lightface Σ_{n}^{0} " should mean for a subset of $\left(\omega \times \Sigma_{\omega}\right)^{\omega}$.

Effective Descriptive Set Theory on κ^{ω}

Definition

Call a subset R of κ^{ω} generalised lightface open if there is a $\Sigma_{1}\left(L_{k}\right)$ set $X \subseteq \kappa^{<\omega}$ such that:

$$
x \in R \Longleftrightarrow \exists p \in X(p \subseteq x)
$$

Effective Descriptive Set Theory on κ^{ω}

Definition

Call a subset R of κ^{ω} generalised lightface open if there is a $\Sigma_{1}\left(L_{k}\right)$ set $X \subseteq \kappa^{<\omega}$ such that:

$$
x \in R \Longleftrightarrow \exists p \in X(p \subseteq x)
$$

One can also define lightface open subsets of $\left(\kappa^{\omega}\right)^{n} \times \kappa^{m} \times \omega^{j}$ in the obvious way.

Effective Descriptive Set Theory on κ^{ω}

Definition

Call a subset R of κ^{ω} generalised lightface open if there is a $\Sigma_{1}\left(L_{k}\right)$ set $X \subseteq \kappa^{<\omega}$ such that:

$$
x \in R \Longleftrightarrow \exists p \in X(p \subseteq x)
$$

One can also define lightface open subsets of $\left(\kappa^{\omega}\right)^{n} \times \kappa^{m} \times \omega^{j}$ in the obvious way.

If we replace L_{κ} with $\left\langle\mathrm{L}_{\kappa}[\vec{c}], \in, \overrightarrow{\boldsymbol{c}}\right\rangle$ for some countable set of ordinals $\overrightarrow{\mathbf{c}}$, then we can make the same definition to get the lightface in $\overrightarrow{\mathrm{c}}$ open sets.

The Generalised Lightface Borel Hierarchy

Let P be a relation on κ^{ω}, then:

The Generalised Lightface Borel Hierarchy

Let P be a relation on κ^{ω}, then:

Definition

- P is called Σ_{1}^{0} if P is generalised lightface open;

The Generalised Lightface Borel Hierarchy

Let P be a relation on κ^{ω}, then:

Definition

- P is called Σ_{1}^{0} if P is generalised lightface open;
- P is Σ_{n+1}^{0} iff there is a Π_{n}^{0} predicate $R \subseteq \kappa^{\omega} \times \omega$ such that

The Generalised Lightface Borel Hierarchy

Let P be a relation on κ^{ω}, then:

Definition

- P is called Σ_{1}^{0} if P is generalised lightface open;
- P is Σ_{n+1}^{0} iff there is a Π_{n}^{0} predicate $R \subseteq \kappa^{\omega} \times \omega$ such that

$$
x \in P \Longleftrightarrow \exists a \in \omega(R(x, a))
$$

The Generalised Lightface Borel Hierarchy

Let P be a relation on κ^{ω}, then:

Definition

- P is called Σ_{1}^{0} if P is generalised lightface open;
- P is Σ_{n+1}^{0} iff there is a Π_{n}^{0} predicate $R \subseteq \kappa^{\omega} \times \omega$ such that

$$
x \in P \Longleftrightarrow \exists a \in \omega(R(x, a))
$$

- P is Π_{n}^{0} iff $\neg P$ is Σ_{n}^{0};

The Generalised Lightface Borel Hierarchy

Let P be a relation on κ^{ω}, then:

Definition

- P is called Σ_{1}^{0} if P is generalised lightface open;
- P is Σ_{n+1}^{0} iff there is a Π_{n}^{0} predicate $R \subseteq \kappa^{\omega} \times \omega$ such that

$$
x \in P \Longleftrightarrow \exists a \in \omega(R(x, a))
$$

- P is Π_{n}^{0} iff $\neg P$ is Σ_{n}^{0};
- P is Δ_{n}^{0} iff it is Σ_{n}^{0} and Π_{n}^{0}.

The Generalised Lightface Borel Hierarchy

Let P be a relation on κ^{ω}, then:

Definition

- P is called Σ_{1}^{0} if P is generalised lightface open;
- P is Σ_{n+1}^{0} iff there is a Π_{n}^{0} predicate $R \subseteq \kappa^{\omega} \times \omega$ such that

$$
x \in P \Longleftrightarrow \exists a \in \omega(R(x, a))
$$

- P is Π_{n}^{0} iff $\neg P$ is Σ_{n}^{0};
- P is Δ_{n}^{0} iff it is Σ_{n}^{0} and Π_{n}^{0}.

Note that we go up by ω unions, not k unions.

The Generalised Lightface Borel Hierarchy

Let P be a relation on κ^{ω}, then:

Definition

- P is called Σ_{1}^{0} if P is generalised lightface open;
- P is Σ_{n+1}^{0} iff there is a Π_{n}^{0} predicate $R \subseteq \kappa^{\omega} \times \omega$ such that

$$
x \in P \Longleftrightarrow \exists a \in \omega(R(x, a))
$$

- P is Π_{n}^{0} iff $\neg P$ is Σ_{n}^{0};
- P is Δ_{n}^{0} iff it is Σ_{n}^{0} and Π_{n}^{0}.

Note that we go up by ω unions, not k unions.
If we replace "lightface" with "lightface in \vec{c} " then we get the $\Sigma_{n}^{0}(\vec{c})$ hierarchy on κ^{ω}.

Recursion Theory

- We can prove the analogue of the Kleene Basis theorem in this context: If $X \subseteq \kappa^{\omega}$ is Σ_{1}^{1} and non-empty, it has an element definable over any admissible set M with $L_{k} \in M$.

Recursion Theory

- We can prove the analogue of the Kleene Basis theorem in this context: If $X \subseteq \kappa^{\omega}$ is Σ_{1}^{1} and non-empty, it has an element definable over any admissible set M with $L_{\kappa} \in M$.
- The idea is that Σ_{1}^{1} relations are Π_{1} over any admissible containing L_{K}. The leftmost path through the the corresponding tree is then a definable element.

Recursion Theory

- We can prove the analogue of the Kleene Basis theorem in this context: If $X \subseteq \kappa^{\omega}$ is Σ_{1}^{1} and non-empty, it has an element definable over any admissible set M with $L_{\kappa} \in M$.
- The idea is that Σ_{1}^{1} relations are Π_{1} over any admissible containing L_{K}. The leftmost path through the the corresponding tree is then a definable element.
- This allows us to reduce the complexities of properties in the determinacy arguments, and hence prove determinacy of the auxiliary games in weak models.

Determinacy of the Auxiliary Game

A basic fact is that if $A \subseteq \omega^{\omega}$ is Σ_{n}^{0}, it is also Σ_{n}^{0} in this sense, considered as a subset of each κ^{ω}. A quick calculation then shows that, if the main game is $\omega^{2}-\Pi_{1}^{1}+\Sigma_{n}^{0}$ for $n>1$ then the auxiliary game is $\Sigma_{n}^{0}\left(\left\langle\aleph_{i} \mid \mathfrak{i}<\omega\right\rangle\right)$ on $\left(\omega \times \aleph_{\omega}\right)^{\omega}$, a pointclass we abbreviate to $\widehat{\Sigma}_{n}^{0}$.

Determinacy of the Auxiliary Game

A basic fact is that if $A \subseteq \omega^{\omega}$ is Σ_{n}^{0}, it is also Σ_{n}^{0} in this sense, considered as a subset of each κ^{ω}. A quick calculation then shows that, if the main game is $\omega^{2}-\Pi_{1}^{1}+\Sigma_{n}^{0}$ for $n>1$ then the auxiliary game is $\Sigma_{n}^{0}\left(\left\langle\aleph_{i} \mid i<\omega\right\rangle\right)$ on $\left(\omega \times \aleph_{\omega}\right)^{\omega}$, a pointclass we abbreviate to $\widehat{\Sigma}_{n}^{0}$.

We can then prove that the auxiliary game is determined using arguments analogous to those used to establish ordinary Σ_{n}^{0} determinacy.

Determinacy of the Auxiliary Game

A basic fact is that if $A \subseteq \omega^{\omega}$ is Σ_{n}^{0}, it is also Σ_{n}^{0} in this sense, considered as a subset of each κ^{ω}. A quick calculation then shows that, if the main game is $\omega^{2}-\Pi_{1}^{1}+\Sigma_{n}^{0}$ for $n>1$ then the auxiliary game is $\Sigma_{n}^{0}\left(\left\langle\aleph_{i} \mid \mathfrak{i}<\omega\right\rangle\right)$ on $\left(\omega \times \aleph_{\omega}\right)^{\omega}$, a pointclass we abbreviate to $\widehat{\Sigma}_{n}^{0}$.

We can then prove that the auxiliary game is determined using arguments analogous to those used to establish ordinary Σ_{n}^{0} determinacy.

Example

If $A \in \omega^{2}-\Pi_{1}^{1}+\Sigma_{2}^{0}$ then the auxiliary winning set A^{*} is $\hat{\Sigma}_{2}^{0}$ and, if M is a transitive model of KP $+\Sigma_{1}$-Sep containing $\left\langle\aleph_{i}\right\rangle$ then there is a Σ_{1}-definable winning strategy for A^{*} in M.

Generating Indiscernibles

Having shown that the auxiliary game is determined, we need a form of indiscernibility to perform the "integration" part of Martin's method.

Generating Indiscernibles

Having shown that the auxiliary game is determined, we need a form of indiscernibility to perform the "integration" part of Martin's method.

The kind of indiscernibility we use is as follows:

Definition

A closed-unbounded class of ordinals C is a class of Σ_{n} generating indiscernibles for the theory T if,

Generating Indiscernibles

Having shown that the auxiliary game is determined, we need a form of indiscernibility to perform the "integration" part of Martin's method.

The kind of indiscernibility we use is as follows:

Definition

A closed-unbounded class of ordinals C is a class of Σ_{n} generating indiscernibles for the theory T if, letting $\mathcal{A}_{\mathrm{T}}[\vec{c}]$ be the least transitive model of the theory T (in the language including a predicate for $\overrightarrow{\mathrm{c}}$) containing the sequence $\overrightarrow{\mathbf{c}}$,

$$
\mathcal{A}_{\mathrm{T}}[\overrightarrow{\mathrm{c}}] \equiv \Sigma_{\mathrm{n}} \mathcal{A}_{\mathrm{T}}[\overrightarrow{\mathrm{~d}}]
$$

Generating Indiscernibles

Having shown that the auxiliary game is determined, we need a form of indiscernibility to perform the "integration" part of Martin's method.

The kind of indiscernibility we use is as follows:

Definition

A closed-unbounded class of ordinals C is a class of Σ_{n} generating indiscernibles for the theory T if, letting $\mathcal{A}_{\mathrm{T}}[\vec{c}]$ be the least transitive model of the theory T (in the language including a predicate for $\overrightarrow{\mathrm{c}}$) containing the sequence $\overrightarrow{\mathrm{c}}$,

$$
\mathcal{A}_{\mathrm{T}}[\overrightarrow{\mathbf{c}}] \equiv \Sigma_{\mathrm{n}} \mathcal{A}_{\mathrm{T}}[\overrightarrow{\mathrm{~d}}]
$$

So, taking $T=K P+\Sigma_{1}$-Sep, $n=1$, this principle would imply that the winning strategy for the $\widehat{\Sigma}_{2}^{0}$ auxiliary game behaves the same when defined over any of these models.

Generating Indiscernibles

We obtain indiscernibles by starting with a mouse $M \vDash T$. (M must satisfy T in the language with its M -ultrafilter F as a predicate)

Generating Indiscernibles

We obtain indiscernibles by starting with a mouse $M \vDash T$. (M must satisfy T in the language with its M -ultrafilter F as a predicate)

Definition

Let M_{λ} be the λ th iterate in the iteration of M by F, with measurable κ_{λ}, and let \mathbb{P} be the Prikry forcing for F_{λ} :

$$
\begin{aligned}
& \mathbb{P}=\left\{\langle p, X\rangle \mid p \in\left[k_{\lambda}\right]^{<\omega}, X \in F_{\lambda} \cap M_{\lambda}\right\} \\
&\langle p, X\rangle \leqslant\langle q, Y\rangle \leftrightarrow q \text { is an initial segment of } p \wedge X \cup(p \backslash q) \subseteq Y
\end{aligned}
$$

Generating Indiscernibles

We obtain indiscernibles by starting with a mouse $M \vDash T$. (M must satisfy T in the language with its M -ultrafilter F as a predicate)

Definition

Let M_{λ} be the λ th iterate in the iteration of M by F, with measurable κ_{λ}, and let \mathbb{P} be the Prikry forcing for F_{λ} :

$$
\begin{aligned}
& \mathbb{P}=\left\{\langle p, X\rangle \mid p \in\left[k_{\lambda}\right]^{<\omega}, X \in F_{\lambda} \cap M_{\lambda}\right\} \\
&\langle p, X\rangle \leqslant\langle q, Y\rangle \leftrightarrow q \text { is an initial segment of } p \wedge X \cup(p \backslash q) \subseteq Y
\end{aligned}
$$

Theorem (L.S.)

If $\mathrm{M} \vDash \mathrm{KP}+\Sigma_{\mathrm{n}}$-Sep $+\mathrm{V}=\mathrm{L}[\mathrm{F}]$ then the class of iteration points is a class of generating indiscernibles for KP $+\Sigma_{n}$-Sep

Generating Indiscernibles

We obtain indiscernibles by starting with a mouse $M \vDash T$. (M must satisfy T in the language with its M -ultrafilter F as a predicate)

Definition

Let M_{λ} be the λ th iterate in the iteration of M by F, with measurable κ_{λ}, and let \mathbb{P} be the Prikry forcing for F_{λ} :

$$
\begin{aligned}
& \mathbb{P}=\left\{\langle p, X\rangle \mid p \in\left[\kappa_{\lambda}\right]^{<\omega}, X \in F_{\lambda} \cap M_{\lambda}\right\} \\
&\langle p, X\rangle \leqslant\langle q, Y\rangle \leftrightarrow q \text { is an initial segment of } p \wedge X \cup(p \backslash q) \subseteq Y
\end{aligned}
$$

Theorem (L.S.)
If $\mathrm{M} \vDash \mathrm{KP}+\Sigma_{\mathrm{n}}$-Sep $+\mathrm{V}=\mathrm{L}[\mathrm{F}]$ then the class of iteration points is a class of generating indiscernibles for KP $+\Sigma_{n}$-Sep

This requires us to show that, although \mathbb{P} is a class forcing over M_{λ}, $K P+\Sigma_{n}$-Sep holds in the generic extension.

Ramified Forcing Language

- We need to show that the forcing behaves nicely, but don't want to show it's pre-tame. Let $\theta=\mathrm{On} \cap M_{\lambda}$.

Ramified Forcing Language

- We need to show that the forcing behaves nicely, but don't want to show it's pre-tame. Let $\theta=\mathrm{On} \cap M_{\lambda}$.
- Define a set of "names," which can be thought of as $\mathrm{L}_{\theta}[\dot{\overrightarrow{\mathbf{c}}}]$ where $\dot{\overrightarrow{\mathbf{c}}}$ is a constant symbol for a Prikry-generic sequence. We give each name a rank according to where it appears in $\mathrm{L}_{\theta}[\dot{\overrightarrow{\mathbf{c}}}]$.

Ramified Forcing Language

- We need to show that the forcing behaves nicely, but don't want to show it's pre-tame. Let $\theta=\mathrm{On} \cap M_{\lambda}$.
- Define a set of "names," which can be thought of as $L_{\theta}[\dot{\vec{c}}]$ where $\dot{\vec{c}}$ is a constant symbol for a Prikry-generic sequence. We give each name a rank according to where it appears in $\mathrm{L}_{\theta}[\dot{\vec{c}}]$.
- After we fix a generic $\vec{c} \subseteq \kappa_{\lambda}$, the interpretation of any name in $\mathrm{L}_{\theta}[\dot{\vec{c}}]$ is just the corresponding set in $\mathrm{L}_{\theta}[\overrightarrow{\mathbf{c}}]$.

Ramified Forcing Language

- We need to show that the forcing behaves nicely, but don't want to show it's pre-tame. Let $\theta=\mathrm{On} \cap M_{\lambda}$.
- Define a set of "names," which can be thought of as $L_{\theta}[\dot{\vec{c}}]$ where $\dot{\vec{c}}$ is a constant symbol for a Prikry-generic sequence. We give each name a rank according to where it appears in $\mathrm{L}_{\theta}[\dot{\vec{c}}]$.
- After we fix a generic $\vec{c} \subseteq \kappa_{\lambda}$, the interpretation of any name in $\mathrm{L}_{\theta}[\dot{\mathbf{c}}]$ is just the corresponding set in $\mathrm{L}_{\theta}[\overrightarrow{\mathbf{c}}]$.
- Define a ranked language $\mathcal{L}_{\mathbb{P}}$ which in addition to everything from $\mathcal{L}_{\{\in\}}$ contains ranked variables v_{i}^{α} for $\alpha<\theta$ and all the names from $\mathrm{L}_{\theta}[\dot{\vec{c}}]$. A sentence of $\mathcal{L}_{\mathbb{P}}$ is ranked if all variables in it are ranked.

Ramified Forcing

We can now define the (weak) forcing relation.

Ramified Forcing

We can now define the (weak) forcing relation.
(1) $\mathbf{p} \Vdash^{*} x \in y$ iff $x \in \mathrm{~L}_{\alpha}[\dot{\overrightarrow{\mathbf{c}}}], y \in \mathrm{~L}_{\beta}[\dot{\overrightarrow{\mathbf{c}}}]$ and:
(1) $\alpha=\beta=0$ and either $x \in y \in \kappa$ or $x \in p \wedge y=\dot{\vec{c}}$; or
(2) $\alpha<\beta, y=\left\{z^{\gamma} \mid \varphi\left(z^{\gamma}\right)\right\}$ and $\mathbf{p} \Vdash^{*} \varphi(x)$; or else
(3) $\alpha \geqslant \beta$ and $\exists z \in \mathrm{~L}_{\gamma}[\dot{\vec{c}}]$ for some γ, either $\beta>\gamma$ or $\beta=\gamma=0$ and

$$
\mathbf{p} \Vdash^{*} z=x \wedge z \in y
$$

(2) $\mathbf{p} \Vdash^{*} x=y$ iff $\mathbf{p} \Vdash^{*} \forall z^{\alpha}(z \in x \leftrightarrow z \in y)$ for α the maximum of the ranks of x and y.
(3) $\mathbf{p} \Vdash^{*} \varphi \wedge \psi$ iff $\mathbf{p} \Vdash^{*} \varphi$ and $\mathbf{p} \Vdash^{*} \psi$.
(4) $\mathbf{p} \Vdash^{*} \neg \varphi$ iff $\forall \mathbf{q} \in \mathbb{P}\left(\mathbf{q} \leqslant \mathbf{p} \Longrightarrow \mathbf{q} \not^{*} \varphi\right)$.
(5 $\mathbf{p} \Vdash^{*} \exists x^{\alpha}\left(\varphi\left(x^{\alpha}\right)\right)$ iff there is some $t \in \mathrm{~L}_{\alpha}[\dot{\overrightarrow{\mathbf{c}}}]$ such that $\mathbf{p} \Vdash^{*} \varphi(\mathrm{t})$.
6 $\mathbf{p} \Vdash^{*} \exists x(\varphi(x))$ iff there is some $t \in \bigcup_{\alpha} \mathrm{L}_{\alpha}[\dot{\overrightarrow{\mathbf{c}}}]$ such that $\mathbf{p} \Vdash^{*} \varphi(\mathrm{t})$.

Ramified Forcing

We can now define the (weak) forcing relation.
(1) $\mathbf{p} \Vdash^{*} x \in y$ iff $x \in \mathrm{~L}_{\alpha}[\dot{\overrightarrow{\mathbf{c}}}], y \in \mathrm{~L}_{\beta}[\dot{\overrightarrow{\mathbf{c}}}]$ and:
(1) $\alpha=\beta=0$ and either $x \in y \in \kappa$ or $x \in p \wedge y=\dot{\vec{c}}$; or
(2) $\alpha<\beta, y=\left\{z^{\gamma} \mid \varphi\left(z^{\gamma}\right)\right\}$ and $\mathbf{p} \vdash^{*} \varphi(x)$; or else
(3) $\alpha \geqslant \beta$ and $\exists z \in \mathrm{~L}_{\gamma}[\dot{\mathrm{c}}]$ for some γ, either $\beta>\gamma$ or $\beta=\gamma=0$ and

$$
\mathbf{p} \Vdash^{*} z=x \wedge z \in y
$$

(2) $\mathbf{p} \Vdash^{*} x=y$ iff $\mathbf{p} \Vdash^{*} \forall z^{\alpha}(z \in x \leftrightarrow z \in y)$ for α the maximum of the ranks of x and y.
(3 $\mathbf{p} \Vdash^{*} \varphi \wedge \psi$ iff $\mathbf{p} \Vdash^{*} \varphi$ and $\mathbf{p} \Vdash^{*} \psi$.
4 $\mathbf{p} \Vdash^{*} \neg \varphi$ iff $\forall \mathbf{q} \in \mathbb{P}\left(\mathbf{q} \leqslant \mathbf{p} \Longrightarrow \mathbf{q} \not^{*} \varphi\right)$.
(5 $\mathbf{p} \Vdash^{*} \exists x^{\alpha}\left(\varphi\left(x^{\alpha}\right)\right)$ iff there is some $t \in \mathrm{~L}_{\alpha}[\dot{\overrightarrow{\mathbf{c}}}]$ such that $\mathbf{p} \Vdash^{*} \varphi(\mathrm{t})$.
($\mathbf{p} \Vdash^{*} \exists x(\varphi(x))$ iff there is some $t \in \bigcup_{\alpha} \mathrm{L}_{\alpha}[\dot{\overrightarrow{\mathbf{c}}}]$ such that $\mathbf{p} \Vdash^{*} \varphi(\mathrm{t})$.

Forcing Theorems

- This forcing relation is definable, and in fact if φ is a Σ_{n} sentence of the forcing language, then $\mathbf{p} \Vdash^{*} \varphi$ is $\Sigma_{n}^{M_{\lambda}}$.

Forcing Theorems

- This forcing relation is definable, and in fact if φ is a Σ_{n} sentence of the forcing language, then $\mathbf{p} \Vdash^{*} \varphi$ is $\Sigma_{n}^{M_{\lambda}}$.
- This is proved first for Δ_{1} formulæ simultaneously with the Prikry lemma, and relies on the fact that we don't quantify over \mathbb{P} in the definition of \Vdash^{*} for atomic formulæ.

Forcing Theorems

- This forcing relation is definable, and in fact if φ is a Σ_{n} sentence of the forcing language, then $\mathbf{p} \Vdash^{*} \varphi$ is $\Sigma_{n}^{M_{\lambda}}$.
- This is proved first for Δ_{1} formulæ simultaneously with the Prikry lemma, and relies on the fact that we don't quantify over \mathbb{P} in the definition of \Vdash^{*} for atomic formulæ.
- This slide was a bit empty, so here's a picture of mice playing a game:

Forcing Theorems

The definition of genericity is odd due to the weak setting:

Definition

$\mathrm{G} \subseteq \mathbb{P}$ is M_{λ}-generic if it both meets all $\Sigma_{\mathrm{n}} \mathrm{M}_{\lambda}$ dense subclasses of \mathbb{P} and decides every Σ_{n} sentence of $\mathcal{L}_{\mathbb{P}}$.

Forcing Theorems

The definition of genericity is odd due to the weak setting:

Definition

$\mathrm{G} \subseteq \mathbb{P}$ is M_{λ}-generic if it both meets all $\Sigma_{n}^{M_{\lambda}}$ dense subclasses of \mathbb{P} and decides every Σ_{n} sentence of $\mathcal{L}_{\mathbb{P}}$.

Definition

In this case, the generic extension $M_{\lambda}[G]$ is $L_{\theta}[\vec{c}]$, where $\vec{c}=\bigcup\{p \mid\langle p, X\rangle \in G\}$.

Forcing Theorems

The definition of genericity is odd due to the weak setting:

Definition

$\mathrm{G} \subseteq \mathbb{P}$ is M_{λ}-generic if it both meets all $\Sigma_{n}^{M_{\lambda}}$ dense subclasses of \mathbb{P} and decides every Σ_{n} sentence of $\mathcal{L}_{\mathbb{P}}$.

Definition

In this case, the generic extension $M_{\lambda}[G]$ is $L_{\theta}[\vec{c}]$, where $\vec{c}=\bigcup\{p \mid\langle p, X\rangle \in G\}$.

From now on we denote $M[G]$ as $M_{\lambda}[\vec{c}]$ as above.
Note that, as in modern forcing, the generic extension is the class of names interpreted by the generic.

Forcing Theorems

Theorem (L.S.)

The Truth Lemma holds for any such generic, and we can always find one by taking the Prikry sequence $\overrightarrow{\mathbf{c}}$ a countable sequence of critical points cofinal in κ_{λ}.

Forcing Theorems

Theorem (L.S.)

The Truth Lemma holds for any such generic, and we can always find one by taking the Prikry sequence $\overrightarrow{\boldsymbol{c}}$ a countable sequence of critical points cofinal in κ_{λ}.

In fact more is true. By the Prikry property, we have the following:

Theorem (L.S.)

For any $\mathrm{p}=\left\{\mathrm{c}_{0}, \ldots, \mathrm{c}_{l}\right\}$ and y an arbitrary constant Σ_{n}-definable in $M_{\lambda}[\vec{c}]$ (without indiscernible parameters above c_{l}). Suppose ψ is Π_{n-1}. Then:

$$
M_{\lambda}[\vec{c}] \vDash \exists z \psi(z, y) \Leftrightarrow M_{\lambda} \vDash \exists Y\langle p, Y\rangle \Vdash \exists z \psi(z, y)
$$

Forcing Theorems

Theorem (L.S.)

The Truth Lemma holds for any such generic, and we can always find one by taking the Prikry sequence $\overrightarrow{\boldsymbol{c}}$ a countable sequence of critical points cofinal in κ_{λ}.

In fact more is true. By the Prikry property, we have the following:

Theorem (L.S.)

For any $\mathrm{p}=\left\{\mathrm{c}_{0}, \ldots, \mathrm{c}_{\mathrm{l}}\right\}$ and y an arbitrary constant Σ_{n}-definable in $M_{\lambda}[\vec{c}]$ (without indiscernible parameters above c_{l}). Suppose ψ is Π_{n-1}. Then:

$$
M_{\lambda}[\vec{c}] \vDash \exists z \psi(z, y) \Leftrightarrow M_{\lambda} \vDash \exists Y\langle p, Y\rangle \Vdash \exists z \psi(z, y)
$$

Now we can show that $M_{\lambda}[\vec{c}] \vDash K P+\Sigma_{n}$-Sep.

Indiscernibility

- Now it's easy to see that all $M_{\lambda}[\vec{c}]$ models are Σ_{n} elementary equivalent, minimal and models of $K P+\Sigma_{n}$-Sep with $\vec{c} \in M_{\lambda}[\vec{c}]$.

Indiscernibility

- Now it's easy to see that all $M_{\lambda}[\vec{c}]$ models are Σ_{n} elementary equivalent, minimal and models of $K P+\Sigma_{n}$-Sep with $\vec{c} \in M_{\lambda}[\vec{c}]$.
- I.e. $M_{\lambda}[\vec{c}]=\mathcal{A}_{T}[\vec{c}]$.

Indiscernibility

- Now it's easy to see that all $M_{\lambda}[\vec{c}]$ models are Σ_{n} elementary equivalent, minimal and models of $K P+\Sigma_{n}$-Sep with $\vec{c} \in M_{\lambda}[\vec{c}]$.
- I.e. $M_{\lambda}[\vec{c}]=\mathcal{A}_{T}[\vec{c}]$.
- We thus have the ingredients required to mimic Martin's proof: definable winning strategies for the auxiliary game, and suitable indiscernibles.

Fitting it Together

- To win the original game, the player must be able to ignore the components of the auxiliary game that are not played in the original.

Fitting it Together

- To win the original game, the player must be able to ignore the components of the auxiliary game that are not played in the original.
- They "imagine" their opponent has played indiscernibles $\overrightarrow{\mathrm{c}}$.

Fitting it Together

- To win the original game, the player must be able to ignore the components of the auxiliary game that are not played in the original.
- They "imagine" their opponent has played indiscernibles $\overrightarrow{\mathbf{c}}$.
- They then move according to the auxiliary strategy's output, as computed by any model $M_{\lambda}[\overrightarrow{\mathbf{c}}]=\mathcal{A}_{\mathrm{T}}[\overrightarrow{\mathbf{c}}]$.

Fitting it Together

- To win the original game, the player must be able to ignore the components of the auxiliary game that are not played in the original.
- They "imagine" their opponent has played indiscernibles $\overrightarrow{\mathbf{c}}$.
- They then move according to the auxiliary strategy's output, as computed by any model $M_{\lambda}[\overrightarrow{\mathbf{c}}]=\mathcal{A}_{\mathrm{T}}[\overrightarrow{\mathbf{c}}]$.
- This strategy is winning in V because any counterexample would be a real existing by Shoenfield absoluteness in a suitable $M_{\lambda}[\vec{c}]$.

Results

Theorem (L.S.)

The implication:

$$
\exists M(M \vDash \mathrm{~T}, \mathrm{M} \text { is iterable }) \Longrightarrow \operatorname{Det}\left(\omega^{2}-\Pi_{1}^{1}+\Gamma\right)
$$

holds for the following values of T and Γ :

Results

Theorem (L.S.)

The implication:

$$
\exists M(M \vDash \mathrm{~T}, M \text { is iterable }) \Longrightarrow \operatorname{Det}\left(\omega^{2}-\Pi_{1}^{1}+\Gamma\right)
$$

holds for the following values of T and Γ :

T	Γ
" 'cleverness' $+\exists$ a 'clever mouse' "	Σ_{1}^{0}
$\mathrm{KP}+\Sigma_{1}-\operatorname{Sep}$	Σ_{2}^{0}
$\mathrm{KP}+\Sigma_{2}-\operatorname{Sep}$	Σ_{3}^{0}
$\mathrm{KP}+\Sigma_{n+1}-\operatorname{Sep}$	$\mathrm{n}-\Pi_{3}^{0}$
$\mathrm{ZFC}^{-}+\mathcal{P}^{\alpha}(\mathrm{K})$ exists	$\Sigma_{1+\alpha+3}^{0}\left(\alpha<\omega_{1}^{\mathrm{CK}}\right)$
ZFC	Δ_{1}^{1}.

Open Questions

(1) What other combinations of T, Γ can we find proofs of?C. M. Le Sueur.

Determinacy of refinements to the difference hierarchy of co-analytic sets.
submitted.

Open Questions

(1) What other combinations of T, Γ can we find proofs of?
(2) Are there reverse implications, or at least limitations?
C. M. Le Sueur.

Determinacy of refinements to the difference hierarchy of co-analytic sets.
submitted.

Open Questions

(1) What other combinations of T, Γ can we find proofs of?

2 Are there reverse implications, or at least limitations?
(3) Does the generalised lightface hierarchy generate interesting effective descriptive set theory?
(C. M. Le Sueur.
Determinacy of refinements to the difference hierarchy of co-analytic sets.
submitted.

Open Questions

(1) What other combinations of T, Γ can we find proofs of?

2 Are there reverse implications, or at least limitations?
(3) Does the generalised lightface hierarchy generate interesting effective descriptive set theory?
(4) Is the specialised forcing useful for anything else?

囯 C. M. Le Sueur.
Determinacy of refinements to the difference hierarchy of co-analytic sets.
submitted.

Thanks

Definition

Let M be a mouse, Q_{k}^{M} the Q-structure of M at κ and $\theta=O n \cap Q_{k}^{M}$. M is clever if, for any Σ_{1} formula $\varphi(x, y)$ and parameter $p \in[k]^{<\omega}$,

$$
\begin{aligned}
\left\{\xi<\kappa \mid Q_{k}^{M} \vDash \varphi(\xi, p)\right\} & \in F^{M} \Longrightarrow \\
& \exists \tau<\theta\left(\left\{\xi<\tau \mid J_{\tau}^{\vec{F}} \vDash \varphi(\xi, p)\right\} \in F^{\kappa} \cap Q_{k}^{M}\right)
\end{aligned}
$$

This implies Rowbottom's theorem holds for partitions Σ_{1} definable over M.

