
3.8 Branch conjectures

Martin and Steel, [7], proposed two hypotheses with regard to iteration trees on V .

(UBH) The Unique Branch Hypothesis:
Suppose T is an iteration tree on a premouse (V⇥, �). Then T does not have two

distinct cofinal wellfounded branches. ut
(CBH) The Cofinal Branch Hypothesis:

Suppose T is an iteration tree on a premouse (V⇥, �). Then:

(1) If T has limit length then T has a cofinal wellfounded branch;

(2) If T has successor length, ⌘ + 1, then T can be freely extended to an iteration tree
of length ⌘ + 2. ut

Unfortunately if there is a supercompact cardinal then these hypotheses are each
false in essentially the simplest cases. Define an iteration tree on V to be short if no
extender occurring in the iteration tree is a long extender. Both UBH and CBH refer
only to iteration trees which are short.

An iteration tree, T , is non-overlapping if

LTH(E↵)  CRT(E�)

for all ↵ + 1 <T � + 1. The iteration tree, T , is totally non-overlapping if

jE↵ (SPT(E↵)) < CRT(E�)

for all ↵ + 1 <T � + 1.
In [10], Neeman and Steel give a much simpler construction for counterexamples to

both UBH and CBH than the construction given here in the proof of Theorem 97. Their
construction requires much weaker large cardinal hypotheses and the counterexamples
produced have the same underlying tree orders as the examples constructed here, but
their counterexamples are not iteration trees which are non-overlapping. For the special
case of non-overlapping iteration trees, Steel has shown that hypotheses below the level
of superstrong are probably not su�cient, [18].

Theorem 97. Suppose that there is a supercompact cardinal.

(1) There is a short, totally non-overlapping, (+2)-iteration tree on V of length ! with
only two cofinal branches and each is wellfounded.

(2) There is a short, totally non-overlapping, (+2)-iteration tree on V of length ! · !
with only one cofinal branch and this branch is illfounded.
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Proof. We sketch the proof which involves some material which is a little outside the
scope of this paper.

Fix �0 < � and an elementary embedding,
j : V ! M

with CRT( j) = �0 such that j(�0) = � and such that V�+! ✓ M.
Since � is supercompact, (�0, j) exists. It is the existence of (�0, j) which is all that

we require. In fact we only require that V�+2 ✓ M and even this can be weakened.
It is useful to introduce some notation. Suppose that 0  1 are measurable cardi-

nals. Suppose that X0 ✓ V0+2 is a set of 0-complete ultrafilters on V0 and X1 ✓ V1+2

is a set of 1-complete ultrafilters on V1 and that |X0| = |X1|.
A bijection

⇡ : X0 ! X1

is a tower isomorphism if the following hold for all sequences
hUi : i < !i

of ultrafilters from X0.

(1.1) hUi : i < !i is a tower if and only if h⇡(Ui) : i < !i is a tower,

(1.2) If hUi : i < !i is a tower then the tower hUi : i < !i is wellfounded if and only
if the tower, h⇡(Ui) : i < !i, is wellfounded.

The sets X0 and X1 are tower isomorphic if there exists a tower isomorphism,
⇡ : X0 ! X1.

Suppose that there exists a Woodin cardinal � such that
|X0| < � < 0

and that
⇡ : X0 ! X1

is a tower isomorphism. Suppose g ✓ P is V-generic for a partial order P 2 V�. Then in
V[g], ⇡ is a tower isomorphism where we identify the elements U 2 X0 [ X1 with the
ultrafilters they generate in V[g]. The verification uses Lemma 145 (see page 162) and
the generic elementary embeddings associated to the stationary tower.

Another preliminary fact we shall need is the following. Again suppose X0 ✓ V0+2

is a set of 0-complete ultrafilters on V0. Suppose that 0 is a limit of Woodin cardinals
and that |X0| < 0. Then there is a set Y0 ✓ V0+2 of 0-complete ultrafilters on V0 and a
function,

e : X0 ! Y0

such that all sequences
hUi : i < !i

of ultrafilters from X0:
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(2.1) hUi : i < !i is a tower if and only if he(Ui) : i < !i is a tower,

(2.2) If hUi : i < !i is a tower then the tower hUi : i < !i is wellfounded if and only
if the tower, he(Ui) : i < !i, is illfounded.

As above this property of e persists to all generic extensions of V given by partial orders
P 2 V0.

We fix some more notation and isolate what is really the key to the proof. For this
we fix

G ⇢ Coll(!,V�0+2)

such that G is V-generic.
Using G which we regard as a surjection,

G : !! V�0+2,

we define a reduction map
RG : V� ! V�0+2

as follows. Suppose that hUi : i < !i is a tower of �+0 -complete ultrafilters from V�.
To simplify notation and with no essential loss of generality we can suppose that for
some  < �, each ultrafilter Ui concentrates on (V)i. In any case necessarily (by our
conventions on towers), U0 is the principal ultrafilter concentrating on {;} = (V)0.

Set RG(U0) = U0. Fix i + 1 < ! and suppose

s = hG(0), a0,G(1), a1, . . . ,G(i), aii
is such that for all n  i, an 2 V. Let

Us =
�

A ✓ V�0 | s 2 j(A)
 

.

Thus Us is a �0-complete ultrafilter on V�0. Since Ui+1 is �+0 -complete there must exist
a set A 2 Ui+1 and U 2 V�0+2 such that for all

ha0, . . . , aii 2 A,

if s = hG(0), a0,G(1), a1, . . . ,G(i), aii then Us = U. Define for B ✓ (V�0)i,

B 2 RG(Ui)

if
n

t 2 (V�0)2i | t|i 2 B
o

2 U. Thus RG(Ui) is simply the projection of U to (V�0)i (and
the only reason for not setting RG(Ui) = U is in order to conform with our conventions
on towers). Note that since hUi : i < !i is a tower, hRG(Ui) : i < !i is a tower.

Let
XG =

�

j( f )(G|i) | f : V�0 ! V, i < !
 � M.

Thus
XG =

�

j( f )(a) | f : V�0 ! V, a 2 V�0+2
 

.
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We claim, and this claim follows easily from the definitions, that for all towers,
hUi : i < !i, from V� \ XG consisting of �+0 -complete ultrafilters, the following are
equivalent where N is the transitive collapse of XG and where for each i < !, UN

i is the
image of Ui under the collapsing map.

(3.1) The tower hRG(Ui) : i < !i is wellfounded.

(3.2) The direct limit of hUlt(N,UN
i ) : i < !i is wellfounded.

The definition of the reduction map, RG, only requires that V� ✓ M. The key conse-
quence of V�+2 ✓ M is that there exist cofinally many  < � such that  is measurable
and such that there exists a set Y ⇢ V+2 of -complete ultrafilters such that Y is tower
isomorphic to X where X is the set of all �0-complete ultrafilters on V�0. This follows
by reflection in M since

{ j(U) | U 2 X} 2 M
and since � is superstrong in M. This is all (beyond V� ✓ M) that is required for the
construction.

Let X be the set of all �0-complete ultrafilters on V�0 and let  < � be least such that

(4.1) �0 < ,

(4.2) V � V�,

(4.3)  measurable and there exists a set Y ⇢ V+2 of -complete ultrafilters on V
such that Y is tower isomorphic to X.

By the definability of ,  2 XG. Fix
Y ✓ V+2

such that Y is a set of -complete ultrafilters on V such that Y is tower isomorphic to
X and such that Y 2 XG. Fix a tower isomorphism,

⇡ : X ! Y,
such that ⇡ 2 XG.

Since V � V�,
V[G] ✏ ZFC + “There is a proper class of Woodin cardinals” .

Therefore in V[G], if A ✓ RV[G] is (<)-weakly homogeneously Suslin then (A,RV[G])#

is (<)-weakly homogeneously Suslin.
For each partial function,

F : V�0+2 ! V+2

there is a canonical set AG
F ✓ RV[G] such that AG

F is (<)-weakly homogeneously Suslin
in V[G]. The set AG

F is the set of all x 2 !! such that
hG(x(i)) : i < !i
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is a wellfounded tower of  complete ultrafilters on V from the range of F and here we
identify G with the corresponding surjection,

G : !! V�0+2,

and as above we identify each -complete ultrafilter in V with the ultrafilter it generates
in V[G]. Notice that

(5.1) if G⇤ ✓ Coll(!,V�0+2) is V-generic and
V[G] = V[G⇤]

then AG
F and AG⇤

F are continuously reducible to each other.

Since  is a measurable limit of Woodin cardinals, for each set A ✓ RV[G] such that
A is (<)-weakly homogeneously Suslin in V[G], there exists an injective function

F : V�0+2 ! V+2

in V such that A is continuously reducible to AG
F .

Fix a function
F : V�0+2 ! V+2

such that F 2 XG and such that
⇣

(AG
⇡ ,R

V[G])#
⌘#

is continuously reducible to AG
F and let

YF be the set of -complete ultrafilters U on V such that U is in the range of F.
Fix a set Z ✓ V+2 of -complete ultrafilters on V and a surjection

e : YF ! Z
such that (Z, e) 2 V and such that in V , for all sequences

hUi : i < !i
of ultrafilters from YF:

(6.1) hUi : i < !i is a tower if and only if he(Ui) : i < !i is a tower,

(6.2) If hUi : i < !i is a tower then the tower hUi : i < !i is wellfounded if and only
if the tower, he(Ui) : i < !i, is illfounded.

As indicated above, this property of e must hold in V[G]. Again we can and do choose
(e,Z) 2 XG .

We now come to the key claim.

(7.1) There exists in V[G] a tower,
hUi : i < !i

of ultrafilters from YF such that both the towers,
h j(RG(Ui)) : i < !i and h j(RG(e(Ui))) : i < !i,

are wellfounded in V[G].
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To verify this assume toward a contradiction that in V[G] no such tower exists. We
claim that in V , there exists a closed unbounded set

C ⇢ P!1(V�0+2)
such that for each function

Ĝ : !! V�0+2,

if Ĝ[!] 2 C then the following hold where we are defining RG(U) in the obvious
fashion.

(8.1) (F, e, ⇡,Z) 2 XĜ,

(8.2)
⇣

(AĜ
⇡ ,R)#

⌘#
is continuously reducible to AĜ

F ,

(8.3) There is no tower
hUi : i < !i

of ultrafilters from F � Ĝ[!] such that both the towers,
h j(RĜ(Ui)) : i < !i and h j(RĜ(e(Ui))) : i < !i,

are wellfounded in V .

This follows by Lemma 145 (see page 162) using the stationary tower at least Woodin
cardinal above �0.

Fix
Ĝ : !! V�0+2

such that Ĝ[!] 2 C. Thus for all towers
hUi : i < !i

of ultrafilters from F � Ĝ[!], the following must be equivalent.

(9.1) hUi : i < !i is wellfounded.

(9.2) hRĜ(i) : i < !i is wellfounded.

(9.3) h j(RĜ(i)) : i < !i is wellfounded.

But then
(AĜ
⇡ ,R)# 2 L(AĜ

⇡ ,R)
and this is a contradiction.

Therefore (7.1) must hold and we will use the witness to give the counterexample for
part (1) of the theorem. Before giving the details we establish a variant of (7.1) which
will give the counterexample for part (2) of the theorem.

We require a definition. Suppose that
hhUn

i : i < !i : n < !i
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is a sequence of towers of -complete ultrafilters on V. For each 0 < i < ! let U⇤i be
the -complete ultrafilter on V given by the product,

U0
i ⇥ · · · ⇥ Ui�1

i .

Thus hU⇤i : i < !i is naturally regarded as a tower of ultrafilters using the natural
projection maps:

pi2,i1 : Vi2·i2
 ! Vi1·i1



where for 0 < i1 < i2 < !,
pi2,i1(s1 + s2 + . . . + si2) = (s1|i1) + (s2|i1) + . . . + (si2 |i2),

and so here we are violating our notational convention on towers.
It is straightforward to show that the tower hU⇤i : i < !i is wellfounded if and only if

each of the towers, hUn
i : i < !i, is wellfounded. But we caution that this equivalence

requires that each of the towers, hUn
i : i < !i, belongs to V .

The second key claim is the following.

(10.1) There exists in V[G] a sequence,
hhUn

i : i < !i : n < !i
of towers of ultrafilters from YF such that

a) For all m < !, the towers
h j(RG(Un

i )) : i < !i
for n  m are jointly wellfounded in V[G],

b) The tower,
h j(RG(U⇤i )) : i < !i,

is not wellfounded in V[G].

We work in V[G]. Let B ✓ RV[G] be the set of all x 2 RV[G] such that x codes a
countable elementary substructure,

� �
⇣

V[G]!+1, (AG
⇡ ,R

V[G])#
⌘

.

Since
⇣

(AG
⇡ ,R

V[G])#
⌘#

is continuously reducible to AG
F , there exists a function,

h : !<! ! YF ,

which witnesses that B is homogeneously Suslin, therefore for all x 2 RV[G], x 2 B if
and only if

hUi : i < !i
is a wellfounded tower where for each i < !, Ui = h(x|i). Since (⇡, F) 2 XG we can
choose h 2 XG[G]. Let T 2 XG[G] be a tree such that h witnesses the homogeneity of
T . Thus p[T ] = B.
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Let M̂ be the transitive collapse of XG and let

ĵ : V ! M̂

be the induced elementary embedding. Let

k̂ : M̂ ! M

invert the collapsing map. Thus k̂ is an elementary embedding, j = k̂ � ĵ, and
CRT(k̂) > �0 and V�0+2 ✓ M̂.

For each U 2 YF let Û be the image of U under the transitive collapse of XG (since
F 2 XG, YF ✓ XG and so this makes sense).

Suppose that
hUi : i < !i 2 V[G]

is a tower of ultrafilters from YF .

(11.1) If the tower hUi : i < !i is wellfounded then so is the tower, hRG(Ui) : i < !i.
(11.2) If the tower, hRG(Ui) : i < !i, is wellfounded then the direct limit of

hUlt(M̂, Ûi) : i < !i
under the natural embeddings is wellfounded.

Similarly, suppose that

hhUn
i : i < !i : n < !i 2 V[G]

is a sequence of towers of ultrafilters from YF .

(12.1) If the tower hU⇤i : i < !i is wellfounded then so is the tower,

hRG(U⇤i ) : i < !i.
(12.2) If the tower, hRG(U⇤i ) : i < !i, is wellfounded then the direct limit of

D

Ult
⇣

M̂,cU⇤i
⌘

: i < !
E

under the natural embeddings is wellfounded.

We come to the key point. Suppose x 2 RV[G] and that the direct limit of

hUlt(M̂, Ûi) : i < !i
under the natural embeddings is wellfounded, where for each i < !, Ui = Û
and U = h(x|i). Then x codes the sharp of a countable set a ✓ RV[G] such that
a = RV[G] \ L(a). This follows by absoluteness since h witnesses that B is homoge-
neously Suslin and since h 2 XG. The point is that k̂ lifts to an elementary embedding

k̂G : M̂[G]! M[G]

and there exists ĥ 2 M̂[G] such that k̂G(ĥ) = h.
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Let B⇤ be the set of all finite sequences,
hx0, . . . , xni 2 (RV[G])<!

such that for all k  n, the tower
h j(RG(h(xk|i))) : i < !i

is wellfounded. This implies that the towers,
hĥ(xk|i) : i < !i =

D

[h(xk|i) : i < !
E

,

for k  n, are jointly wellfounded over M̂ (in the obvious sense).
The set B⇤ is definable from parameters in

hV[G]!+1, AG
⇡ , 2i.

We claim there must exist an infinite sequence,
hxk : k < !i 2 V[G]

such that

(13.1) for all n < !, hxk : k  ni 2 B⇤,

(13.2) for all k1 < k2 < !, (ak1)# ✓ (ak2)#

(13.3) [
n

(ak)# | k < !
o

, ([ {ak | k < !})#,

where for each k < !, ak ✓ RV[G] is the countable set such that xk codes (ak)#.
If no such sequence hxk : k < !i exists then there is a wellfounded relation which

definable in
hV[G]!+1, B⇤, 2i,

and which has rank greater that ⇥L(AG
⇡ ) and this contradicts that B⇤ is projective in AG

⇡ .
Here the relevant point is that if h�k : k < !i 2 V[G] is an increasing sequence of
countable elementary substructures of

⇣

V[G]!+1, (AG
⇡ ,R

V[G])#
⌘

then there exists a sequence hxk : k < !i such that for each k < !, xk codes �k and such
that for all n < !, hxk : k  ni 2 B⇤.

Therefore the sequence hxk : k < !i exists as specified. For each n < ! let
hUn

i : i < !i = hh(xn|i) : i < !i.
Let hU⇤i : i < !i be the associated tower as defined above. We claim that the tower,

h j(RG(U⇤i )) : i < !i
is not wellfounded. If not then the direct limit of the iteration of M̂ given by the se-
quence of towers,

D

hcUn
i : i < !i : n < !

E
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is wellfounded and this yields an elementary embedding,

j⇤ : M̂[G]! M⇤[G] ✓ V[G]

such that for all k < !, xk 2 p[ j⇤(T̂ )], where T̂ is the image of T under the transitive
collapse of XG[G]. But then by the elementary of j⇤ and the wellfoundedness of M⇤[G]
there must exist a sequence hyk : k < !i 2 V[G] such that

(14.1) for all k1 < k2 < !, (ak1)# ✓ (ak2)#

(14.2) [
n

(ak)# | k < !
o

, ([ {ak | k < !})#,

where for each k < !, ak ✓ RV[G] is the countable set such that yk codes (ak)#.
For each k < !, yk 2 B and so ak ✓ (AG

⇡ ,R
V[G])# and so

[
n

(ak)# | k < !
o

✓ (AG
⇡ ,R

V[G])#,

and this is a contradiction. Therefore the tower,

h j(RG(U⇤i )) : i < !i,
is not wellfounded and so the sequence of towers,

hhUn
i : i < !i : n < !i,

witnesses that (10.1) holds.
We finish by outlining how (7.1) and (10.1) yield the counterexamples for the theo-

rem. In V , for each function
g : !! V�0+2

there is a reduction map
Rg : V� ! V�0+2

which is defined from g exactly asRG is defined in V[G] from G. For each such function
g, let

Xg =
�

j( f )(g|i) | f : V�0 ! V, i < !
 � M

and let Mg be the transitive collapse of Xg. Let

jg : V ! Mg

and
kg : Mg ! M

be the associated elementary embeddings.
By absoluteness, using (7.1) and (10.1), there exists in V a function

G0 : !! V�0+2

such that

(15.1) (F, e,YF ,Z) 2 XG0,
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(15.2) There exists a tower,
hUi : i < !i

of ultrafilters from YF \ XG0 such that both the towers,

h j(RG0(Ui)) : i < !i and h j(RG0(e(Ui))) : i < !i,
are wellfounded.

(15.3) There exists a sequence,

hhUn
i : i < !i : n < !i

of towers of ultrafilters from YF \ XG0 such that

a) For all m < !, the towers

h j(RG0(U
n
i )) : i < !i

for n  m are jointly wellfounded,
b) The tower h j(RG0(U⇤i )) : i < !i is not wellfounded.

Let (FG0, eG0,Y
G0
F ,ZG0) be the image of (F, e,YF ,Z) under the transitive collapse of

XG0. Thus we established the following where for a tower

hUi : i < !i
of ultrafilters from MG0, we say the tower is wellfounded if the induced direct limit of
the ultrapowers, Ult(MG0,Ui), is wellfounded. The point of course is that we are not
requiring that the sequence hUi : i < !i be an element of MG0 (and so the equivalence
with countable completeness need not hold).

(16.1) There exists a tower,
hUi : i < !i

of ultrafilters from YG0
F such that both the towers,

hUi : i < !i and heG0(Ui) : i < !i,
are wellfounded.

(16.2) There exists a sequence,

hhUn
i : i < !i : n < !i

of towers of ultrafilters from YG0
F such that:

a) For all m < !, the towers hhUn
i : i < !i : n  mi are jointly wellfounded;

b) The tower hU⇤i : i < !i is not wellfounded.
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From this we obtain the counterexamples witnessing the theorem, though first we pro-
duce counterexamples where the iteration trees are short and non-overlapping (not to-
tally non-overlapping).

From [7], an iteration tree
T = hNm, Em, jm,n : m < ⌘,m <T ni.

on a premouse (N, �N) is an alternating chain if ⌘  ! and if for all 0 < n < m < ⌘,
n <T m if and only if n and m are either both even or both odd. Thus if ⌘ = ! then T
has exactly two cofinal branches, an even branch and an odd branch.

Fix �0 < � < ⇥ < G0 such that
(MG0 \ V⇥, �)

is a premouse such that � is a limit of Woodin cardinals in MG0 and where G0 is the
image of  under the transitive collapse of XG0. Note that if T 2 MG0 is a countable
iteration tree on the premouse (MG0 \ V⇥, �) then T defines a iteration tree on MG0.

Fix a function,
H : YG0

F [ ZG0 ! MG0

such that

(17.1) H 2 MG0,

(17.2) H(U) 2 U for all U 2 YG0
F [ ZG0,

(17.3) For all towers hUi : i < !i 2 MG0 of ultrafilters from YG0
F [ ZG0, the tower is

wellfounded if and only if there exists a function
f : !! MG0

such that for all i < !, f |i 2 H(Ui).

The existence of H follows from the fact,
|YG0

F [ ZG0 |MG0 < G0,

since each ultrafilter U 2 YG0
F [ ZG0 is G0-complete in MG0. One property that H has

and which will need need is the following.

(18.1) Suppose that j⇤ : MG0 ! N⇤ is an elementary embedding and that
hhUk

i : i < !i : k < !i
is a sequence of towers of ultrafilters from j⇤

⇣

YG0
F [ ZG0

⌘

and that for each k < !
there is a function

f ⇤k : !! N⇤

such that for all i < !, f ⇤k |i 2 j⇤(H)(Uk
i ). Then the tower,

hU⇤i : i < !i,
is wellfounded over N⇤.
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There are Woodin cardinals in MG0 in the interval, (�0, G0) and so applying the basic
construction of [7] within MG0 to the set of ultrafilters, YG0

F , one obtains a function
I : (YG0

F [ ZG0)
<! ! MG0

such that I 2 MG0 and such that the following hold.

(19.1) For all finite towers s 2 (YG0
F [ ZG0)<!, I(s) is a finite alternating chain on the

premouse (MG0 \ V⇥, �) with all associated critical points above �0 and which
is totally non-overlapping.

(19.2) If s1 and s2 are finite towers from YG0
F [ZG0 and s2 extends s1 then I(s2) extends

I(s1),

(19.3) for all infinite towers hUi : i < !i 2 MG0 of ultrafilters from YG0
F [ ZG0,

a) the tower is wellfounded if and only if the even branch of the alternating
chain of length ! given by {I(hUi : i  ni) | n < !} is wellfounded,

b) the tower is not wellfounded if and only if the odd branch of the alternating
chain of length ! given by {I(hUi : i  ni) | n < !} is wellfounded.

(19.4) for all infinite towers hUi : i < !i of ultrafilters from YG0
F [ ZG0, if the even

branch of the alternating chain of length ! given by {I(hUi : i  ni) | n < !} is
wellfounded and

j⇤ : MG0 ! M⇤

is the induced elementary embedding, then there exists a function
f ⇤ : !! M⇤

such that for all i < !, f ⇤|i 2 j⇤(H(Ui)).

We emphasize that (19.4) holds for all towers from YG0
F [ ZG0, even those towers which

are not elements of MG0.
Let hUi : i < !i be a tower of ultrafilters from YG0

F which witnesses that (16.1)
holds. Let T0 be the alternating chain on (MG0\V⇥, �) given by applying I to the initial
segments of hUi : i < !i. We claim that both the even and odd branches of T0 are
wellfounded acting on MG0. Suppose not and we first suppose that the even branch is
not wellfounded acting on MG0.

Let N0 be the direct limit of Ult(MG0,Ui) and let
j0 : MG0 ! N0

be the associated elementary embedding. Since ⇥ < G0 and since each of the ultrafil-
ters, Ui, is G0-complete, j0(T0) = T0.

There is a function
f : !! N0
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such that for all i < !, f |i 2 j0(H)(eG0(Ui)) and even branch of j0(T0) is not well-
founded acting on N0. This implies that the tree of attempts to refute the property that
j0(I) must have in N0, is not wellfounded and this is a contradiction.

We next suppose that the odd branch of T0 is not wellfounded acting on MG0. Now
let N0 be the direct limit of Ult(MG0, eG0(Ui)) and let

j0 : MG0 ! N0

be the associated elementary embedding. Again we have j0(T0) = T0 and in this case
there is a function

f : !! N0

such that for all i < !, f |i 2 j0(H)(eG0(Ui)). Thus in N0 the tree of attempts to find a
tower, hU0i : i < !i, of ultrafilters from j0(YG0

F ) and a function

f 0 : !! N0,

such that

(20.1) the odd branch of the alternating chain given by applying j0(I) to the initial
segments of hU0i : i < !i is not wellfounded acting on N0,

(20.2) for all i < !, f 0|i 2 j0(eG0(U0i )).

This again contradicts the properties that j0(I) must have in N0, since by the properties
of j0(eG0) and j0(H), the tower hU0i : i < !i must be illfounded in N0

The same argument shows that the odd branch of T0 must be wellfounded acting on
MG0. The iteration tree given by jG0 followed by T0 is a non-overlapping tree on V with
exactly two cofinal branched each of which is wellfounded.

Let hhUn
i : i < !i : n < !i be a sequence of towers of ultrafilters from YG0

F which
witnesses (16.2).

Let
j0 : MG0 ! N0

be the elementary embedding given by hU0
i : i < !i and by induction on k < !, let

jk+1 : Nk ! Nk+1

be the elementary embedding given by the tower,

h( jk � · · · � j0)(Uk+1
i ) : i < !i.

Since for all n < !, the towers

hhUk
i : i < !i : k  ni

are jointly wellfounded, for each k < !, the tower

h( jk � · · · � j0)(Uk+1
i ) : i < !i
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is wellfounded over Nk.
Since the tower hU⇤i : i < !i is not wellfounded over MG0, the direct limit of the Nk

under the maps, jk+1, is not wellfounded.
For each k < !, there is a function

fk : !! Nk

such that for all i < !,
f |i 2 ( jk � · · · � j0)

⇣

H(Uk
i )

⌘

.

Define an iteration tree
T = hM↵, E�, jT�,↵ : ↵ < ⌘, � + 1 < ! · !, � <T ↵i

as follows. We define T |(! · (k + 1) + 1) by induction on k.
Let T |(! + 1) be the iteration tree given by applying I to the initial segments of

hU0
i : i < !i and then taking the even branch. Then by induction, let

T |(! · (k + 2) + 1) = T |(! · (k + 1) + 1) + S,
where S is the iteration tree given by applying jT0,!·(k+1)(I) to the initial segments of the
tower,

h jT0,!·(k+1)(U
k+1
i ) : i < !i

and then taking the even branch.
If at some stage k, the definition of T |(! ·(k+1)+1) fails (because of illfoundedness)

then for all n � 0, the construction must fail over Nn using
jn � · · · � j0(I)

and the towers, hh jn � · · · � j0(Um
i ) : i < !i : m  ki.

But (taking n = k + 1) this yields that for some m  k there exists an elementary
embedding,

j⇤ : Nk+1 ! N⇤,
such that even branch of the iteration tree on N⇤ given by applying

j⇤ � jk+1 � · · · � j0(I)
to the initial segments of the tower,

h j⇤ � jk+1 � · · · � j0(Um
i ) : i < !i,

is not wellfounded (over N⇤). But for all i < !,
j⇤ � jk+1 � · · · � jm+1( fm)|i 2 j⇤ � jk+1 � · · · � j0(H(Um

i ))
and this is a contradiction.

Thus the definition of T succeeds to define an iteration tree on MG0 of length ! · !.
The tree T has only one cofinal branch. We must show that this branch is not well-
founded. Assume toward a contradiction that this branch is wellfounded and let

j⇤ : MG0 ! M⇤
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be the associated elementary embedding. By the key property (19.4) of I, applied in
M!·(k+1) to jT0,!·(k+1)(I), it follows that for each k < !, there is a function

f ⇤k : !! M⇤

such that for all i < !,
f ⇤k |i 2 j⇤(H)(Uk

i ).

By (18.1) this implies that the tower,

h j⇤(U⇤i ) : i < !i
is wellfounded over M⇤ and this contradicts that the tower,

hU⇤i : i < !i,
is not wellfounded over MG0.

The trees T0 and T are each short totally non-overlapping trees on MG0 with all
critical points above �0. Further

MG0 = Ult(V, E0)

where E0 is an extender with CRT(E0) = �0 and with

LTH(E0)  |MG0 \ V�0+2|MG0 .

The di�culty is that jG0(�0) > G0 and these trees are each based on the premouse,
(MG0 \ V⇥, �) and so while the induced iteration trees on V are necessarily non-
overlapping, the induced iteration trees on V are not totally non-overlapping.

There is a function
f : �0 ! �0

such that for all ↵ < �0 and for all � < �0, for all W ✓ V�+2 of �-complete ultrafilters
on V�, � < �0 and for all W ✓ V�+2 of �-complete ultrafilters on V� if |W |  |V↵+2|
and if f (↵) < � then for cofinally many �⇤ < �0 there exists a set W⇤ of �⇤-complete
ultrafilters on V�⇤ such that W is tower isomorphic to W⇤. Clearly we can choose f such
that f is definable in V�0 and so by choice of ,

G0 > jG0( f )(�0).

Note that jG0(�) = � and so

jG0(V�0) � jG0(V�) = MG0 \ V�.

This implies that in MG0, for cofinally many � < � there exist sets W�0 ,W
�
1 2 MG0 such

that

(21.1) W�0 ✓ MG0 \ V�+2 and W�0 is tower isomorphic in MG0 with YG0
F ,

(21.2) W�1 ✓ MG0 \ V�+2 and W�1 is tower isomorphic in MG0 with ZG0.
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By choosing � > jG0(�0) su�ciently large so that there are Woodin cardinals in MG0 in
the interval, ( jG0(�0), �), and using (W�0 ,W

�
1 ) in place of (YG0

F ,ZG0) one produces T0, T
such that the induced iteration trees on V are each totally non-overlapping. ut

If � is supercompact then the counterexamples of Theorem 97 can easily be con-
structed (following the proof of Theorem 97) such that for a given set E ✓ V� of ex-
tenders which witnesses that � is a Woodin cardinal and which is closed under initial
segments, each extender, E, of the iteration tree, except for the first extender E0, has
the following properties in the model from which E is selected.

(1) E 2 E⇤;
(2) LTH(E) = ⇢(E) and LTH(E) is strongly inaccessible;

where E⇤ is the image of E in that model. Further (as in the proof of Theorem 97) E0

can be chosen to be very “short” :

(3) LTH(E0) 
⇣

22
⌘Ult(V,E0)

where  = CRT(E0).

Let FE be the set of all short extenders F 2 V� such that F satisfies (2) and such that if
� = ⇢(F), then

jF(E) \ V� = E \ V�
and (V�,E \ V�) � (V�,E).

In the case of the counterexample to UBH still more can be required and this also
follows from the proof of Theorem 97. If T is the iteration tree on Ult(V, E0) with
exactly two cofinal branches, b and c, each of which are wellfounded, then there exists
an extender F0 2 FE, and elementary embeddings,

⇡b : Ult(V, E0)! Ult(V, F0)
and

⇡c : Ult(V, E0)! Ult(V, F0)
each determined by their restrictions to LTH(E0) such that

(4) T copies by ⇡b to an iteration tree on Ult(V, F0) for which c copies to an illfounded
branch,

(5) T copies by ⇡c to an iteration tree on Ult(V, F0) for which b copies to an illfounded
branch,

(6) T copied by ⇡b yields an iteration tree on V (with first extender given by F0) which
is totally non-overlapping,

(7) T copied by ⇡c yields an iteration tree on V (with first extender given by F0) which
is totally non-overlapping.
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