The difficulties of \square_{Λ} in long extender models

Douglas Blue

Harvard University, Department of Philosophy

27 July 2017

Expectation

Let W be an iterable plus-one premouse. Then \square_{Λ} holds at all and only those cardinals Λ which are neither subcompact nor the successor of a 1-subcompact cardinal.

The argument should follow the global structure of Schimmerling-Zeman.

Theorem (Voellmer)

Let W be an iterable plus-one premouse. Assume that the extenders of W have finitely many long generators. Then $\square_{\Lambda, 2}$ holds at all and only those cardinals Λ which are neither subcompact nor the successor of a 1 -subcompact cardinal.

Any uncredited lemmas or theorems to follow are either due to Neeman \& Steel, Schimmerling \& Zeman, or Voellmer (correct me if I am wrong).

Outline

(1) Plus-one premice
(2) Long Protomice
(3) Unstable Levels and $\square_{\Lambda, 2}$

Definition (Neeman-Steel)

A plus-one potential premouse is a J-structure N constructed from a sequence \vec{E} of extenders such that whenever (M, G) is an active level of N, either
(1) G is a short extender over M and (M, G) satisfies the Jensen conditions, or
(2) G is a long extender with space $\left(\kappa_{G}^{+}\right)^{M}$ and
(a) $\left.M=\operatorname{Ult}(M, G) \mid\left(\lambda_{G}^{+}\right)\right)^{U l t(M, G)}$
(b) $G \upharpoonright \lambda_{G} \in M$
(c) G has a largest generator ν_{G}

Definition

A plus-one potential premouse (M, G) is type Z_{1} iff
(1) G is long
(2) (M, G) satisfies the weak initial segment condition: $\forall \xi<\nu_{G}(G \upharpoonright \xi \in M)$
(3) there is a short extender F indexed at ν_{G} such that (a) $\lambda_{G}=\lambda_{F}$
(b) $\kappa_{G}<\kappa_{F}$
(c) $\left(\kappa_{F}^{+}\right)^{M}$ is not the space of an extender on the M-sequence
(d) for cofinally many $\gamma<\left(\kappa_{F}^{+}\right)^{M}$, we have that $i_{F}\left(E_{\gamma}^{M}\right) \subseteq G$
(e) $\left(\nu_{G}^{+}\right)^{U l t(M, F)}=\left(\nu_{G}^{+}\right)^{U l t\left(M, G \mid \nu_{G}\right)}:=\eta$ and $\operatorname{Ult}(M, F)\left|\eta=\operatorname{Ult}\left(M, G \mid \nu_{G}\right)\right| \eta$.

Definition

An extender \bar{G} is pseudo-indexed at α in $L[E]$ if there is a type Z_{1} level (M, G) with stretching extender F such that \bar{G} is the long extender defined by

$$
\text { if } \gamma<\left(\kappa_{F}^{+}\right)^{M} \text {, then } E_{\gamma}^{M} \subseteq \bar{G} \text { iff } i_{F}^{M}\left(E_{\gamma}^{M}\right) \subseteq G
$$

and $\alpha=\left(\kappa_{F}\right)^{++}$.

Definition

Let κ be a regular uncountable cardinal. Then κ is 1 -subcompact iff for any $A \subseteq H_{\kappa^{++}}$, there exists a cardinal μ, a $\bar{A} \subseteq H_{\mu^{++}}$, and an elementary embedding $j:\left\langle H_{\mu^{++}}, \bar{A}\right\rangle \rightarrow\left\langle H_{\kappa^{++}}, A\right\rangle$ with $\operatorname{CRIT}(j)=\mu$.

Lemma

If κ is 1-subcompact, then $\neg \square_{\kappa^{+}}$.

Lemma (Voellmer)

Suppose κ is a cardinal in $L[E]$ such that

$$
\left\{\alpha: \kappa^{+}<\alpha<\kappa^{++} \wedge \exists \beta>\alpha\left(L[E] \mid \beta \text { is type } Z_{1} \wedge \alpha=\left(\kappa_{F}^{++}\right)^{L[E] \mid \beta}\right)\right\}
$$

is stationary in κ^{++}. Then κ is 1 -subcompact.

These are equivalences.

Definition

Suppose (M, G) is a plus-one potential premouse, $\eta<\lambda_{G}$, and

- $H=G \upharpoonright \eta$, if G is short
- $H=G \upharpoonright\left(\eta \cup\left\{\nu_{G}\right\}\right)$, if G is long.

Then H is whole iff $i_{H}\left(\kappa_{H}\right)=\eta$. η is called a cutpoint of G.
(M, G) has the Jensen Initial Segment Condition (JISC) iff $H \in M$ whenever H is a whole initial segment of G.

Definition

A plus-one ppm (M, G) with G a long extender is Dodd-solid iff $G \upharpoonright \nu_{G} \in M$.

Lemma

If M is a type Z_{1} premouse, then M is not Dodd-solid.

Definition

Let M be a plus-one potential premouse. Then M has projectum-free spaces (PFS) iff whenever G is a long extender on the M-sequence which is total on M,
(1) if there is a k such that $\varrho_{k}(M) \leq\left(\kappa_{G}^{+}\right)^{M}$, then $\varrho_{k}(M) \leq \kappa_{G}$ for the least such k
(2) if M is active with short extender H such that $\kappa_{H}=\kappa_{G}$, then $\varrho_{1}(M)>\left(\kappa_{G}^{+}\right)^{M}$.

Definition

A plus-one potential premouse M is a plus-one premouse iff
(1) every proper initial segment of M is fully sound and satisfies PFS
(2) M satisfies PFS
(3) every initial segment of M satisfies the JISC
(9) if (N, G) is an initial segment of M and G is long, then (N, G) is either Dodd-solid or type Z_{1}.

Theorem (Neeman-Steel)

Let M and N be iterable plus-one premice. Then there are iterates P and Q of M and N resp. such that $P \unlhd Q$ or $Q \unlhd P$.

Neeman and Steel also proved a version of solidity which suffices for preservation of the standard parameter for k-sound $\left(\omega_{1}+1\right)$-iterable plus-one premice.

Theorem (Condensation Lemma)

Suppose H and M are both of the same type and $n+1$ sound. Suppose there is a $\Sigma_{0}^{(n)}$-elementary and cardinal preserving map $\sigma: H \rightarrow M$ with $\operatorname{CRIT}(\sigma)=\alpha$. Suppose $\alpha \geq \varrho_{n+1}^{H}$ and that Anomalous Case 4 does not hold. Then one of the following hold:
(1) $H=M$
(2) $H \triangleleft M$
(3) $H \unlhd U / t_{n}\left(M, E_{\alpha}^{M}\right)$.
(9) $H \unlhd U l t_{n}(M, F)$, where F is pseudo-indexed in the M-sequence at α.

Definition (Anomalous Case 4)

α is not a cardinal of M, and setting $\langle\eta, k\rangle$ to be the lex-least such that $\varrho_{k+1}(M \mid \eta)<\alpha, F=\dot{F}^{M \mid \eta}$ is short, $\alpha=\left(\kappa_{F}^{++}\right)^{M \mid \eta}, k=0$, and there are total long extenders on the M-sequence with CRIT $=\kappa_{F}$.

Work in W. Let $\mathcal{S} \subseteq \Lambda^{+}$consist of all τ such that
(1) Λ is the largest cardinal in J_{τ}^{E}
(2) J_{τ}^{E} is fully elementary in $J_{\Lambda^{+}}^{E}$
(3) $E_{\tau}=\varnothing$
(9) τ is not a pseudoindex

We aim to produce a sequence $\mathfrak{C}=\left\langle\mathfrak{C}_{\tau}: \tau \in \mathcal{S}\right\rangle$, where each \mathfrak{C}_{τ} contains one or two sets C_{τ}, such that:
(1) $C_{\tau} \subseteq \mathcal{S} \cap \tau$ is closed
(2) C_{τ} is unbounded in τ whenever τ is a limit point of \mathcal{S} and $\operatorname{cof}(\tau)>\omega$
(3) $C_{\tau} \cap \bar{\tau} \in \mathfrak{C}_{\bar{\tau}}$ for $\bar{\tau} \in C_{\tau}$
(9) $\operatorname{otp}\left(C_{\tau}\right) \leq \Lambda$

Definition

Suppose $M=(M, G)$ is a sound coherent structure. Then a J-structure $\tilde{M}=(\tilde{M}, \tilde{G})$ is an interpolant of M if
(1) there is a map $\sigma: \tilde{M} \rightarrow M$ which is $\sum_{0}^{k(M)}$-preserving with respect to the language of coherent structures
(2) $\sigma(p(\tilde{M}))=p(M)$
(3) for every $\alpha \in p(M)$, there is a generalized solidity witness $Q_{M}(\alpha)$ in $\operatorname{ran}(\sigma)$
(0) $\varrho(\tilde{M})=\varrho(M)$.

In the situations of interest, $\operatorname{CRIT}(\sigma)=\bar{\tau}$ for some $\bar{\tau} \in \mathcal{S}$.

Definition (Pluripotent)

Let N_{τ} be a level of W. Then N_{τ} is short pluripotent iff N_{τ} is active with a short top extender $G, \kappa_{G}<\Lambda$, and $\varrho_{1}\left(N_{\tau}\right)=\Lambda$.

Let N_{τ} be a level of W. Then N_{τ} is long pluripotent iff N_{τ} is active with a long top extender $G, \kappa_{G}^{+}<\Lambda$, and $\varrho_{1}\left(N_{\tau}\right)=\Lambda$.

Such levels give rise to protomice via interpolation.

Lemma

Suppose H is an interpolant of N_{τ} with interpolation embedding σ. Let $\operatorname{CRIT}(\sigma)=\bar{\tau}$ and suppose $\bar{\tau}$ is not an index or pseudoindex in W. Suppose that N_{τ} is not pluripotent.

Then H is a level of W.

Definition

A short protomouse is a J-structure $M=(M, \tilde{G})$ (considered in the language of coherent structures) such that
(1) $|M|$ is a passive premouse with $k(|M|)=0$
(2) \tilde{G} is a short extender such that there is an ordinal $\theta<\kappa_{\tilde{G}}^{+}$such that \tilde{G} measures exactly the $x \in P\left(\kappa_{\tilde{G}}\right) \cap M \mid \theta$, and $\theta=\left(\kappa_{\tilde{G}}^{+}\right)^{M \mid \theta}$
(3) $|M|=\mathrm{Ult}_{n}(M| | \theta, \tilde{G})$
(9) Let $\left\langle N^{*}, n\right\rangle$ be the collapsing level for θ in M. Then $\varrho_{1}(M)$ is not the space of a long extender on the sequence of $\mathrm{Ult}_{n}\left(N^{*}, \tilde{G}\right)$.

Definition

Let N_{τ} be the collapsing level for τ in $W, \varrho_{n+1}\left(N_{\tau}\right)=\Lambda<\varrho_{n}\left(N_{\tau}\right)$, and $\tau=\left(\Lambda^{+}\right)^{N}$. Then (κ, q) is a (strong) short divisor of N_{τ} if
(1) κ is a cardinal $<\Lambda$
(2) there is an ordinal $\lambda(\kappa, q)$ such that $\Lambda<\lambda(\kappa, q)<\varrho_{n}\left(N_{\tau}\right)$
(3) setting $r=p\left(N_{\tau}\right)-q$,
(a) $q=p\left(N_{\tau}\right) \cap \lambda(\kappa, q)$
(b) $\mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup r) \cap \varrho_{n}\left(N_{\tau}\right)$ is cofinal in $\varrho_{n}^{N_{\tau}}$
(c) $\lambda(\kappa, q)$ is the least ordinal in $\mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup r)-\kappa$
(d) $P(\kappa) \cap \mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup r)=P(\kappa) \cap \mathcal{H}_{n+1}^{N_{\tau}}\left(\kappa \cup p\left(N_{\tau}\right)\right)$
$\mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup r)$ is the divisor hull associated with (κ, q).

Definition

A long protomouse $M=(M, \tilde{G})$ is a J-structure (considered in the language of coherent structures) such that
(1) $|M|$ is a passive premouse with degree of soundness $k(|M|)=0$
(2) \tilde{G} is a long extender over $|M|$ such that there is an ordinal θ such that $\kappa_{\tilde{G}}^{+}<\theta<\kappa_{\tilde{G}}^{++}$and \tilde{G} measures exactly the subsets of $\kappa_{\tilde{G}}^{+}$in $M \mid \theta$, and $\theta=\left(\kappa_{\tilde{G}}^{++}\right)^{M \mid \theta} . \theta$ is denoted $\operatorname{dom}(\tilde{G})$.
(3) $|M|=\left(U_{l} t_{n}(M| | \theta, \tilde{G})\right) \mid o(M)$
(9) $\kappa_{\tilde{G}}^{+}<\varrho_{1}(M)$
(5) $\varrho_{1}(M)$ is not the space of a long extender on the
$\mathrm{Ult}_{n}\left(N^{*}, \tilde{G}\right)$-sequence, where $\left\langle N^{*}, n\right\rangle$ is the collapsing level for θ in M
(0) \tilde{G} has largest generator $\nu=\nu^{M}$
(1) $\tilde{G} \upharpoonright \lambda_{\tilde{G}}$ is on the M-sequence.

Definition

Let $M=(M, \tilde{G})$ be a long protomouse and $\theta^{M}=\operatorname{dom}(\tilde{G})$. Let $\left(N^{*}\right)^{M}$ be the collapsing level for θ in M, i.e., $\left(N^{*}\right)^{M}=\left\langle N^{*}, n\right\rangle$ where n is such that $\varrho_{n+1}\left(N^{*}\right)=\kappa_{\tilde{G}}^{+}<\varrho_{n}\left(N^{*}\right)$.

Definition

A long protomouse (M, G) is type 2 if $\left(N^{*}\right)^{M}=\left\langle N^{*}, n\right\rangle$ is active with short top extender $F, n=0$, and $\kappa_{F}=\kappa_{G}$.

Definition

Let M be a type 1 long protomouse with top extender \tilde{G} and $\left(N^{*}\right)^{M}=\left\langle N^{*}, n\right\rangle$. The associated ppm of M is $\operatorname{Ult}_{n}\left(N^{*}, \tilde{G}\right)$.

Definition

Let M be a type 2 long protomouse. Then the associated quasi-protomouse of M is $(P, F)=\operatorname{Ult}_{0}\left(N^{*}, \tilde{G}\right)$.

Let μ be the least long generator of \tilde{G}. Then $\operatorname{Ult}_{0}((P \mid \mu), F)$ is the associated ppm of M.

Definition

Let N_{τ} be the collapsing level for τ in W and $\varrho_{n+1}\left(N_{\tau}\right)=\Lambda<\varrho_{n}(N)$ and $\tau=\left(\Lambda^{+}\right)^{N}$. Then an ordinal $\nu \in p\left(N_{\tau}\right)$ is a long divisor of N_{τ} if
(1) There is an extender E_{ν} on the N-sequence such that $\kappa_{E_{\nu}}<\Lambda<\lambda_{E_{\nu}}$ and $\lambda_{E_{\nu}}^{+}=\left(\lambda_{E_{\nu}}^{+}\right)^{N_{\tau}}<\varrho_{n}\left(N_{\tau}\right)$
(2) Hull $N_{\tau+1}^{N_{\tau}}(Z \cup r) \cap \varrho_{n}\left(N_{\tau}\right)$ is cofinal in $\varrho_{n}\left(N_{\tau}\right)$
(3) $\mathrm{Hull}_{n+1}^{N_{\tau}}(Z \cup r) \cap \lambda_{E_{\nu}}^{+}=Z$
(9) $\lambda_{E_{\nu}}^{+}$is not the space of an extender on the N sequence where

- $r=p\left(N_{\tau}\right)-(\nu+1)$,
- $E_{\mu}=E_{\nu} \upharpoonright \lambda$ is the short part of E_{ν}, and
- $Z=i_{E_{\nu}}{ }^{\prime \prime}\left(\kappa^{+}\right)=i_{E_{\mu}}{ }^{\prime \prime}\left(\kappa^{+}\right)$.

Suppose we are N. We want to know how we can be recovered as the associated ppm of a long protomouse (M, \tilde{G}).

If N does arise this way, then letting N^{*} be the collapsing structure for $\operatorname{dom}(\tilde{G}), N=\operatorname{Ult}\left(N^{*}, \tilde{G}\right)$. We would like to recover N^{*} and \tilde{G} as a hull in N.
$\varrho_{1}\left(N^{*}\right)=\kappa_{\tilde{G}}^{+}$(because M is long), so to specify the map from N^{*} to N, we need to know how $\kappa_{\tilde{G}}^{+}$is moved. From the perspective of N, this map and N^{*} can be recovered as the hull of a set of ordinals and a piece of the parameter, namely Hull $N n+1\left(i_{\tilde{G}}{ }^{\prime \prime}\left(\kappa_{\tilde{G}}^{+}\right) \cup i_{\tilde{G}}\left(p\left(N^{*}\right)\right)\right)$. But it's hard to guess a set of ordinals.

Instead, the notion of long divisor above assumes that the largest generator of \tilde{G} is a successor generator. This is a smallness assumption.

If we know that the largest generator of $\tilde{G}, \nu_{\tilde{G}}$, is a successor generator, then from $\nu_{\tilde{G}}$ alone we can recover $i_{\tilde{G}}$ " $\left(\kappa_{\tilde{G}}^{+}\right)$: the extender indexed in N at $\nu_{\tilde{G}}$ is $\tilde{G} \upharpoonright \nu_{\tilde{G}}$.

This is enough to determine $i_{\tilde{G}} "\left(\kappa_{\tilde{G}}^{+}\right)$.
When $\nu_{\tilde{G}}$ is a limit generator, no such extender is indexed at $\nu_{\tilde{G}}$.
By remarks of Martin yesterday, the standard parameter of N and the Dodd parameter of M are correlated. In particular, $\nu_{\tilde{G}}$ is the greatest element of the Dodd parameter of M, which implies that it is in the standard parameter of N. Thus we "guess" $\nu_{\tilde{G}}$ by choosing ν from the standard parameter of N.

Type 2 Long Divisors

There is a more complicated notion of type 2 long divisor. We need to be able to recover the short top extender F of $\mathrm{Ult}_{0}\left(N^{*}, \tilde{G}\right)$ as a predicate, and that complicates things. We can do so, and N^{*} is recoverable as a Σ_{1}-hull in the language with this predicate, so we can get back to $(M, \tilde{G})=\left(N \| i_{\tilde{G}}{ }^{"} \kappa^{+}, \tilde{G}\right)$.

Fortunately, the long divisors and the type 2 long divisors form disjoint subsets of the standard parameter, so there will not be conflict between them.

Lemma

Let N be a level of W, and let ν be a long divisor of N with N^{*} the transitive collapse of the divisor hull associated with ν. Let π be the inverse of the collapse map.

Then $N^{*} \triangleleft N$ and $p\left(N^{*}\right)=\pi^{-1}(r)$.
Long divisors are "strong" by Voellmer's definition.

Premouse to protomouse

Definition

Let N be a level of W and ν a long divisor of N with $\pi: N^{*} \rightarrow N$ the uncollapse map associated with the divisor hull. Let $\eta=\left(\lambda_{E_{\nu}}^{+}\right)^{N}$. Then $N(\nu)=\left(J_{\eta}^{E}, G\right)$ is the long protomouse associated with ν, where G is the long extender of length $\lambda_{E_{\nu}}^{+}$derived from π.

Lemma

Let N be a level of W and ν a long divisor of N with associated protomouse $N(\nu)$. Then $N(\nu)$ is a long protomouse of type 1 .

Lemma

Let N be a level of W and $N(\nu)$ the long protomouse associated with a divisor ν of N. Then N is the associated ppm of $N(\nu)$.

Lemma (Long Protomouse Condensation)

Let M_{τ} be either a long pluripotent level of W or the protomouse associated with a (type 2) long divisor ν of collapsing level N_{τ}. Let M be an interpolant of M_{τ} such that the critical point of the interpolation embedding is $\bar{\tau} \in \mathcal{S}$. Let N be the associated ppm of M.

Then N is a level of W.

Definition

Let N be a level of W with a canonical short divisor (κ, q) and at least one long divisor. Let ν be the least long divisor. Then N is unstable iff $\nu=\max (q)$ and, if ν is a long divisor, $\kappa_{E_{\nu}}<\kappa$.
I.e., unstable levels have two canonical associated protomice.

Lemma (Instability)

Let (κ, q) be a short divisor of N, and let $r=p(N)-q$. Then any long divisor $\nu \in r$ is such that $\kappa_{E_{\nu}}<\kappa$.

If $\nu \in q$ is a long divisor, then either $\nu=\max (q)$ or $\kappa_{E_{\nu}} \geq \kappa$.

Definition (Canonical divisor)

Let N be a stable level of W with at least one divisor. Let (κ, q) be the canonical short divisor, if there is one. Let $\nu \in p(N)$ be the least long divisor, if there is one. Then
(a) If ν is undefined or $\max (q)<\nu$, then (κ, q) is the canonical divisor of N.
(b) If (κ, q) is undefined or $\nu \leq \max (q)$, then ν is the canonical divisor of N.

The canonical protomouse associated with N is the protomouse associated with the canonical divisor of N.

Think of canonical divisors as giving the largest divisor hulls.

Definition

Let N_{τ} be the collapsing level for τ in W, and suppose N_{τ} is stable. Then
(1) If there is a canonical protomouse associated with N_{τ}, set this protomouse to be M_{τ}.
(2) If N_{τ} does not have an associated canonical protomouse but N_{τ} is pluripotent, set $M_{\tau}=N_{\tau}$.
(3) If N_{τ} does not have an associated canonical protomouse and N_{τ} is not pluripotent, M_{τ} is undefined.
Suppose N_{τ} is unstable. Then
(4) $M_{\tau}^{\text {short }}=N(\kappa, q)$.
(5) $M_{\tau}^{\text {long }}=N(\nu)$.

This leads to sets $B_{\tau}^{\text {short }}$ and $B_{\tau}^{\text {long }}$ for unstable levels, and hence to a $\square_{\Lambda, 2}$ sequence.

The Difficulties

Find a way to get from $\square_{\Lambda, 2}$ to full \square_{Λ}.

Accommodate long generators which are limit generators.

