Determinacy from strong compactness of ω_1

Trevor Wilson¹

University of California, Irvine

July 21, 2015

¹joint with Nam Trang

Trevor Wilson Determinacy from strong compactness of ω_1

Outline

Background

AD and large cardinal properties of ω_1 AD_R + DC and more large cardinal properties of ω_1 Combinatorial consequences of strong compactness

Results

Compactness properties equiconsistent with AD Compactness properties equiconsistent with $AD_{\mathbb{R}}+DC$

Work in ZF + DC.

- Without AC, "large cardinals" may not be large in the usual sense.
- ► For example, measurable cardinals can be successors.
- In particular, ω_1 can be measurable.
- ► We investigate large cardinal properties of ω₁ and their relationship to determinacy.

4 3 6 4 3

Definition

 ω_1 is measurable if there is a countably complete nonprincipal measure (ultrafilter) on ω_1 .

Remark

If μ is a countably complete nonprincipal measure on ω_1 , then we can define the ultrapower map $j = j_{\mu} : V \to \text{Ult}(V, \mu)$.

- $\operatorname{crit}(j) = \omega_1$.
- ► *j* is not elementary: $Ult(V, \mu) \not\models$ "every ordinal less than $j(\omega_1)$ is countable."
- If M ⊨ ZFC then j ↾ M is an elementary embedding from M to Ult(M, μ) (using all functions ω₁ → M in V.)

イロト イポト イヨト イヨト

The following theories are equiconsistent:

- ZFC + "there is a measurable cardinal."
- $ZF + DC + "\omega_1$ is measurable."

Proof.

- If ZFC holds and κ is measurable, take a V-generic filter
 G ⊂ Col(ω, <κ).
- The symmetric model V(ℝ^{V[G]}) satisfies ZF + DC + "κ is ω₁ and is measurable."
- Conversely, if ZF + DC holds and ω₁ is measurable by μ, then L[μ] ⊨ ZFC + "ω₁^V is measurable."

- - E - - E

Another route to measurability of ω_1 :

Theorem (Solovay)

Assume ZF + AD. Then ω_1 is measurable (by the club filter.)

Remark

AD has higher consistency strength and proves much more:

- There are many measurable cardinals
- ω_1 has stronger large cardinal properties.

We focus on stronger large cardinal properties of $\omega_{\rm 1},$ and obtain equiconsistencies with determinacy theories.

Definition

Let X be an uncountable set and let μ be a measure (ultrafilter) on $\mathcal{P}_{\omega_1}(X)$. We say that μ is:

 countably complete if it is closed under countable intersections.

• fine if
$$\{\sigma \in \mathcal{P}_{\omega_1}(X) : x \in \sigma\} \in \mu$$
 for every $x \in X$.

Definition

For X an uncountable set, we say ω_1 is X-strongly compact if there is a countably complete fine measure on $\mathcal{P}_{\omega_1}(X)$.

AD and large cardinal properties of ω_1 AD_R + DC and more large cardinal properties of ω_2 Combinatorial consequences of strong compactness

Remark

 ω_1 is $\omega_1\text{-strongly compact if and only if it is measurable.$

Remark

Let X and Y be uncountable sets. If ω_1 is X-strongly compact and there is a surjection from X to Y, then ω_1 is Y-strongly compact.

Corollary

If ω_1 is \mathbb{R} -strongly compact then it is measurable. (I don't know about the converse.)

Remark

The following theories are equiconsistent:

- ZFC + "there is a measurable cardinal."
- $ZF + DC + "\omega_1$ is \mathbb{R} -strongly compact."

(The proof is similar to that for " ω_1 is measurable.")

Background Results

Another route to \mathbb{R} -strong compactness of ω_1 :

Theorem (Martin)

Asssume ZF + AD. Then ω_1 is \mathbb{R} -strongly compact.

Proof.

Let $A \subset \mathcal{P}_{\omega_1}(\mathbb{R})$. Then the set of Turing degrees d such that $\{x \in \mathbb{R} : x \leq_{\mathrm{T}} d\} \in A$ contains or is disjoint from a cone. \Box

- 4 回 ト 4 ヨト 4 ヨト

Definition

 Θ is the least ordinal that is not a surjective image of \mathbb{R} .

Remark

If ω_1 is \mathbb{R} -strongly compact, then it is $\langle \Theta$ -strongly compact (λ -strongly compact for every uncountable cardinal $\lambda < \Theta$.)

- Θ = ω₂ in the symmetric model obtained from a measurable cardinal by the Levy collapse, in which case
 Θ-strongly compact just means ω₁-strongly compact.
- Θ is a limit cardinal under AD by Moschovakis's coding lemma, in which case <Θ-strongly compact implies ω₂-strongly compact, *etc.*

To get more strong compactness of $\omega_{\rm 1},$ we need stronger determinacy axioms.

Definition

 $AD_{\mathbb{R}}$ is the Axiom of Real Determinacy, which strengthens AD by allowing moves to be reals instead of integers.

Remark

- $ZF + AD_{\mathbb{R}}$ has higher consistency strength than ZF + AD.
- It cannot hold in $L(\mathbb{R})$.

Remark

The consistency strength of $ZF + AD_{\mathbb{R}}$ is increased by adding DC (Solovay) unlike that of ZF + AD (Kechris).

Theorem (Solovay)

 $\operatorname{Con}(\operatorname{ZF} + \operatorname{AD}_{\mathbb{R}}) \implies \operatorname{Con}(\operatorname{ZF} + \operatorname{AD}_{\mathbb{R}} + \operatorname{cf}(\Theta) = \omega).$ Moreover $\operatorname{cf}(\Theta) = \omega$ in any minimal model of $\operatorname{AD}_{\mathbb{R}}$.

Theorem (Solovay)

 $Con(ZF+DC+AD_{\mathbb{R}}) \implies Con(ZF+DC+AD_{\mathbb{R}}+cf(\Theta) = \omega_1).$ In fact $cf(\Theta) = \omega_1$ in any minimal model of $AD_{\mathbb{R}} + DC$.

Background Results AD and large cardinal properties of ω_1 AD_R + DC and more large cardinal properties of ω_1 Combinatorial consequences of strong compactness

Corollary $Con(ZF + DC + AD_{\mathbb{R}}) \implies$ $Con(ZF + DC + "\omega_1 \text{ is } \mathcal{P}(\mathbb{R})\text{-strongly compact"}).$

Proof.

- Assume WLOG that cf(Θ) = ω₁.
- Write $\mathcal{P}(\mathbb{R}) = \bigcup_{\alpha < \omega_1} \Gamma_{\alpha}$ (Wadge initial segments).
- Combine measures on $\mathcal{P}_{\omega_1}(\Gamma_{\alpha})$ with measure on ω_1 .²

Corollary

 $\begin{array}{l} \mathsf{Con}(\mathsf{ZF} + \mathsf{DC} + \mathsf{AD}_{\mathbb{R}}) \implies \\ \mathsf{Con}(\mathsf{ZF} + \mathsf{DC} + ``\omega_1 \text{ is } \Theta \text{-strongly compact''}). \end{array}$

²To avoid choice, use unique normal measures. (Woodin) = • • = • • •

AD and large cardinal properties of ω_1 $AD_{\mathbb{R}} + DC$ and more large cardinal properties of ω_1 Combinatorial consequences of strong compactness

Some natural questions so far:

Questions

What is the consistency strength of the theory $ZF + DC + "\omega_1$ is ω_2 -strongly compact"?

Background

Results

- ► It follows from ZF + DC + AD.
- Is it equiconsistent with it?

What is the consistency strength of the theory $ZF + DC + "\omega_1$ is Θ -strongly compact"?

- It follows from $ZF + DC + AD_{\mathbb{R}}$.
- Is it equiconsistent with it?

Like strong compactness in ZFC, strong compactness of ω_1 implies useful combinatorial principles.

Definition

Let λ be an ordinal. A coherent sequence of length λ is a sequence ($C_{\alpha} : \alpha \in \lim(\lambda)$) such that for all $\alpha \in \lim(\lambda)$,

•
$$C_{\alpha}$$
 is club in α , and

•
$$C_{\alpha} \cap \gamma = C_{\gamma}$$
 for all $\gamma \in \lim(C_{\alpha})$.

Definition

A limit ordinal λ of uncountable cofinality is threadable³ if every coherent sequence of length λ can be extended (by adding a thread C_{λ}) to a coherent sequence of length $\lambda + 1$.

³Also denoted by $\neg \Box(\lambda)$

Remark

 λ is threadable if and only if $cf(\lambda)$ is threadable.

Background

Remark

Every measurable cardinal is threadable, even ω_1 , which cannot be threadable in ZFC:

• Given a measure μ and a coherent sequence \vec{C} , use the elementarity of $j_{\mu} \upharpoonright L[\vec{C}]$.

More generally, threadability of larger cardinals can be obtained from more strong compactness of ω_1 .

Proposition

Assume ZF + DC + " ω_1 is λ -strongly compact" where λ is an ordinal of uncountable cofinality. Then λ is threadable.

Proof.

- Let μ be a countably complete fine measure on $\mathcal{P}_{\omega_1}(\lambda)$.
- let \vec{C} be a coherent sequence of length λ .

Background Results

- $j = j_{\mu}$ is discontinuous at λ .
- $j \upharpoonright L[\vec{C}]$ (using all functions in V) is elementary.
- As usual, define the club

$$C_{\lambda} = \bigcup \{ C_{\alpha} : j(\alpha) \in \lim(j(\vec{C})_{\sup j[\lambda]}) \}.$$

A further consequence:

Proposition

Assume ZF + " ω_2 is threadable or singular." Then $\neg \Box_{\omega_1}$.

Proof.

If not, we have a \Box_{ω_1} sequence $(C_{\alpha} : \alpha \in \lim(\omega_2))$.

Background Results

- If we have a thread C_{ω₂} then its order type is at most ω₁ + ω by the usual argument, so ω₂ is singular.
- If ω₂ is singular, take a club C_{ω2} in ω₂ of order type ≤ ω₁.
 Recursively define surjections f_α : ω₁ → α for α ∈ [ω₁, ω₂], using C_α at limit stages. Contradiction.

(Coherence was not needed in the singular case.)

AD and large cardinal properties of ω_1 AD_R + DC and more large cardinal properties of ω_1 Combinatorial consequences of strong compactness

Some natural questions:

Questions

What is the consistency strength of the theory $ZF + DC + "\omega_1$ is threadable and $\neg \Box_{\omega_1}"$?

- ► It follows from ZF + DC + AD.
- Is it equiconsistent with it?

What is the consistency strength of the theory ZF + DC + "every uncountable regular cardinal $\leq \Theta$ is threadable"?

- It follows from $ZF + DC + AD_{\mathbb{R}}$.
- Is it equiconsistent with it?

4 B b 4 B

Theorem (Trang–W.)

The following theories are equiconsistent modulo ZF + DC.

- 1. AD.
- 2. ω_1 is $\mathcal{P}(\omega_1)$ -strongly compact.

3. ω_1 is \mathbb{R} -strongly compact and ω_2 -strongly compact.

4. ω_1 is \mathbb{R} -strongly compact and $\neg \Box_{\omega_1}$.

Proof of (1) \implies (2).

Assume AD. Then ω_1 is \mathbb{R} -strongly compact by Martin's cone theorem, and there is a surjection from \mathbb{R} onto $\mathcal{P}(\omega_1)$ by the coding lemma. So ω_1 is $\mathcal{P}(\omega_1)$ -strongly compact.

・ロト ・同ト ・ヨト ・ヨト

Proof of (2) \implies (3).

Assume that ω_1 is $\mathcal{P}(\omega_1)$ -strongly compact. There are surjections from $\mathcal{P}(\omega_1)$ onto \mathbb{R} and ω_2 , so ω_1 is \mathbb{R} -strongly compact and ω_2 -strongly compact.

Proof of (3) \implies (4).

If ω_1 is ω_2 -strongly compact then we saw that \Box_{ω_1} fails.

Remark

In the rest of this subsection we prove $\operatorname{Con}(4) \Longrightarrow \operatorname{Con}(1)$. Assume that ω_1 is \mathbb{R} -strongly compact and $\neg \Box_{\omega_1}$. We will prove $L(\mathbb{R}) \models \operatorname{AD}$ by a core model induction.

Definition

A mouse operator assigns to each set *a* in its domain the least mouse over *a* that is sound, projects to *a*, and satisfies a given first-order property.

In our situation:

► The domain will always be a cone in HC.

Background Results

► "Mouse" means an ω₁-iterable premouse, which implies (ω₁ + 1)-iterability because ω₁ is measurable.

Example (the \mathcal{M}_n^{\sharp} operator)

 $\mathcal{M}_n^{\sharp}(a)$ is the least mouse over *a* that is sound, projects to *a*, is active, and has *n* Woodin cardinals.

- 4 周 ト 4 戸 ト 4 戸 ト

We will show PD by showing that the \mathcal{M}_n^{\sharp} operator is total on HC for all $n < \omega$ (by induction on n.)

Background Results

What's next?

- Not M[♯]_ω: this corresponds roughly to AD^{L(ℝ)}, which is too big a leap.
- Consider Woodinness with respect to more complicated operators, rather than greater numbers of Woodins.
- ► For example, the least Woodin cardinal of M[♯]_{n+1}(a) is Woodin with respect to the M[♯]_n operator.
- ► Complexity of operators is measured in terms of the Jensen hierarchy of L(ℝ).

Let \mathcal{F} be a *CMI operator* (a mouse operator for now, but later a strategy operator or a strategy-hybrid-mouse operator.)

Definition (the $\mathcal{M}_1^{\sharp,\mathcal{F}}$ operator)

 $\mathcal{M}_{1}^{\sharp,\mathcal{F}}(a)$ is the least mouse over *a* that is sound, projects to *a*, is active, has one Woodin cardinal, and is closed under \mathcal{F} . For AD in $J_{\alpha+1}(\mathbb{R})$, start with appropriate CMI operator \mathcal{F} and obtain operators $\mathcal{F}' = \mathcal{M}_{1}^{\sharp,\mathcal{F}}, \ \mathcal{F}'' = \mathcal{M}_{1}^{\sharp,\mathcal{F}'}, \ \dots$ Example

- ▶ For AD in $J_2(\mathbb{R})$ (i.e. PD), start with $\mathcal{F} = \mathsf{rud}.^4$
- ▶ For AD in $J_3(\mathbb{R})$, start with \mathcal{F} s.t. $\mathcal{F}(a) = \bigcup_{i < \omega} \mathcal{M}_i^{\sharp}(a)$.

⁴Note that
$$\mathcal{M}_{1}^{\sharp,\mathcal{M}_{n}^{\sharp}}(a) \rhd \mathcal{M}_{n+1}^{\sharp}(a)$$
.

Lemma

Assume that ω_1 is \mathbb{R} -strongly compact and $\neg \Box_{\omega_1}$. Let \mathcal{F} be a CMI operator defined on the cone in HC over some $a \in HC$. Then the $\mathcal{M}_1^{\sharp,\mathcal{F}}$ operator is defined on the same cone in HC.

Proof sketch

• Define operators $\mathcal{F}^{\sharp} = \mathcal{M}_{0}^{\sharp,\mathcal{F}}$ and $\mathcal{F}^{\sharp^{\sharp}} = \mathcal{M}_{0}^{\sharp,\mathcal{F}^{\sharp}}$.

Background Results

- *F*[#] and *F*^{#[#]} are total on the cone over *a* because

 ω₁ is measurable (or use ω₁ is threadable and ¬□_{ω1}.)
- Let $x \in HC$ be in cone over *a*. We show $\mathcal{M}_1^{\sharp,\mathcal{F}}(x)$ exists.
- For simplicity, first assume that 𝓕^{#[#]}(ℝ) exists. (E.g., take ultraproduct of 𝓕^{#[#]}(σ) if ω₁ is ℝ-supercompact.)

Proof sketch (continued)

- Let H = HOD^{𝓕^{#[#]}(ℝ)}_{{𝓕,𝑋}</sub> and let Ξ be the critical point of the top extender of 𝓕^{#[#]}(ℝ).⁵
- Do the K^{c,F}(x) construction in H up to Ξ.
 (Like K^c construction but relativized to F and over x.)
- If it reaches $\mathcal{M}_1^{\sharp,\mathcal{F}}(x)$, we are done.
- ► Otherwise the core model K = (K^F(x))^H exists and has no Woodin cardinals.
- Why work in *H*? We need a ZFC model and *H* is big enough: every real is <Ξ-generic over *H* by Vopěnka.⁶

⁵ If ω_1 is \mathbb{R} -strongly compact, let H be ultraproduct of $HOD_{\{\mathcal{F},x\}}^{\mathcal{F}^{\mu}(\sigma)}$. ⁶ cf. Schindler, Successive weakly compact or singular cardinals.

Proof sketch (continued)

- Define $\kappa = \omega_1^V$ and $j = j_\mu$ for μ a measure on κ .
- \Box_{κ} holds in j(K) (Schimmerling–Zeman) but not V so

$$(\kappa^+)^{j(K)} < \kappa^+. \tag{(*)}$$

- Take $A \subset \kappa$ coding wellordering of $(\kappa^+)^{j(K)}$ of length κ .
- A is in a $\langle j(\Xi) \rangle$ -generic extension j(H)[g] of j(H).
- j(H)[g] sees the failure of covering (*) for its core model.
- The (κ, j(κ))-extender from j ↾ j(K) is in j(j(H))[j(g)] by Kunen's argument.
- Its initial segments are on the sequence of j(j(K)) and witness that κ is Shelah in j(j(K)). Contradiction.

Now say we have AD in $J_{\alpha}(\mathbb{R})$ and we want AD in $J_{\alpha+1}(\mathbb{R})$. We need to start with the appropriate CMI operator \mathcal{F} . This is standard.

Key points

- If α is successor or has countable cofinality, F is a mouse operator given by unions of mice already constructed.
- If α has uncountable cofinality and J_α(ℝ) is inadmissible, this is witnessed by a Δ₁(z) function for some z. Then *F* is a diagonal mouse operator defined on cone over z.
- If α is admissible, then F is a strategy operator that feeds in branches for iteration trees on a suitable premouse P. It is defined on the cone over P.

Theorem (Trang–W.)

The following theories are equiconsistent modulo ZF + DC.

- 1. AD $_{\mathbb{R}}$ (plus DC).
- 2. ω_1 is $\mathcal{P}(\mathbb{R})$ -strongly compact.
- 3. ω_1 is \mathbb{R} -strongly compact and Θ -strongly compact.

Proof of Con (1) \implies Con (2) Recall (2) holds in any minimal model of $AD_{\mathbb{R}} + DC$. Proof of (2) \implies (3) Use surjections from $\mathcal{P}(\mathbb{R})$ onto \mathbb{R} and Θ .

イロト イポト イヨト イヨト

In the rest of this subsection we prove $Con(3) \implies Con(1)$. Strong hypothesis:

 $\mathsf{ZF} + \mathsf{DC} + ``\omega_1 is \mathbb{R}$ - and Θ -strongly compact."

Goal

Find a pointclass Ω such that $L(\Omega, \mathbb{R}) \models AD_{\mathbb{R}} + DC$.

Smallness assumption:

There is no model M of ZF + AD containing all reals and ordinals and with a pointclass $\Gamma \subsetneq \mathcal{P}(\mathbb{R})^M$ such that $L(\Gamma, \mathbb{R}) \models AD_{\mathbb{R}} + DC$.

(If this fails, we are done.)

(4月) (1日) (日)

Definition The maximal AD^+ pointclass is

$$\Omega = \{ A \subset \mathbb{R} : L(A, \mathbb{R}) \models \mathsf{AD}^+ \}.$$

From weaker assumptions we proved $AD^{L(\mathbb{R})}$, so $\Omega \neq \emptyset$. From current assumptions we will prove:

• $L(\Omega, \mathbb{R}) \cap \mathcal{P}(\mathbb{R}) = \Omega$, which implies

•
$$L(\Omega, \mathbb{R}) \models \mathsf{AD}^+$$

• $L(\Omega, \mathbb{R})$ is the maximal model of $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$.

• $L(\Omega, \mathbb{R}) \models \mathsf{AD}_{\mathbb{R}} + \mathsf{DC}.$

- 4 周 ト 4 戸 ト 4 戸 ト

No divergent models of AD⁺, by smallness assumption (Woodin).⁷

Definition

The Solovay sequence of Ω :

$$\bullet \ \theta_{-1}^{\Omega} = 0.$$

θ^Ω_{α+1} is the least ordinal not the surjective image of ℝ by any OD^{L(B,ℝ)}_A function where A, B ∈ Ω and |A|^Ω_W = θ^Ω_α.
 θ^Ω_λ = sup_{α<λ} θ^Ω_α if λ is limit.

Remark

 $L(\Omega, \mathbb{R}) \cap \mathcal{P}(\mathbb{R}) = \Omega$ will imply $\theta_{\alpha}^{\Omega} = \theta_{\alpha}^{L(\Omega, \mathbb{R})}$ (the usual Solovay sequence.) Meanwhile we use this local definition.

Definition

The length of the Solovay sequence of Ω is the least α such that $\theta_{\alpha}^{\Omega} = \Theta^{\Omega}$.

Remark

By our smallness assumption, the length is $\leq \omega_1$. We want to show the length is ω_1 , because $L(\Omega, \mathbb{R})$ satisfies:

- $AD_{\mathbb{R}}$ iff length is limit.
- DC iff length is not countable cofinality limit.

- 4 周 ト 4 戸 ト 4 戸 ト

Constructible closure of Ω

If the Solovay sequence of Ω has successor length, say $\alpha+1:$

- Take $A \subset \mathbb{R}$ of Wadge rank θ^{Ω}_{α} in Ω .
- We may assume A codes Σ where (\mathcal{P}, Σ) is a hod pair.^{8,9}
- ► Then every set B ∈ Ω is in a "self-iterable" Σ-mouse over ℝ satisfying AD⁺. (Sargsyan and Steel)
- The union of such Σ-mice is constructibly closed by a core model induction,¹⁰ so L(Ω, ℝ) ∩ P(ℝ) = Ω.

⁸Or $(\mathcal{P}, \Sigma) = (\emptyset, \emptyset)$, the base case.

 ^9All iteration strategies for hod pairs are taken to have branch condensation and be $\Omega\text{-fullness}$ preserving in this talk.

¹⁰This uses scales in Σ -mice over \mathbb{R} (Schlutzenberg and Trang). We use Θ -strong compactness to extend Σ to an (Θ +1)-iteration strategy

Constructible closure of Ω (continued)

If the Solovay sequence of Ω has limit length $\leq \omega_1$:

- Let \mathcal{H} be direct limit of all hod pairs (\mathcal{P}, Σ) with $\Sigma \in \Omega$.
- → ℋ is a hod premouse of height Θ^Ω, and its Woodin cardinals have the form θ^Ω_{α+1}.
- *H* is full in *L*[*H*]; otherwise we can take a countable hull to get an anomalous hod pair (*Q*, Λ) with Λ ∉ Ω. But *L*(Λ, ℝ) ⊨ AD⁺ by a CMI so Λ ∈ Ω, a contradiction.
- We can add Ω back to L[H] by a Vopěnka-like forcing (Woodin) to get L(Ω, ℝ), showing again that L(Ω, ℝ) ∩ P(ℝ) = Ω. Also H = (V_Θ^{HOD})^{L(Ω,ℝ)}.

So we have $L(\Omega, \mathbb{R}) \models AD^+$.

DC in $L(\Omega, \mathbb{R})$

If not, then $\Theta^{L(\Omega,\mathbb{R})}$ has countable cofinality.

- By DC in V, take a countable hull X of L(Ω, ℝ) that is cofinal in Θ.
- The corresponding hull Q of the hod premouse H has a natural iteration strategy Λ.
- $\Lambda \notin \Omega$ because X is cofinal in $L(\Omega, \mathbb{R})$.
- ▶ But $L(\Lambda, \mathbb{R}) \models AD^+$ by a CMI so $\Lambda \in \Omega$, a contradiction.

$\mathsf{AD}_{\mathbb{R}}$ in $L(\Omega, \mathbb{R})$

If not, then $L(\Omega, \mathbb{R}) \models \Theta = \theta_{\Sigma}$ for some hod pair (\mathcal{P}, Σ) .¹¹

- Define $\Gamma = \Sigma_1^2(\text{Code}(\Sigma))^{L(\Omega,\mathbb{R})}$.
- ▶ **Г** is the pointclass of all Suslin sets in $L(\Omega, \mathbb{R})$.
- We will get an Ω-scale on a complete Γ set, contradiction.
- The norms of the scale will be Env(Γ)-norms where Env(Γ) is the *envelope* of Γ.
- It turns out $Env(\Gamma) = OD^{L(\Omega,\mathbb{R})}_{\{\Sigma\}} \cap \mathcal{P}(\mathbb{R}).$
- In the meantime we must define Env(Γ) more locally.

$$^{11}\mathsf{Or}\ (\mathcal{P},\Sigma)=(\emptyset,\emptyset),$$
 the base case.

$AD_{\mathbb{R}}$ in $L(\Omega, \mathbb{R})$ (continued)

- Define $\Delta = \Delta_1^2(\mathsf{Code}(\Sigma))^{L(\Omega,\mathbb{R})}$.
- Define Env(Γ) to consist of sets that are countably approximated by Δ-in-an-ordinal sets.
- Env(Γ) has a definable wellordering of length ≤ Θ, so ω₁ is Env(Γ)-strongly compact. (W.)
- This implies, using Scale(Γ), that every Γ set has a scale whose norms are Env(Γ)-norms. (W.)
- Get a self-justifying system A ⊂ Env(Γ) containing a complete F set, and show L(A, ℝ) ⊨ AD⁺ by a CMI. Contradiction.

Question

Are the following theories equiconsistent?

- $1. \ \mathsf{ZF} + \mathsf{DC} + \mathsf{AD}_{\mathbb{R}}.$
- 2. $ZF + DC + "\omega_1$ is \mathbb{R} -strongly compact and Θ is threadable or singular.

Remark

- → Θ is threadable and singular in a minimal model of AD_ℝ + DC.
- In the case " Θ is singular" the answer is yes.
- In the case "Θ is threadable" we would need to prove that Env(Γ) is constructibly closed.

イロト イポト イヨト イヨト