The difficulties of \Box_{Λ} in long extender models

Douglas Blue

Harvard University, Department of Philosophy

27 July 2017

Douglas Blue (Harvard University)

Expectation

Let W be an iterable plus-one premouse. Then \Box_{Λ} holds at all and only those cardinals Λ which are neither subcompact nor the successor of a 1-subcompact cardinal.

The argument should follow the global structure of Schimmerling-Zeman.

Theorem (Voellmer)

Let W be an iterable plus-one premouse. Assume that the extenders of W have finitely many long generators. Then $\Box_{\Lambda,2}$ holds at all and only those cardinals Λ which are neither subcompact nor the successor of a 1-subcompact cardinal.

Any uncredited lemmas or theorems to follow are either due to Neeman & Steel, Schimmerling & Zeman, or Voellmer (correct me if I am wrong).

2 Long Protomice

Definition (Neeman-Steel)

A plus-one potential premouse is a J-structure N constructed from a sequence \vec{E} of extenders such that whenever (M, G) is an active level of N, either

- G is a short extender over M and (M, G) satisfies the Jensen conditions, or
- 2 G is a long extender with space $(\kappa_G^+)^M$ and

a)
$$M = \text{Ult}(M, G)|(\lambda_G^+)^{\text{Ult}(M, G)}$$

b)
$$G \upharpoonright \lambda_G \in M$$

(c) G has a largest generator ν_G

A plus-one potential premouse (M, G) is type Z_1 iff

- G is long
- (M, G) satisfies the weak initial segment condition:
 ∀ξ < ν_G(G ↾ ξ ∈ M)
- **③** there is a short extender F indexed at ν_G such that

$$(\nu_G)^{\mathrm{ext}(M,F)} = (\nu_G)^{\mathrm{ext}(M,F)} = \eta$$

$$\mathsf{Ult}(M,F)|\eta = \mathsf{Ult}(M,G \upharpoonright \nu_G)|\eta.$$

An extender \overline{G} is *pseudo-indexed at* α in L[E] if there is a type Z_1 level (M, G) with stretching extender F such that \overline{G} is the long extender defined by

if
$$\gamma < (\kappa_F^+)^M$$
, then $E_{\gamma}^M \subseteq \overline{G}$ iff $i_F^M(E_{\gamma}^M) \subseteq G$

and $\alpha = (\kappa_F)^{++}$.

Let κ be a regular uncountable cardinal. Then κ is *1-subcompact* iff for any $A \subseteq H_{\kappa^{++}}$, there exists a cardinal μ , a $\bar{A} \subseteq H_{\mu^{++}}$, and an elementary embedding $j : \langle H_{\mu^{++}}, \bar{A} \rangle \rightarrow \langle H_{\kappa^{++}}, A \rangle$ with $\text{CRIT}(j) = \mu$.

Lemma

If κ is 1-subcompact, then $\neg \Box_{\kappa^+}$.

Lemma (Voellmer)

Suppose κ is a cardinal in L[E] such that

 $\{\alpha: \kappa^+ < \alpha < \kappa^{++} \land \exists \beta > \alpha \ (L[E]|\beta \text{ is type } Z_1 \land \alpha = (\kappa_F^{++})^{L[E]|\beta})\}$

is stationary in κ^{++} . Then κ is 1-subcompact.

These are equivalences.

Suppose (M,G) is a plus-one potential premouse, $\eta < \lambda_G$, and

- $H = G \upharpoonright \eta$, if G is short
- $H = G \upharpoonright (\eta \cup \{\nu_G\})$, if G is long.

Then *H* is whole iff $i_H(\kappa_H) = \eta$. η is called a *cutpoint* of *G*.

(M, G) has the Jensen Initial Segment Condition (JISC) iff $H \in M$ whenever H is a whole initial segment of G.

Definition

A plus-one ppm (M, G) with G a long extender is *Dodd-solid* iff $G \upharpoonright \nu_G \in M$.

Lemma

If M is a type Z_1 premouse, then M is not Dodd-solid.

Let M be a plus-one potential premouse. Then M has projectum-free spaces (PFS) iff whenever G is a long extender on the M-sequence which is total on M,

• if there is a k such that $\varrho_k(M) \leq (\kappa_G^+)^M$, then $\varrho_k(M) \leq \kappa_G$ for the least such k

② if *M* is active with short extender *H* such that $\kappa_H = \kappa_G$, then $\varrho_1(M) > (\kappa_G^+)^M$.

A plus-one potential premouse M is a *plus-one premouse* iff

- \bigcirc every proper initial segment of M is fully sound and satisfies PFS
- M satisfies PFS
- \bigcirc every initial segment of M satisfies the JISC
- if (N, G) is an initial segment of M and G is long, then (N, G) is either Dodd-solid or type Z_1 .

Theorem (Neeman-Steel)

Let M and N be iterable plus-one premice. Then there are iterates P and Q of M and N resp. such that $P \trianglelefteq Q$ or $Q \trianglelefteq P$.

Neeman and Steel also proved a version of solidity which suffices for preservation of the standard parameter for k-sound ($\omega_1 + 1$)-iterable plus-one premice.

Theorem (Condensation Lemma)

Suppose H and M are both of the same type and n + 1 sound. Suppose there is a $\Sigma_0^{(n)}$ -elementary and cardinal preserving map $\sigma : H \to M$ with $CRIT(\sigma) = \alpha$. Suppose $\alpha \ge \varrho_{n+1}^H$ and that Anomalous Case 4 does not hold. Then one of the following hold:

- $\bullet H = M$
- $\bigcirc H \lhd M$
- $I Ult_n(M, E_{\alpha}^M).$
- $H \leq Ult_n(M, F)$, where F is pseudo-indexed in the M-sequence at α .

Definition (Anomalous Case 4)

 α is not a cardinal of M, and setting $\langle \eta, k \rangle$ to be the lex-least such that $\rho_{k+1}(M|\eta) < \alpha$, $F = \dot{F}^{M|\eta}$ is short, $\alpha = (\kappa_F^{++})^{M|\eta}$, k = 0, and there are total long extenders on the M-sequence with $CRIT = \kappa_F$.

Work in W. Let $S \subseteq \Lambda^+$ consist of all τ such that

- A is the largest cardinal in J_{τ}^{E}
- **2** J_{τ}^{E} is fully elementary in $J_{\Lambda^{+}}^{E}$
- $\bullet E_{\tau} = \emptyset$
- (4) τ is not a *pseudoindex*

We aim to produce a sequence $\mathfrak{C} = \langle \mathfrak{C}_{\tau} : \tau \in S \rangle$, where each \mathfrak{C}_{τ} contains one or two sets C_{τ} , such that:

- $\ \, {\bf 0} \ \, {\cal C}_\tau \subseteq {\cal S} \cap \tau \ \, {\rm is \ closed}$
- 2 C_{τ} is unbounded in τ whenever τ is a limit point of S and $cof(\tau) > \omega$
- otp $(C_{\tau}) \leq \Lambda$

Suppose M = (M, G) is a sound coherent structure. Then a *J*-structure $\tilde{M} = (\tilde{M}, \tilde{G})$ is an *interpolant* of *M* if

• there is a map $\sigma: \tilde{M} \to M$ which is $\Sigma_0^{k(M)}$ -preserving with respect to the language of coherent structures

$$o(p(\tilde{M})) = p(M)$$

for every α ∈ p(M), there is a generalized solidity witness Q_M(α) in ran(σ)

•
$$\varrho(\tilde{M}) = \varrho(M).$$

In the situations of interest, $CRIT(\sigma) = \overline{\tau}$ for some $\overline{\tau} \in S$.

Definition (Pluripotent)

Let N_{τ} be a level of W. Then N_{τ} is *short pluripotent* iff N_{τ} is active with a short top extender G, $\kappa_G < \Lambda$, and $\varrho_1(N_{\tau}) = \Lambda$.

Let N_{τ} be a level of W. Then N_{τ} is *long pluripotent* iff N_{τ} is active with a long top extender G, $\kappa_{G}^{+} < \Lambda$, and $\varrho_{1}(N_{\tau}) = \Lambda$.

Such levels give rise to protomice via interpolation.

Lemma

Suppose H is an interpolant of N_{τ} with interpolation embedding σ . Let $CRIT(\sigma) = \overline{\tau}$ and suppose $\overline{\tau}$ is not an index or pseudoindex in W. Suppose that N_{τ} is not pluripotent.

Then H is a level of W.

A short protomouse is a J-structure $M = (M, \tilde{G})$ (considered in the language of coherent structures) such that

- |M| is a passive premouse with k(|M|) = 0
- **②** \tilde{G} is a short extender such that there is an ordinal $\theta < \kappa_{\tilde{G}}^+$ such that \tilde{G} measures exactly the $x \in P(\kappa_{\tilde{G}}) \cap M|\theta$, and $\theta = (\kappa_{\tilde{G}}^+)^{M|\theta}$
- $|M| = \text{Ult}_n(M||\theta, \tilde{G})$
- Let $\langle N^*, n \rangle$ be the collapsing level for θ in M. Then $\varrho_1(M)$ is not the space of a long extender on the sequence of $\text{Ult}_n(N^*, \tilde{G})$.

Let N_{τ} be the collapsing level for τ in W, $\varrho_{n+1}(N_{\tau}) = \Lambda < \varrho_n(N_{\tau})$, and $\tau = (\Lambda^+)^N$. Then (κ, q) is a *(strong) short divisor* of N_{τ} if

- $\ \, \bullet \ \, \text{is a cardinal} < \Lambda$
- 2 there is an ordinal $\lambda(\kappa, q)$ such that $\Lambda < \lambda(\kappa, q) < \varrho_n(N_{\tau})$

Setting
$$r = p(N_{\tau}) - q$$
,
(a) $q = p(N_{\tau}) \cap \lambda(\kappa, q)$
(b) $\mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup r) \cap \varrho_n(N_{\tau})$ is cofinal in $\varrho_n^{N_{\tau}}$
(c) $\lambda(\kappa, q)$ is the least ordinal in $\mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup r) - \kappa$
(d) $P(\kappa) \cap \mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup r) = P(\kappa) \cap \mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup p(N_{\tau}))$

 $\mathcal{H}_{n+1}^{N_{\tau}}(\kappa \cup r)$ is the *divisor hull* associated with (κ, q) .

A long protomouse $M = (M, \tilde{G})$ is a J-structure (considered in the language of coherent structures) such that

- |M| is a passive premouse with degree of soundness k(|M|) = 0
- $\begin{array}{l} \textcircled{G} \hspace{0.1cm} \text{is a long extender over } |M| \hspace{0.1cm} \text{such that there is an ordinal } \theta \hspace{0.1cm} \text{such that } \\ \hspace{0.1cm} \text{that } \kappa_{\tilde{G}}^{+} < \theta < \kappa_{\tilde{G}}^{++} \hspace{0.1cm} \text{and } \tilde{G} \hspace{0.1cm} \text{measures exactly the subsets of } \\ \hspace{0.1cm} \kappa_{\tilde{G}}^{+} & \text{in } \\ M|\theta, \hspace{0.1cm} \text{and } \theta = (\kappa_{\tilde{G}}^{++})^{M|\theta}. \hspace{0.1cm} \theta \hspace{0.1cm} \text{is denoted dom}(\tilde{G}). \end{array}$
- $|M| = (\mathrm{Ult}_n(M||\theta, \tilde{G}))|o(M)$
- $\, \bullet \, \kappa^+_{\tilde{G}} < \varrho_1(M)$
- $\varrho_1(M)$ is not the space of a long extender on the $\operatorname{Ult}_n(N^*, \tilde{G})$ -sequence, where $\langle N^*, n \rangle$ is the collapsing level for θ in M
- \tilde{G} has largest generator $\nu = \nu^M$
- $\tilde{G} \upharpoonright \lambda_{\tilde{G}}$ is on the *M*-sequence.

Let $M = (M, \tilde{G})$ be a long protomouse and $\theta^M = \operatorname{dom}(\tilde{G})$. Let $(N^*)^M$ be the collapsing level for θ in M, i.e., $(N^*)^M = \langle N^*, n \rangle$ where n is such that $\varrho_{n+1}(N^*) = \kappa_{\tilde{G}}^+ < \varrho_n(N^*)$.

Definition

A long protomouse (M, G) is type 2 if $(N^*)^M = \langle N^*, n \rangle$ is active with short top extender F, n = 0, and $\kappa_F = \kappa_G$.

Let M be a type 1 long protomouse with top extender \tilde{G} and $(N^*)^M = \langle N^*, n \rangle$. The associated ppm of M is $\text{Ult}_n(N^*, \tilde{G})$.

Definition

Let M be a type 2 long protomouse. Then the associated quasi-protomouse of M is $(P, F) = \text{Ult}_0(N^*, \tilde{G})$.

Let μ be the least long generator of \tilde{G} . Then $Ult_0((P|\mu), F)$ is the associated ppm of M.

Let N_{τ} be the collapsing level for τ in W and $\varrho_{n+1}(N_{\tau}) = \Lambda < \varrho_n(N)$ and $\tau = (\Lambda^+)^N$. Then an ordinal $\nu \in p(N_{\tau})$ is a *long divisor* of N_{τ} if

• There is an extender E_{ν} on the N-sequence such that $\kappa_{E_{\nu}} < \Lambda < \lambda_{E_{\nu}}$ and $\lambda_{E_{\nu}}^{+} = (\lambda_{E_{\nu}}^{+})^{N_{\tau}} < \varrho_n(N_{\tau})$

2 Hull $_{n+1}^{N_{\tau}}(Z \cup r) \cap \varrho_n(N_{\tau})$ is cofinal in $\varrho_n(N_{\tau})$

$$3 \operatorname{Hull}_{n+1}^{N_{\tau}}(Z \cup r) \cap \lambda_{E_{\nu}}^{+} = Z$$

() $\lambda^+_{E_{\nu}}$ is not the space of an extender on the N sequence where

Suppose we are N. We want to know how we can be recovered as the associated ppm of a long protomouse (M, \tilde{G}) .

If N does arise this way, then letting N^* be the collapsing structure for dom(\tilde{G}), $N = \text{Ult}(N^*, \tilde{G})$. We would like to recover N^* and \tilde{G} as a hull in N.

 $\varrho_1(N^*) = \kappa_{\tilde{G}}^+$ (because M is long), so to specify the map from N^* to N, we need to know how $\kappa_{\tilde{G}}^+$ is moved. From the perspective of N, this map and N^* can be recovered as the hull of a set of ordinals and a piece of the parameter, namely $\operatorname{Hull}_{n+1}^N(i_{\tilde{G}}^{\,\,*}(\kappa_{\tilde{G}}^+) \cup i_{\tilde{G}}(p(N^*)))$. But it's hard to guess a set of ordinals.

Instead, the notion of long divisor above assumes that the largest generator of \tilde{G} is a successor generator. This is a smallness assumption.

If we know that the largest generator of \tilde{G} , $\nu_{\tilde{G}}$, is a successor generator, then from $\nu_{\tilde{G}}$ alone we can recover $i_{\tilde{G}}$ " $(\kappa_{\tilde{G}}^+)$: the extender indexed in N at $\nu_{\tilde{G}}$ is $\tilde{G} \upharpoonright \nu_{\tilde{G}}$.

This is enough to determine $i_{\tilde{G}}$ " $(\kappa_{\tilde{G}}^+)$.

When $\nu_{\tilde{G}}$ is a limit generator, no such extender is indexed at $\nu_{\tilde{G}}$.

By remarks of Martin yesterday, the standard parameter of N and the Dodd parameter of M are correlated. In particular, $\nu_{\tilde{G}}$ is the greatest element of the Dodd parameter of M, which implies that it is in the standard parameter of N. Thus we "guess" $\nu_{\tilde{G}}$ by choosing ν from the standard parameter of N.

There is a more complicated notion of type 2 long divisor. We need to be able to recover the short top extender F of $\text{Ult}_0(N^*, \tilde{G})$ as a predicate, and that complicates things. We can do so, and N^* is recoverable as a Σ_1 -hull in the language with this predicate, so we can get back to $(M, \tilde{G}) = (N || i_{\tilde{G}} \, {}^{"}\kappa^{+}, \tilde{G}).$

Fortunately, the long divisors and the type 2 long divisors form disjoint subsets of the standard parameter, so there will not be conflict between them.

Lemma

Let N be a level of W, and let ν be a long divisor of N with N^{*} the transitive collapse of the divisor hull associated with ν . Let π be the inverse of the collapse map.

Then $N^* \triangleleft N$ and $p(N^*) = \pi^{-1}(r)$.

Long divisors are "strong" by Voellmer's definition.

Let *N* be a level of *W* and ν a long divisor of *N* with $\pi : N^* \to N$ the uncollapse map associated with the divisor hull. Let $\eta = (\lambda_{E_{\nu}}^+)^N$. Then $N(\nu) = (J_{\eta}^E, G)$ is the *long protomouse associated with* ν , where *G* is the long extender of length $\lambda_{E_{\nu}}^+$ derived from π .

Lemma

Let N be a level of W and ν a long divisor of N with associated protomouse $N(\nu)$. Then $N(\nu)$ is a long protomouse of type 1.

Lemma

Let N be a level of W and $N(\nu)$ the long protomouse associated with a divisor ν of N. Then N is the associated ppm of $N(\nu)$.

Lemma (Long Protomouse Condensation)

Let M_{τ} be either a long pluripotent level of W or the protomouse associated with a (type 2) long divisor ν of collapsing level N_{τ} . Let M be an interpolant of M_{τ} such that the critical point of the interpolation embedding is $\bar{\tau} \in S$. Let N be the associated ppm of M.

Then N is a level of W.

Let *N* be a level of *W* with a canonical short divisor (κ, q) and at least one long divisor. Let ν be the least long divisor. Then *N* is *unstable* iff $\nu = max(q)$ and, if ν is a long divisor, $\kappa_{E_{\nu}} < \kappa$.

I.e., unstable levels have two canonical associated protomice.

Lemma (Instability)

Let (κ, q) be a short divisor of N, and let r = p(N) - q. Then any long divisor $\nu \in r$ is such that $\kappa_{E_{\nu}} < \kappa$.

If $\nu \in q$ is a long divisor, then either $\nu = max(q)$ or $\kappa_{E_{\nu}} \geq \kappa$.

Definition (Canonical divisor)

Let N be a stable level of W with at least one divisor. Let (κ, q) be the canonical short divisor, if there is one. Let $\nu \in p(N)$ be the least long divisor, if there is one. Then

- (a) If ν is undefined or $max(q) < \nu$, then (κ, q) is the canonical divisor of N.
- (b) If (κ, q) is undefined or $\nu \leq max(q)$, then ν is the canonical divisor of N.

The canonical protomouse associated with N is the protomouse associated with the canonical divisor of N.

Think of canonical divisors as giving the largest divisor hulls.

Let N_{τ} be the collapsing level for τ in W, and suppose N_{τ} is stable. Then

- If there is a canonical protomouse associated with N_{τ} , set this protomouse to be M_{τ} .
- **2** If N_{τ} does not have an associated canonical protomouse but N_{τ} is pluripotent, set $M_{\tau} = N_{\tau}$.
- So If N_{τ} does not have an associated canonical protomouse and N_{τ} is not pluripotent, M_{τ} is undefined.

Suppose $N_{ au}$ is unstable. Then

•
$$M_{\tau}^{\text{short}} = N(\kappa, q)$$

• $M_{\tau}^{\text{long}} = N(\nu)$.

This leads to sets B_{τ}^{short} and B_{τ}^{long} for unstable levels, and hence to a $\Box_{\Lambda,2}$ sequence.

Find a way to get from $\Box_{\Lambda,2}$ to full \Box_{Λ} .

Accommodate long generators which are limit generators.